Main Article Content
Protective effect of vanillin in streptozotocin-induced diabetes in neonatal rats via attenuation of oxidative stress and inflammation
Abstract
Purpose: To evaluate the antidiabetic activity of vanillin in streptozotocin (STZ)-induced diabetic rats.
Methods: Diabetes was induced in 2-day old male pups by intraperitoneal (i.p.) administration of STZ (90 mg/kg). The pups were then randomly assigned to four groups: control group which received citrate buffer only in place of STZ; negative control group, i.e., diabetic group; and vanillin-treated groups which received vanillin (100 or 200 mg/kg, p.o.) continuously from the 6th week of age to the 10th week. The antidiabetic effect of vanillin was determined by measuring the serum levels of insulin, triglycerides and glucose in the diabetic rats. Oral glucose tolerance, kidney and liver function tests were also performed at the end of the protocol. Moreover, the oxidative stress and inflammatory cytokines in liver tissues, and histopathological changes in pancreatic tissues were assessed.
Results: Vanillin treatment significantly decreased serum glucose and triglyceride levels and increased the level of insulin, when compared to the negative control group. There was higher insulin sensitivity in the vanillin-treated group than in the negative control group. In addition, vanillin improved liver and renal functions in STZ-induced diabetic neonatal rats. Hepatic oxidative stress and inflammatory mediators, as well as histopathological changes in pancreas were attenuated by vanillin treatment.
Conclusion: These results reveal that vanillin attenuates hyperglycemia in STZ-induced neonatal diabetic rat model by decreasing oxidative stress and inflammatory cytokines. There, further studies are required to develop the anti-diabetic potentials of vanillin for clinical applications.
Keywords: Vanillin, Streptozotocin, Diabetes, Oxidative stress, Insulin, Neonatal