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Abstract 

Purpose: To investigate the therapeutic effects of saikosapoin D (SSD) on bleomycin (BLM)-induced 
pulmonary fibrosis (PF) in mice and its probable mechanisms. 
Methods: PF mice were prepared by intraperitoneal (i.p.) injection of BLM (5 mg/kg). Twenty-four hours 
later, 72 mice in SSD group were administered SSD (1.8 mg/kg, ip). After 3, 7, 14 and 28 days of 
injection, the mice were sacrificed. Blood samples and lung tissues were collected from 6 mice in each 
group. The lung tissues were subjected to histological examination. In addition, expressions of MyD88, 
TRAF6, IL-33 and ST2 in lung tissue were determined by western blotting assay. Serum levels of 
hydroxyproline (HYP), interleukin (IL)-4, IL-13 and interferon (IFN)-γ were measured by enzyme-linked 
immunosorbent assay (ELISA). 
Results: Pathological results showed that SSD treatment alleviated alveolitis and lung fibrosis (p < 
0.05) in lung tissues of PF mice at 14 and 28 days post-BLM injection. HYP and IL-13 levels of mice in 
SSD group were significantly lower than that in BLM group at days 14 and 28 post-BLM injection (p < 
0.05). Levels of IL-4 and IFN-γ were significantly lower when compared with values in BLM group on 
day 28 (p < 0.05). Western blotting results revealed that expressions of MyD88, TRAF6, IL-33 and ST2 
proteins were significantly decreased by SSD treatment (p < 0.05).   
Conclusion: SSD exerts therapeutic effects on BLM-induced experimental PF in mice via regulation of 
IL-33/ST2 pathway.  
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INTRODUCTION 
 
Idiopathic pulmonary fibrosis (IPF) is a common 
and complex disease with high mortality and 
morbidity, and the median survival time is only 2 
to 5 years [1,2]. Recent findings indicate that the 
mechanisms of its fibrotic effect involve 
transforming growth factor-β (TGF-β), Wnt 
ligands (secreted glycoproteins), toll-like receptor 
mediated signaling and type 2 immune 

responses, [3,4]. In addition, current clinical trials 
have evaluated various therapeutic approaches 
for IPF, such as dual endothelin receptor 
antagonist bosentan, imatinib, sildenafil, 
etanercept and interferon-c-1β, etc [5-7]. 
However, none of these ways attained the 
primary aims. Currently, the combination of 
corticosteroids and immunosuppressants is 
considered as common strategy for IPF 
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treatment, however it would bring some serious 
adverse effects [8].  
 
A novel signaling named IL-33/ST2 has been 
studied in many other fibrotic diseases, such as 
scleroderma, progressive systemic sclerosis and 
liver fibrosis [9,10]. ST2, an interleukin (IL)-1 
receptor-related protein, is specifically expressed 
on Th2 cells, mast cells but not on Th1 cells, and 
has been recognized as a stable marker of Th2 
cells [11]. IL-33, a novel member of IL-1 family, 
takes on its biologic activations by combining 
with its receptor protein ST2 [12].  
 
Saikosapoin D (SSD) is an active constituent of 
Radix Bupleuri which is a famous herbal 
medicine in China with broad spectrum 
bioactivities. Previous reports indicated that SSD 
could be used to treat hepatic fibrosis and 
inflammatory diseases [13,14]. Thus, in the 
present investigation, we evaluated the potential 
therapeutic effects of SSD on bleomycin (BLM)-
induced pulmonary fibrosis (PF) in mice, and the 
role of IL-33/ST2 pathway in this process.  
 
EXPERIMENTAL 
 
Chemicals and reagents 
 
Saikosapoin-D (SSD) was purchased from the 
Jiangxi Herbfine Science and Technology Co. 
Ltd (Jiangxi, China); chloral hydrate was 
obtained from the Jiangbin Hospital (Zhenjiang, 
China); Bleomycin (BLM) was purchased from 
the Nippon Kayaku Co., Ltd. (Tokyo, Japan); 
Hematoxylin and Eosin (H&E), Masson’s 
Trichrome, hydroxyproline (HYP) commercial kit, 
tissue RIPA buffer, primary antibodies for 
myeloid differentiation factor 88 (MyD88) and β-
actin were purchased from the Wuhan Boster 
Biotech Co. (Wuhan, China); PVDF membranes 
and skimmed milk powder were obtained from 
the Millipore Co. Ltd. (Billerica, MA, America); 
primary tumor necrosis factor (TNF) receptor-
associated factor 6 (TRAF6) monoclonal 
antibody was purchased from the Santa Cruz 
(Shanghai, China); commercial ELISA kits for IL-
4, IL-13, IFN-γ and primary IL-33 monoclonal 
antibody were products of R&D. Inc. (Shanghai, 
China); primary ST2 polyclonal antibody was 
purchased from the Abcam Co. (Cambridge, 
UK); HRP-conjugated secondary antibody was 
purchased from the Cwbiotech. Co. (Shanghai, 
China). 
 
Animals 
 
SPF female C57BL/6 stain mice (6 weeks old, 18 
± 2 g) were purchased from the Laboratory 
Animal Center of Jiangsu University (Zhenjiang, 

China). All the animal experimental protocols 
were performed in accordance with the National 
Principles of Care and Use of Laboratory 
Animals [15] and were approved by the Ethics 
Committee of Changzhou Wujin People's 
Hospital (no. 2015a-4#A). 
 
Animal model establishment and 
experimental protocols 
 
A total of 72 mice were evenly divided into three 
groups (n = 24): control group (Cont.), BLM 
group and SSD group. After anaesthetized wtih 
chloral hydrate by intraperitoneal injection (0.01 
mg/kg body weight, ip), mice in the BLM and 
SSD groups were injected with bleomycin (5 
mg/kg, body weight, ip), while mice in control 
group were given equivalent volume of saline in 
place of bleomycin. Twenty-four hour after BLM 
injection, SSD mice were administered SSD (1.8 
mg/kg body weight, ip). On day 3, 7, 14 and 28 
after bleomycin injection, blood samples were 
collected using orbital blood sampling, and 
subsequently 6 mice of each group were 
sacrificed by cervical dislocation and the lung 
tissues were excised. The left lung tissues were 
fixed with 4 % paraformaldehyde, while the right 
lung tissues were frozen in liquid nitrogen for 10 
min and then stored at -70 °C.  
 
Histopathological investigations 
 
The left lung tissues, fixed with 4 % 
paraformaldehyde, were paraffin embedded, and 
successively sliced at 4 μm thickness. The slices 
were stained with H&E to detect the degrees of 
inflammation and injury, while some were stained 
with Masson’s Trichrome to detect extent of 
fibros. According to methods established by 
Szapiel et al, score of 1, 2, 3, and 4 indicate 
grade 0, 1, 2, and 3 of alveolitis or pulmonary 
fibrosis was calculated [16]. 
 
Determination of HYP contents in lung 
tissues  
 
The right lung tissues were used to determine 
the HYP contents according to the instruction on 
commercial HYP kits.  
 
Western blotting assay  
 
Lung tissues were homogenized and lysed with 
RIPA buffer and subsequently the total proteins 
were isolated. Then, equal amounts (30 μg) of 
protein were separated by SDS - PAGE and 
transferred to PVDF membranes. The 
procedures used followed the sequence: 
blocking with skimmed milk powder, incubation 
with primary polyclonal antibodies (including 
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MyD88, TRAF6, IL-33 and ST2), and addition of 
HRP-conjugated secondary antibody. β-actin 
was used as internal control, and specific bands 
were visualized using ECL chemiluminescence 
kit (GE Healthcare, USA). 
 
Determination of serum levels of IL-4, IL-13 
and IFN-γ  
 
Blood samples were treated with heparin sodium 
and then stored at -70 °C. After blood sample 
were centrifuged, serum levels of IL-4, IL-13 and 
IFN-γ were measured by commercial ELISA kits 
according to the manufacturer’s instructions. 
 
Statistical analysis  
 
Data are presented as mean ± standard 
deviation (SD). Statistical significance of 
differences between groups was determined with 
SPSS 16.0 statistical software, using one-way 
analysis of variance (ANOVA) followed by LSD 
test (equal variances assumed) or Games-
Howell test (Equal Variances not assumed). P < 
0.05 was accepted as statistically significant. 
 
RESULTS 
 
Pathological changes in lung tissues  
 
The architectures of lung tissues of mice in 
control group were normal without obvious 
inflammatory cells and fiber collagen proliferation 
(Figures 1&2). As can be seen from Figure 1B - 

1E, mild alveolitis was observed in BLM mice on 
day 3 after BLM injection; on day 7, the alveoli 
architectures was extensively broken, with 
evidence of high level of inflammation, and 
presence of inflammatory cells and erythrocytes 
in both septum and alveolus. Collagen fibers 
were few. The degree of inflammation on day 14 
was milder, but the alveolus were collapsed and 
fused with extensive collagen fiber proliferation. 
On day 28, mild inflammation was observed, but 
the architectures of alveolus were blurred, with 
wild broad-band collagen fiber, and diffuse lung 
fibrosis. The degree of alveolitis in SSD mice on 
day 3 was not different from that of mice in BLM 
group. Interestingly, alveolitis in SSD-treated 
mice on day 7 was less than that of the BLM-
treated mice. On day 28, the extent of alveolitis 
in SSD mice was less than that in BLM mice, 
with fewer collagen fibers. However broken and 
disordered architectures was still evident (Figure 
2).  
 
There were significant differences on days 3, 7, 
14 and 28 in grades of alveolitis in BLM and SSD 
groups compared to control group (p < 0.05, 
Table 1). However, the alveolitis of SSD-treated 
mice were milder than that of BLM mice at all 
time points, with significant differences on day 28 
(p < 0.05, Table 1). Compared to control group, 
fibrosis grades of both BLM and SSD mice 
significantly different on days 7, 14 and 28 (p < 
0.05, Table 1).  
 

 

 
Figure 1: Histopathological changes in lung tissues (H&E). Cont. denotes control; A-I represent tCont. (3 day), 
BLM (3, 7, 14 and 28 day) and SSD groups (3, 7, 14 and 28 day), respectively 
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Figure 2: Pathological changes in lung tissues (Masson’s Trichrome staining). Cont. = control. A-I represents 
Cont. (3 day), BLM (days 3, 7, 14 and 28) and SSD groups (days 3, 7, 14 and 28), respectively 
 
Table 1: Degrees of alveolitis and lung fibrosis 
 

Variable 3d 7d 14d 28d 
Alveolitis Fibrosis Alveolitis Fibrosis Alveolitis Fibrosis Alveolitis Fibrosis 

Cont. 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 
BLM 2.73±0.21* 1.10±0.13 3.63±0.15* 1.52±0.26* 2.73±0.18* 2.85±0.15* 1.40±0.10* 3.58±0.19* 
SSD 2.32±0.10*# 1.13±0.06 3.03±0.15*# 1.53±0.20* 2.47±0.21*# 2.47±0.20*# 1.13±0.06*# 2.15±0.18*# 
F  136.050 2.08 367.357 7.758 179.347 135.487 28.000 220.622 
p  < 0.01 0.206 < 0.01 0.022 < 0.01 < 0.01 < 0.01 < 0.01 

Cont. = control. Data are expressed as Mean ± SD (n = 6); *p < 0.05 vs control group, and #p < 0.05 vs BLM 
group 
 
         Table 2: HYP volume in lung tissue (mg/g) 
 

Variable 3d 7d 14d 28d 
Cont. 0.773±0.023 0.779±0.011 0.770±0.033 0.774±0.007 
BLM. 0.799±0.034 1.082±0.026* 1.251±0.031* 1.386±0.019 * 
SSD 0.776±0.025 0.940±0.053 1.007±0.015*# 1.205±0.008*# 
F  0.837 57.65 231.377 1905 
p  0.478 < 0.01 < 0.01 < 0.01 

Data are expressed as mean ± SD (n = 6); *p < 0.05 vs control group, and #p < 0.05 vs BLM group. 
(Cont. = control) 
 
HYP levels in lung tissues  
 
The concentrations of HYP in lung tissues from 
both BLM and SSD groups increased and 
reached the peak on day 28. There were 
significant differences on days 7, 14 and 28 in 
BLM group, compared to control group (p < 0.05, 
Table 2).); while the levels of HYP in SSD group 
were less than that in BLM group from day 7, and 

became significantly different on days 14 and 28 
(p < 0.05, Table 2). 
 
Expressions of IL-33, ST2, MyD88 and TRAF6 
in lung tissues  
 
Compared to control group, the protein levels of 
ST2, MyD88 and TRAF6 in BLM mice increased 
as from day 3, with significant increases on days 
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3, 7, 14 and 28 (p < 0.05); while the protein 
levels in SSD mice increased initially, peaked on 
day 7, and subsequently decreased. Significant 
differences ST2 between this group and control 
were obtained on days 3, 7 and 14, and on 
days14 and 28 relative to the BLM group (p < 
0.05). There were significant differences in 
MyD88 between the SSD group and control days 
3 and 7, and between the SSD and BLM groups 
on days14 and 28 (p < 0.05). Significant 
differences in TRAF6 between the SSD group 
and controls were obtained at all times points 
control group (p < 0.05), while on days 14 and 28 
versus BLM group (p < 0.05) (Figure 3). The IL-
33 level increased firstly then decreased 
gradually, with its peak on day 7. Significant 
differences were observed on days 3, 7 and 14 in 
BLM mice, relative to control and SSD mice (p < 
0.05); while compared to control group, there 
were significant differences on days 14 and 28 in 
SSD group (p < 0.05, Figure 3).  
 
Serum levels of IL-4, IL-13 and IFN-γ 
 
The concentrations of IL-4, IL-13 increased from 
day 7, and became significantly higher on days 
7, 14 and 28 relative to control group (p < 0.05); 
there were significant differences in IL-4 between 
the BLM and SSD groups on day 28 (p < 0.05), 
while for the same groups, IL-13 levels differed 
significantly on days 14 and 28 (p < 0.05) (Figure 

4). Values of IFN-γ in BLM and SSD groups rose 
from day 7 and peaked on day 14, with the same 
significant differences on days 7, 14 and 28 
relative to control group (p < 0.05); meanwhile, at 
every time point, the levels of IFN-γ in SSD 
group were higher than that in BLM group, and 
significant differences were obtained on day 28 
between two groups (p < 0.05) (Figure 4). 
 
DISCUSSION 
 
Bleomycin (BLM), an anti-neoplastic antibiotic is 
a derivative of Streptomyces verticillus with 
severe side-effects as inflammation and fibrosis 
specific to the lung [17]. To the best of our 
knowledge, no suitable treatment exists for lung 
fibrosis currently. Animal models are important 
the investigation of pathological mechanisms and 
preclinical evaluation of novel therapies. 
Therefore, bleomycin-elicited injury in small 
rodents have been become the traditional and 
most commonly adopted lung fibrosis model [18]. 
The results showed that when the lung exposed 
to bleomycin, there were damages to the lung 
tissues, accompanying some epithelial or 
endothelial cells over-apoptosis passively 
respond to the injury. In addition, the SSD could 
be used to effectively ameliorate the damages 
induced by bleomycin.  

 
 
Figure 3: Expressions of IL-33, ST2, MyD88 and TRAF6 in lung tissues. β-actin was used as internal control, 
and the expressions of IL-33, ST2, MyD88 and TRAF6 in lung tissues were detected by western blotting analysis. 
Cont. means control. Data were expressed as Mean ± SD, *p < 0.05 vs control group, and #p < 0.05 vs BLM 
group  
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Figure 4: Levels of IL-4, IL-13 and IFN-γ in serum. Cont. means control. Data were expressed as 
Mean ± SD; *p < 0.05 vs control group, #p < 0.05 vs BLM group. 
 
IL-33, as an ‘alarmin’, was secreted from the 
injured cells. This study further detected MyD88 
and TRAF6, the down-stream molecules of ST2, 
which can ultimately lead to the activation of NF - 
κB and MAP kinases involved in the control of 
cellular proliferation and apoptosis [12]. 
Expressions of protein MyD88 and protein began 
to increase from day3 post-model, and attained 
maximum levels on day 28, with similar trends for 
protein ST2, IL-4 and IL-13. IL-4 and IL-13 are 
two major cytokines of Th2 cells, which can 
involve fibrogenesis by up-regulating proteins 
associated with wound healing, specifically 
arginase, collagens, matrix metalloproteinases 
(MMPs), and tissue inhibitors of MMP [19] or via 
recruiting M2 cells. In addition, they also could 
facilitate excessive tissue repair and fibrosis [20]. 
Therefore, from our results, it is speculated that 
IL-33 secreted from the dying or apoptosis cells 
via its receptor ST2 (a stable maker of Th2 cells). 
And IL-33 also amplified Th2-type responses and 
involved pulmonary fibrosis process. Whereas, 
compared to BLM group, the expressions of IL-
33 in lung tissues decreased from the day 3, and 
still remained the same trends. Interestingly, 
levels of ST2, MyD88 and TRAF6 in SSD group 
increased firstly then decreased gradually, 
peaking on day 7.  
 
The dynamic changes in IL-4, IL-13 and IFN-γ 
further demonstrated that IL-33/ST2 signaling 
pathway was activated and a Th1/Th2 imbalance 
existed in the pulmonary fibrosis process. Herein, 

it revealed that corticosteroids, as conventional 
‘anti-inflammatory’ therapy for fibrosis diseases, 
can disturb the expression of IL-33/ST2 signaling 
pathway and the balances of Th1 and Th2 
cytokines. Nevertheless, more recent studies 
have adopted other methods to explore the role 
of IL-33/ST2 signaling pathway in many 
disorders. Mingcai Li et al demonstrated that 
blockage of IL-33/ST2 signaling pathway by anti-
IL-33 antibody can inhibit airway inflammation in 
a murine model of allergic asthma [21]. Hiroko 
Hayakawa et al showed that the antagonistic 
effects of soluble ST2 on IL-33 signaling using a 
murine thymoma EL-4 cells stably expressing 
ST2L and a murine model of asthma [22]. The 
results of present study demonstrated that the 
antibody or the soluble protein and 
corticosteroids exhibited impact on the IL-33/ST2 
signaling pathway. Thus, the further 
investigations need to be done to find out the 
effective blocking agents for reducing the degree 
of fibrosis. To the best of our knowledge, the 
present study is the first to report that IL-33/ST2 
signaling exist in a murine model of bleomycin-
induced pulmonary fibrosis. It is also the first 
study that to report that Saikosapoin-D has some 
degree of interference in IL-33/ST2 signaling 
pathway, compared to other studies that found 
that IL-33/ST2 signaling pathway was interfered 
by anti-IL-33 antibody [21] or soluble ST2 [22], or 
administration of IL-33 [23]. 
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CONCLUSION 
 
These findings demonstrate that SSD is a 
potential candidate for treating IPF via down-
regulation of IL-33/ST2 signaling. In addition, the 
results also suggest that IL-33/ST2 signaling 
pathway is a potential drug target for treating 
IPF. 
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