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Abstract 

Purpose: To investigate the antibacterial and immunomodulatory activities of the root tuber extract of 
Polygonum ciliinerve (Nakai) ohwi, a traditional Chinese medicine. 
Methods: Minimum inhibitory concentrations (MICs) of root tuber extract of Polygonum ciliinerve 
(Nakai) ohwi (rPC) and the synergistic effects between rPC and antibiotics were evaluated by broth 
dilution. In vitro adhesion and invasion assays were used to determine the effect of rPC on bacterial 
adhesion and invasion. Furthermore, the immunomodulatory effects of rPC were assessed by western 
blot. 
Results: rPC treatment inhibited the growth of Staphylococcus aureus (MIC = 12 mg/ml) and 
Escherichia coli (MIC = 64 mg/mL). rPC also showed synergistic effects with penicillin (fractional 
inhibitory concentration, FIC = 0.45), vancomycin (FIC = 0.333), moxifloxacin (FIC = 0.25), and 
levofloxacin (FIC = 0.356). The adhesion and invasion of bacteria were also suppressed by rPC 
treatment. Moreover, rPC exhibited an immunomodulatory effect during bacterial infection. 
Conclusion: rPC shows antibacterial and immunomodulatory activites when assessed by multiple 
methods, and therefore is a potential therapeutic alternative agent for the treatment of bacterial 
infections. 
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INTRODUCTION 
 
The widespread clinical use of antibiotics 
combined with a shortage of new antimicrobials, 
has resulted to bacterial pathogens with drug 
resistance [1]. Consequently, infectious diseases 
caused by bacterial pathogens have resulted in 
increased morbidity and mortality worldwide and 
are a serious threat to public health [2]. 
 

The pharmaceutical industry is devoted to 
developing new antibiotics to overcome 
antimicrobial resistance. Screening bioactive 
compounds from microbes and improving the 
chemical structures of these bioactive 
compounds are the most common strategy. In 
addition, natural products are an important 
treasury for new antibacterial drugs and have 
historically provided people with a source of 
organic molecules to treat infections [3]. Modern 
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pharmacology has shown that natural products 
have antimicrobial activity and show a synergistic 
effect with antibiotics [3,4]. 
 
Polygonum ciliinerve (Nakai) ohwi, belonging to 
Polygonum of Polygonaceae, is popularly used 
as an antimicrobial in China. As an herbal 
medicine, rPC is the effectual component of 
Polygonum ciliinerve (Nakai) ohwi used for 
disease treatment by recordation. Modern 
pharmacological analysis showed 
polysaccharides and anthraquinones were 
regarded as the active ingredients of rPC [5-7]. 
Although early studies showed that rPC 
possesses anti-oxidant and antifungal activities, 
the antimicrobial activities of rPC remain to be 
explored [6,8,9]. 
 
This study elucidated the antibacterial activities 
of rPC using several assays, including traditional 
bacteriostasis assessments, drug combination 
assays, bacterial adhesion and invasion assays, 
and assessments to determine 
immunomodulatory effects. Based on these 
results, rPC may be expected to be a therapeutic 
alternative for infectious diseases and may also 
provide a lead for the development of herbal 
antimicrobial medicines. 
 
EXPERIMENTAL 
 
rPC preparation 
 
rPC was purchased from Hu Qing Yu Chinese 
Pharmacy. Pulverized rPC was extracted by 
twice refluxing in 30 % ethanol for 3 h at 100 oC. 
The extract was passed through a 50-μm filter 
and isolated as a lyophilized powder. 
 
Bacterial strains, cells, and chemicals 
 
S. aureus ATCC6538 and E. coli ATCC25922 
were incubated in Luria Broth (LB) medium at 37 
℃. Fetal human colon (FHC) cells were 
purchased from the Chinese Academy of 
Sciences. Gentamicin, penicillin, vancomycin, 
moxifloxacin, and levofloxacin were purchased 
from Sigma-Aldrich. A cell counting kit-8 (CCK-8) 
was acquired from Dojindo. 
 
Evaluation of MIC and time-kill assay 
 
MICs were measured by broth dilution in 
accordance with the guidelines of the Clinical 
and Laboratory Standards Institute (CLSI). Serial 
dilutions of rPC/antibiotics were prepared in 96-
well plates, and bacteria (105 CFU/mL) were 
inoculated into each well. The 96-well plates 
were incubated for 24 h at 37 ℃, and 
absorbance at a wavelength of 600 nm, was 

measured. The minimum concentrations of 
rPC/antibiotics that inhibited the growth of 
bacteria were the MICs. Absorbance was 
measured with a SpectraMax M3 multi-mode 
microplate reader (Molecular Devices) to monitor 
the number of bacteria. 
 
S. aureus and E. coli were cultured in LB 
medium with different concentrations of rPC (0, 
0.125, 0.25, 1 × MIC) at 37 ℃ for 24 h. The 
samples were removed, diluted (1:10), and the 
absorbance measured at 600 nm wavelength 
hourly. Standard growth curves constructed by 
plotting absorbance against colony forming units 
per milliliter (CFU/mL) in order to calculate 
CFU/mL of S. aureus and E. coli. 
 
Synergism test 
 
Different concentrations of rPC and antibiotics 
were put together in 96-well plates (each 
concentration was lower than the determined 
MIC). S. aureus (105 CFU/mL) was inoculated 
into each well. After incubation for 24 h at 37 ℃, 
the OD600 of the 96-well plates was measured. 
The combinations that yielded minimal 
concentrations of rPC and antibiotics that 
inhibited the growth of bacteria indicated the 
combined MIC. 
 
For component A, the FIC of A was calculated as 
the combined MIC of A divided by the MIC of A 
alone. The FIC index was the sum of the FICs for 
each combined component. The interactions are 
considered antagonistic if FIC index > 2, 
indifference if 1 < FIC index < 2, additive if FIC 
index = 1, and synergistic if FIC index < 1. 
 
Adhesion and invasion assay 
 
FHC cells (105 cells per well) were seeded into 
24-well plates 1 day before the assay, and the 
medium was changed to serum-free medium 1 h 
before infection. S. aureus (106 CFU) was added 
to each well in addition to different 
concentrations of rPC (0, 0.25, 0.5, 1 × MIC), 
and the plates were centrifuged (2000 rpm, 10 
min) to allow infection. For the adhesion assay, 
FHC cells were lysed (0.1 % Triton) after 
washing, and the OD600 was measured. For the 
invasion assay, the 24-well plates were 
incubated for 40 min and washed three times 
with PBS. Cells were incubated with gentamicin-
containing medium (25 μg/mL) for another 1 h 
and lysed to determine CFUs.  
 
Western blot 
 
FHC cells (106 cells per well) were seeded into 6-
well plates and treated with S. aureus (107 CFU) 
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and rPC (0, 0.25, 0.5, 1 × MIC) for 24 h. Cells 
were lysed in RIPA lysis and extraction buffer 
(Thermo Fisher Scientific) with protease 
inhibitors (Sigma-Aldrich). A BCA Protein Assay 
Kit (Thermo Fisher Scientific) was used to 
determine protein concentrations. Ten-microliter 
protein samples were electrophoresed with SDS 
polyacrylamide gels and transferred to PVDF 
membranes (Millipore). The membranes were 
blocked by TBST (tris-buffered saline with Tween 
20) containing 5% skim milk for 3 h and washed 
three times with TBST. The primary antibodies 
against GAPDH (Abcam), p38 (Abcam), 
phosphorylated-p38 (Abcam), ERK (Abcam), 
phosphorylated-ERK (Abcam), IKBα (Abcam) 
and phosphorylated-IKBα (Abcam) were 
incubated with the membranes overnight at 4℃. 
After washing with TBST, horseradish 
peroxidase (HRP)-conjugated secondary 
antibodies (Abcam) were incubated with the 
membranes at room temperature for 1 h. The 
chemiluminescence induced by SuperSignal 
West Dura Extended Duration Substrate 
(Thermo Fisher Scientific) was detected with 
ImageQuant LAS 4000mini (GE Healthcare Life 
Sciences). 
 
Statistical analysis 
 
Data were collected from three independent 
experiments and are expressed as mean ± 
standard error of mean (SEM). The statistical 
significance of differences between two groups 
was evaluated with the Mann-Whitney test. 
SPSS and Prism software was used to perform 
the statistical analysis, with p < 0.05 indicating 
significance.  
 
RESULTS 
 
Antimicrobial activity of rPC 
 
The antibacterial activities of rPC against S. 
aureus and E. coli were determined through by 
broth dilution. The MICs of rPC against S. aureus 
and E. coli were 12 and 64mg/ml, respectively 
(Figure 1A). These results suggest that rPC 

exhibits antimicrobial activities against both 
gram-negative and gram-positive bacteria. 
Based on the MIC of rPC, time-kill curves of S. 
aureus and E. coli were also obtained (Figure 
1B). After exposure to rPC (0, 0.125, 0.25, 0.5, 
1.0 × MIC), the viable count was tested every 
hour through measurement of OD600. When 
compared with the control, rPC successfully 
restricted viable cell count. Moreover, rPC 
showed effective and prolonged bactericidal 
ability at the MIC concentration within 24h. Taken 
together, rPC has broad and strong antibacterial 
activities. 
 

 
 
Figure 1: Antimicrobial activity of rPC.(A) Inhibition of 
the growth of S. aureus and E. coli by various 
concentrations of rPC; □:E.coli, △:S.aureus. (B) Time-
kill curves for S. aureus and E. coli treated with rPC (0, 
0.125, 0.25, 0.5, 1 × MIC); **p< 0.01, ***p< 0.001, 
compared with control group; ○: Control; □:0.125 × 
MIC rPC; △:0.25 × MIC rPC; ▽:0.5 × MIC rPC; ◇: 1.0 × 
MIC rPC 
 
Synergistic effect of rPC and antibiotics 
 
To further evaluate potential applications of rPC, 
the synergistic activity of rPC and antibiotics was 
tested. FIC index was used as indicators of the 
synergistic effect against S. aureus. The FIC 
index of rPC and antibiotics ranged from 0.2 to 
0.5, indicative of synergistic effects (FIC ≤ 0.5) 
(Table 1). The combined use of rPC and 
Moxifloxacin showed the strongest synergistic 
effect (FIC = 0.25). The results indicate that rPC 
could be used in clinical treatment to improve the 
utilization efficiency of antibiotics and decrease 
the overuse of antibiotics. 
 

 
Table 1: Effect of combined antibacterial agents on the growth of S. aureus in LB medium at 37 oC. FIC index < 
0.5 considered as synergistic 
 
Component Single MIC Combined MIC FIC A B A (mg/mL) B (μg/mL) A (mg/mL) B (μg/mL) 
rPC Penicillin 12 0.12 3 0.024 0.45 
rPC Vancomycin 12 8 1 2 0.333 
rPC Moxifloxacin 12 60 1 10 0.25 
rPC Levofloxacin 12 0.53 2 0.1 0.356 
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Figure 2: Effect of rPC on S. aureus infection of enterocytes in vitro. (A) FHC cells were exposed to S. aureus 
and rPC (0, 0.25, 0.5, 1 × MIC) for 2 h. Cell viability was determined with a CCK-8 assay. (B and C) The effects 
of rPC (0, 0.25, 0.5, 1 × MIC) on S. aureus adhesion to (B) and invasion of (C) FHC cells during bacterial 
infection. ***P < 0.001, compared with control group; #p < 0.05, ##p < 0.01 ###p < 0.001 compared with S. 
aureus infection group 
 
rPC inhibited S. aureus infection of 
enterocytes in vitro 
 
To identify whether the antimicrobial activity of 
rPC correlated with the inhibition of bacterial 
infection, the adhesion and invasion of 
enterocytes by S. aureus was quantified with 
conventional infection assays. First, the cytotoxic 
effect of rPC (0, 0.25, 0.5, 1 × MIC) and S. 
aureus on FHC cells was determined, and no 
obvious cytotoxic effects was found (Figure 2A). 
In the assay, Penicillin was used as a positive 
control. rPC reduced S. aureus adhesion and 
invasion to FHC cells in a dose-dependent 
manner (Figures 2 B and C). Furthermore, rPC 
had a stronger effect on inhibition of bacterial 
adhesion and invasion than penicillin which only 
inhibits bacterial growth, indicating that rPC has 
a direct effect on bacterial adhesion and invasion 
(Figure 2 B and C). 
 
rPC ameliorated the inflammatory response 
of infected cells 
 
S. aureus may induce cellular immune responses 
after invasion by activating the MAPK/ERK and 
NF-κB signaling pathways[10,11]. Therefore, 
FHC cells were infected with S. aureus, and the 
expression of typical proteins was analyzed after 
rPC treatment (0, 0.25, 0.5, 1 × MIC). 
Phosphorylation of p38 (MAPK14), ERK, and 
IKBα were observed after S. aureus infection, 
suggesting that the MAPK/ERK and NF-�B 
pathways were activated (Figure 3). However, 
rPC treatment significantly decreased the 
activation of p38, ERK, and IKBα, indicating a 
reduced inflammatory response in enterocytes 
(Figure 3). These results demonstrate that rPC 

could act to maintain cellular immune 
homeostasis during bacterial infection. 
 

 
 
Figure 3: rPC ameliorated the inflammatory response 
of infected cells.The expression of phosphorylated-
p38, p38, phosphorylated-ERK, ERK, phosphorylated- 
IKBα, and IKBα in FHC cells with different treatment 
 
DISCUSSION 
 
In order to decrease the morbidity and mortality 
of infectious diseases, it is important to discover 
new drugs with effective antibacterial activities. 
Traditional herbal medicines were considered to 
possess effective antimicrobial activities and 
hard to acquire drug resistance [12]. Therefore, 
rPC, an anti-infective drug in traditional Chinese 
medicine, has the potential to become a novel 
therapy for bacterial infections. In this study, the 
antibacterial activity of rPC and its synergistic 
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effect with antibiotics were evaluated. In addition, 
other antibacterial activities of rPC were also 
assessed, particularly inhibition of bacterial 
adhesion and invasion, which in-turn modulates 
the immune responses of infected cells. 
 
In the present study, rPC showed antimicrobial 
activity against S. aureus and E. coli (MIC = 
12and 64 mg/mL, respectively). Consistent with 
the records of Bencao Tujing (published in 1061, 
China), rPC served as an anti-infection agent. 
Emodin and physcion, the effective of rPC, have 
strong bactericidal effects [5,13,14]. Therefore, 
rPC possessed natural antibacterial activity. 
Moreover, the time-kill assays illustrated that rPC 
can inhibit bacteria growth at concentrations ≥ 0.5 × 
MIC. 
 
Synergistic effects were observed between rPC 
and antibiotics. The combined concentrations of 
rPC and antibiotics inhibiting bacterial growth 
were much lower than single use. Therefore, rPC 
probably can be used as an adjuvant to 
effectively prevent drug resistance to antibiotics. 
However, the experimental conditions in this 
study were limited (bacteria was incubated in 
culture medium within a 24 h period); also, the 
pathophysiological condition of human body is 
more complicated and hence further studies 
need to be done. 
 
Pathogenic bacteria, such as S. aureus and E. 
coli, have sophisticated adhesion systems, like 
flagella and fimbriae, conducting efficient cellular 
adhesion and invasion [15,16]. In addition, 
microorganisms can utilize extracellular matrix 
such as fibronectin, to promote adhesion and 
invasion [17]. The findings of this study suggest 
that rPC suppresses bacterial adhesion and 
invasion. 
 
NF-κB and p38/MAPK signaling pathways link 
extracellular stimuli with inflammatory responses 
[18,19]. In the current study, rPC treatment 
reduced the activation of p38, ERK and IKBα 
compared with the S. aureus group, which 
indicated that rPC can attenuate inflammation of 
infected cells. Therefore, the immunomodulatory 
effects of rPC should be further explored. 
 
CONCLUSION 
 
This study demonstrates that rPC possesses 
strong antibacterial activities and has a 
synergistic effect with antibiotics. Moreover, the 
results suggest that rPC inhibits bacterial 
adhesion, suppresses bacterial invasion, and 
plays an immunomodulatory role in host cells. 
Based on these results, rPC is a promising 
medicinal agent for the treatment of infectious 

diseases, and may potentially help to tackle 
antibiotic resistance. 
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