Main Article Content
Gamma radiation effects on crude oil yield of some soybean seeds: Functional properties and chemical composition of glycine max-ataem-7 seeds
Abstract
Purpose: To investigate the crude oil yield of eight different varieties of soybean (Glycine max L.) seeds after gamma radiation, and also to evaluate the antimicrobial activity and the chemical composition of G.max-Ataem7.
Methods: The seeds were irradiated with doses of 0 (control), 100, 200, 300, 400 and 500 Gy gamma radiation. Irradiation was performed in a cesium (Ce137) source. Extraction of the seeds was done with Soxhlet apparatus using petroleum ether. Antimicrobial activity was determined by the standard disc diffusion method. The chemical composition of the extracts was elucidated using gas chromatographymass spectrometry (GS-MS)
Results: The highest crude oil yield was obtained at 300 Gy and and content of 35.09 % in Ataem7 seeds. There was a decrease in the total content of chlorophyll in Mutant1 (M1) plants after gamma radiation. However, the level of carotenoid increased in M1 plants. Extracts of the G.max-Ataem7 demonstrated strong antibacterial activity against S. aureus ATCC 25923 and E.coli ATCC 25922. The major components of G.max-Ataem7 were linoliec acid (C18:2n6) and oleic acid (C18:1n9) with a content of 60.31 and 21.64 %, respectively.
Conclusion: The results show that irradiation of is also can be improved if treated with appropriate doses of irradiation.
Keywords: Gamma Rays; Soybean, Glycine max-Ataem-7, Oil yield, Chemical composition