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Abstract 

Purpose: To synthesize new azole derivatives and determine their antimicrobial properties. 
Methods: The reaction of the intermediates (2a-2c) with 3a-3c in acetone/potassium carbonate solution 
yielded 4a-4i, which were characterized using Fourier-transform infrared spectroscopy (FTIR), proton 
nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR)) and mass 
spectrometry (MS). Compounds 4a-4i were assessed for their antibacterial and antifungal effects using 
the sequential dilution technique, relative to ofloxacin and ketoconazole. 
Results: The spectral data for 4a-4i were consistent with the assigned structures. The MIC of 
compound 4h (10 µg/ml) was similar to that of ketoconazole against Aspergillus flavus, Penicillium 
citrinum, and Aspergillus niger. The MIC value of compound 4b (10 µg/ml) for Penicillium citrinum was 
comparable to that of ketoconazole while the MIC value of compound 4d against Staphylococcus 
aureus and Escherichia coli (20 µg/ml) was equivalent to the corresponding MIC value for ofloxacin. 
Conclusion: The synthesized compounds bearing boronic acid moiety are good antimicrobial agents. 
Accordingly, further investigation into the thiazole-imidazole or thiazole-triazole derivatives bearing 
boronic acid moiety is suggested. 
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INTRODUCTION 
 
Recent reports on microbial resistance and 
emergence of new microbial diseases pose 
serious challenges to the affected patients, as 
well as the health care community [1]. This 
challenge is further exacerbated by inappropriate 
antimicrobial therapy trends [2]. Therefore, 
scientists are making efforts to provide novel 
antimicrobial agents with diverse mechanisms of 

action from the known chemical classes of the 
existing antimicrobial drugs [3,4]. 
 
Azole is one of the important chemical classes of 
antimicrobial agents [5]. The development of 
azole antimicrobial agents is the focus of current 
research [6]. Many azole-based antimicrobial 
agents are already in clinical use, for example, 
ketoconazole, econazole, miconazole, 
posaconazole, fluconazole, voriconazole, and 
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isavuconazole. Based on these facts [5-10], the 
present study was carried out to synthesize new 
azole derivatives, and to determine their 
antibacterial and antifungal properties. 
 
EXPERIMENTAL 
 
Materials and reagents 
 
Gallenkamp apparatus was used to determine 
the melting points of the synthesized 
compounds. The IR spectra determination (KBr; 
wave number in cm-1), NMR analysis (DMSO-d6; 
δ in ppm), mass analysis (M+

; m/z), and 
elemental investigation (C, H and N analysis) 
were performed using Shimadzu 
spectrophotometer, Bruker DRX-300 
spectrophotometer, Jeol-JMS-D-300 
spectrometer, and VARIO El Elementer 
apparatus, respectively. The monitoring of 
reactions and assessment of purity were carried 
out using TLC. Compounds 3a-3c were 
purchased from Sigma Aldrich. 
 
Synthesis of substituted phenacyl 
intermediates (2a-2c) 
 
Compounds 2a-2c were prepared using the prior 
art process [11]. In general, a mixture of 
acetophenone (0.1 mole) in acetic acid (20 ml) 
was stirred at 80oC with a solution of bromine 
(0.1 mole) in acetic acid (25 ml). The precipitate 
was filtered and recrystallized from ethanol. 
 
Synthesis of 4-(2-((4-phenyl-1H-imidazole-2-
yl)thio)acetyl)phenyl acetate (4a) 
 
A mixture of 2a (0.1 mole), 3a (0.1 mole) and 
potassium carbonate (0.1 mole) in 30 mL 
acetone was stirred at 25 oC for 15-20 h. The 
reaction mixture was dissolved in water (250-500 
mL), and the filtered residue was purified with 
ethanol. 
 
The other imidazole derivatives (4b-4c), thiazole 
derivatives (4d-4f), and triazole derivatives (4g-
4i) were also prepared in a similar manner. 
 
Determination of antimicrobial activity 
 
The sequential dilution technique [12,13] was 
used for determination of antimicrobial effects of 
the synthesized compounds. A similar procedure 
was described in previous publications [7-10]. 
Different concentrations of 4a-4i, ketoconazole, 
and ofloxacin were prepared and their MICs were 
determined using agar medium and sterile 
dimethyl sulfoxide (DMSO). The sterile DMSO 
also functioned as control or blank. The 
microorganisms tested are indicated in Table 2. 

 

 
 
Figure 1: Synthesis of compounds 4a-4f 
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Figure 2: Synthesis of compounds 4g-4i 
 
Statistical analysis 
 
The data are expressed as mean ± standard 
error mean (S.E.M., n=3). Statistical analysis 
was done using SPSS-software (version 20). 
Statistical significance was assumed at p < 0.05. 
 
RESULTS 
 
Figure 1 and Figure 2 depict the synthesis of 
compounds 4a-4f and 4g-4i, respectively. The 
reaction of 2a-2c with 3a-3c in acetone/K2CO3 
yielde 4a-4i, which were characterized through 
spectral analysis.  
 
Table 1 and Table 2 display the spectral data of 
compounds 4a-4i. The IR spectra of the different 
compounds in 4a-4i series exhibited 
characteristic IR bands. These bands included 
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characteristics peaks for –OH groups of 4b, 4e, 
and 4h, starting from 3350 to 3360 cm-1; -NH- 
groups of 4a-4c and 4g-4i from 3120 to 3125 cm-

1; and C=O groups of the acetoxy groups of 4a, 
4d, and 4g, from 1730 to 1735 cm-1. Compounds 
4a-4i also exhibited peaks for C=O group from 
1690 to 1695; C=N group from 1640 to 1645; 
and C=C assemblage from 1595 to 1600 cm-1. 
 
The 1H NMR spectra of 4a-4i showed aromatic 
hydrogens as multiplets at δ 7.40-7.85, and the 
methylene protons (-CH2-) as singlets at δ 4.60-
4.63. Compounds 4a, 4d and 4g exhibited 
singlets at δ 2.12-2.15 for the methyl group. 
Compounds 4a-4c and 4g-4i showed a singlet 
for the –NH- group at δ 11.94-1199. The boronic 
acid derivatives 4b, 4e and 4h displayed singlet 
peaks for –OH group at δ 4.11-4.15 [11]. The 13C 
NMR spectra of 4a-4i revealed characteristic 
peaks of carbonyl carbon (-CH2-CO-) at δ 195.0 - 
195.1 and methylene carbon (-CH2-CO-) at δ 
39.1-38.4. Compounds 4a, 4d and 4g exhibited 
additional peaks of methyl carbon (-CH3) at δ 
21.2, and another carbonyl carbon (-CO- of 
acetoxy) at δ 168.1 - 168.0. Other peaks 
appeared in the aromatic regions of the 13C NMR 

spectra. The mass analysis (m/z) and the 
elemental (C, H and N) analysis data of 4a-4i 
were also in agreement with the allocated 
structures. 
 
Table 3 shows the antimicrobial activities of 4a-
4i, wherein the MIC values are expressed in 
μg/ml. For purpose of comparison, the MIC 
values of ketoconazole and ofloxacin were 
considered as 100 %. The data revealed that 
compound 4h and ketoconazole had the same 
MIC value (10 μg/mL) against Aspergillus niger, 
Aspergillus flavus, and Penicillium citrinum, while 
compound 4b and ketoconazole had similar MIC 
(10 μg/mL) against Penicillium citrinum. 
Compound 4d and ofloxacin had equivalent MIC 
value (20 μg/mL) against Staphylococcus aureus 
and Escherichia coli. It was also obvious that 
compounds 4d-4f displayed very good 
antimicrobial activities (80 – 100 %) against 
Staphylococcus aureus, Escherichia coli, Bacillus 
subtilis, and Pseudomonas aeruginosa, relative 
to ofloxacin, whereas compounds 4a-4c and 4g-
4i were moderately active. 
 

 
Table 1a: Spectral data for 4a-4e 
 
Compound 
(molecular 
formula) 
(melting point) 

IR  
(Wave 

number in 
cm-) 

1H NMR 
(δ in ppm, 
DMSO-d6) 

13C NMR 
(δ in ppm, DMSO-d6) 

Mass  
(m/z; M+) 

C, H, N Anal., 
{Found 

(Calculated)} 

 
 
4a 
(C19H16N2O3S) 
(178-180oC) 

 
3120, 
1730, 
1690, 

1640, and 
1595 

 
2.12 (s, 3H), 
4.62 (s, 2H), 
7.40-7.85 (m, 
10H), 11.95 

(s, 1H) 

21.2 (-CH3), 39.1 (-CH2-), 
120.8, 122.4 (2C), 128.4 
(2C), 129.6, 130.1 (4C), 

133.1, 134.0, 141.0, 
141.6, 156.6, 168.1 (-

CO- of acetoxy), 195.0 (-
CO-) 

 
 
 

352 

 
 

C, 64.75 (64.76); 
H, 4.55 (4.58); N, 

7.90 (7.95) 

 
4b 
(C17H15BN2O3S) 
(144-146oC) 

3350, 
3125, 
1695, 

1645, 1600 

4.11 (s, 2H), 
4.60 (s, 2H), 
7.41-7.84 (m, 
10H), 11.98 

(s, 1H) 

39.1 (-CH2-), 113.0, 
120.8, 128.4 (2C), 129.6 
(3C), 130.1 (2C), 134.0, 

134.2 (2C), 136.3, 141.0, 
141.6, 195.1 (-CO-). 

 
 

338 

 
C, 60.35 (60.38); 
H, 4.45 (4.47); N, 

8.25 (8.28) 

 
4c 
(C17H13BrN2OS) 
(161-163oC) 

 
3122, 
1692, 

1640, 1600 

4.63 (s, 2H), 
7.42-7.85 (m, 
10H), 11.99 

(s, 1H) 

38.4 (-CH2-), 120.8, 
122.1, 128.2, 128.4 (3C), 
129.6, 130.1 (2C), 133.1, 

133.5, 134.0, 141.0, 
141.2, 141.6, 195.1 (-

CO-). 

 
371 (M+) 

& 373 
(M++2) 

 
C, 54.65 (54.70); 
H, 3.50 (3.51); N, 

7.45 (7.51) 

 
 
4d 
(C19H15NO3S2) 
(171-173oC) 

 
 

1732, 
1695, 

1641, 1598 

 
 

2.15 (s, 3H), 
4.61 (s, 2H), 
7.40-7.83 (m, 

10H) 

21.2 (-CH3), 39.1 (-CH2-), 
113.1, 122.4 (2C), 128.4 
(2C), 129.6, 130.1 (4C), 

133.1, 134.0, 155.8, 
156.6, 167.6, 168.0 (-

CO- of acetoxy), 195.0 (-
CO-). 

 
 
 

369 

 
 

C, 61.75 (61.77); 
H, 4.04 (4.09); N, 

3.77 (3.79) 

 
4e 
(C17H14BNO3S2) 
(151-153oC) 

 
3360, 
1695, 

1645, 1600 

 
4.15 (s, 2H), 
4.62 (s, 2H), 
7.44-7.85 (m, 

10H) 

39.1 (-CH2-), 113.0, 
113.3, 128.4 (2C), 129.6 
(3C), 130.1 (2C), 134.0, 

134.2 (2C), 136.3, 155.8, 
167.6, 195.1 (-CO-). 

 
 

355 

C, 57.45 (57.48); 
H, 3.95 (3.97); N, 

3.90 (3.94) 

 



Imran et al 

Trop J Pharm Res, February 2020; 19(2): 380 
 

Table 2: Spectral data for 4f-4i 
 
Compound 
(molecular 
formula) 
(melting point) 

IR  
(Wave 

number in 
cm-) 

1H NMR 
(δ in ppm, 
DMSO-d6) 

13C NMR 
(δ in ppm, DMSO-d6) 

Mass  
(m/z; M+) 

C, H, N Anal., 
{Found 

(Calculated)} 

 
4f 
(C17H12BrNOS2) 
(167-169oC) 

 
 

1690, 
1640, 1595 

 
 

4.62 (s, 2H), 
7.41-7.83 (m, 

10H). 

38.4 (-CH2-), 113.1, 
122.1, 128.2, 128.4 (3C), 
129.6, 130.1 (2C), 133.1, 

133.5, 134.0, 141.2, 
155.8, 167.6, 195.1 (-

CO-). 

 
388 (M+) 

& 390 
(M++2) 

 
C, 52.25 (52.31); 
H, 3.05 (3.10); N, 

3.55 (3.59) 

 
 
4g 
(C18H15N3O3S) 
(131-133oC) 

 
3125, 
1735, 
1695, 

1645, 1600 

2.14 (s, 3H), 
4.62 (s, 2H), 
7.41-7.83 (m, 
9H), 11.95 (s, 

1H) 

21.2 (-CH3), 39.1 (-CH2-), 
122.4 (2C), 128.4 (2C), 

130.1 (4C), 132.0, 133.1, 
133.4, 156.6, 159.8, 

161.4, 168.0 (-CO- of 
acetoxy), 195.1 (-CO-). 

 
 
 

353 

 
C, 61.13 (61.18); 
H, 4.23 (4.28); N, 

11.83 (11.89) 

 
4h 
(C16H14BN3O3S) 
(140-142oC) 

3357, 
3125, 
1695, 

1645, 1595 

4.12 (s, 2H), 
4.61 (s, 2H), 
7.41-7.84 (m, 
9H), 11.95 (s, 

1H) 

39.1 (-CH2-), 113.0, 
128.4 (2C), 129.7 (2C), 

130.1 (2C), 132.0, 133.4, 
134.2 (2C), 136.3, 159.5, 

161.4, 195.0 (-CO-). 

 
 

339 

 
C, 56.61 (56.66); 
H, 4.12 (4.16); N, 

12.26 (12.39) 

 
4i 
(C16H12BrN3OS) 
(173-175oC) 

 
3120, 
1690, 

1643, 1600 

4.60 (s, 2H), 
7.40-7.85 (m, 
9H), 11.94 (s, 

1H) 

38.4 (-CH2-), 122.1, 
128.2, 128.4 (3C), 130.1 
(2C), 132.0, 133.1, 133.4 

(2C), 141.2, 159.5, 
161.4, 195.1 (-CO-). 

 
372 (M+) 

& 374 
(M++2) 

 
C, 51.31 (51.35); 
H, 3.20 (3.23); N, 

11.18 (11.23) 

 
Moreover, compounds 4d-4f were least active 
against Candida albicans, Aspergillus flavus, 
Penicillium citrinum and Aspergillus niger, 
whereas compounds 4a-4c and 4g-4i displayed 
moderate-to-equivalent antifungal activities, 
relative to ketoconazole. 
 
DISCUSSION 
 
The structure-activity analysis of compounds 4a-
4i revealed that compounds of the triazole series 
(4g-4i) were more potent antifungal agents than 
those of the imidazole series (4a-4c) and the 
thiazole series (4d-4f). This is in line with a 
previous report [14] which indicated that the 
azole ring must contain at least two nitrogen 
atoms for enhanced effects of the azole 
antifungal agents because the nitrogen atom in 
position 3 of imidazole ring and triazole ring is 
essential for the binding of fungal enzymes. This 
also accounts for the fact that compounds 4d-4f 
which lack nitrogen at position 3, were the least 
potent of the thiazole compounds against the 
tested fungal strains. It was also obvious that the 
thiazole derivatives (4d-4f) were more potent 
antibacterial agents than the imidazole (4a-4c) 
and triazole (4g-4i) compounds. 
 
It has been established that benzothiazole-based 
compounds have promising antibacterial effects 
[15]. There is a possibility that the 4-

phenylthiazole moiety of compounds 4d-4f might 
be working like benzothiazole-based compounds 
[15]. In addition, the most potent antifungal 
compound (4h), and another promising 
antifungal agent (4b) also contain boronic acid 
moieties, which are also supposed to increase 
their antifungal potencies [16]. No effect on 
antimicrobial effect was seen with compounds 
containing bromine atom. However, the 
fluorinated derivatives of 4a-4i must be assessed 
for their antimicrobial potential, since many 
fluorinated azole antifungal agents [16,17], and 
fluorinated antibacterial agents [18] are in clinical 
use. Finally, the presence of the acetoxy group in 
compounds 4a, 4d and 4g was not supposed to 
provide any additional antibacterial benefits. 
 
CONCLUSION 
 
Compounds 4h, 4b and 4d have been identified 
as promising antimicrobial agents. However, they 
need to be evaluated against other bacteria and 
fungi. It has been established that the presence 
of a fused thiazole-imidazole or thiazole-triazole 
ring system in the 4a-4i types of compounds, 
along with a boronic acid moiety, may provide 
better broad-spectrum antimicrobial agents. The 
incorporation of fluorine in the structure may also 
provide beneficial outcomes. 
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Table 3: Antimicrobial effects of compounds 4a-4i 
 
 
Compound 

MICa in μg/ml (% inhibition, relative to standard) 
Candida 
albicans 

Aspergillus 
niger 

Aspergillus 
flavus 

Penicillium 
citrinum 

Staphylococcus 
aureus 

Bacillus subtilis Escherichia 
coli 

Pseudomonas 
aeruginosa 

4a 20 (50%) 25 (40%) 25 (40%) 20 (50%) 30 (66.66%) 40 (50%) 30 (66.66%) 30 (66.66%) 
4b 12.5 (80%) 12.5 (80%) 15 (66.66%) 10 (100%) 30 (66.66%) 30 (66.66%) 30 (66.66%) 30 (66.66%) 
4c 15 (66.66%) 15 (66.66%) 15 (66.66%) 15 (66.66%) 25 (80%) 25 (80%) 30 (66.66%) 25 (80%) 
4d 40 (25%) 40 (25%) 40 (25%) 40 (25%) 20 (100%) 25 (80%) 20 (100%) 22.5 (88.88%) 
4e 30 (33.33%) 30 (33.33%) 30 (33.33%) 30 (33.33%) 25 (80%) 25 (80%) 25 (80%) 25 (80%) 
4f 30 (33.33%) 30 (33.33%) 30 (33.33%) 30 (33.33%) 25 (80%) 25 (80%) 25 (80%) 25 (80%) 
4g 25 (40%) 25 (40%) 30 (33.33%) 25 (40%) 50 (40%) 40 (50%) 40 (50%) 50 (40%) 
4h 12.5 (80%) 10 (100%) 10 (100%) 10 (100%) 40 (50%) 40 (50%) 40 (50%) 40 (50%) 
4i 15 (66.66%) 15 (66.66%) 15 (66.66%) 15 (66.66%) 30 (66.66%) 50 (0%) 40 (50%) 30 (66.66%) 
Ofloxacin - - - - 20 (100%) 20 (100%) 20 (100%) 20 (100%) 
Ketoconazole 10 (100%) 10 (100%) 10 (100%) 10 (100%) - - - - 
Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
P <0.05, compared to control 
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