Main Article Content
Bioadhesive drug delivery system of diltiazem hydrochloride for improved bioavailability in cardiac therapy
Abstract
Purpose: To prepare and evaluate bioadhesive buccal films of diltiazem hydrochloride (a L-type calcium channel blocker) for overcoming the limitations of frequent dosing, low bioavailability and gastrointestinal discomfort of oral delivery.
Methods: Buccal films were prepared by solvent casting technique using sodium
carboxymethylcellulose, polyvinyl pyrrolidone K-30 and polyvinyl alcohol. The films were evaluated for weight, thickness, surface pH, swelling index, in vitro residence time, folding endurance, in vitro release, ex-vivo permeation (across porcine buccal mucosa) and drug content uniformity.
Results: The drug content of the formulations was uniform with a range of 18.94 ± 0.066 (F2) to 20.08 ± 0.07 mg per unit film (F1). The films exhibited controlled release ranging from 58.76 ± 1.62 to 91.45 ± 1.02 % over a period > 6 h. The films containing 20 mg diltiazem hydrochloride, polyvinyl alcohol (10 %) and polyvinyl pyrrolidone (1 % w/v) i.e. formulation F5, showed moderate swelling, convenient
residence time and promising drug release, and thus can be selected for further development of a buccal film for potential therapeutic uses.
Conclusion: The developed formulation is a potential bioadhesive buccal system for delivering diltiazem directly to systemic circulation, circumventing first-pass metabolism, avoiding gastric discomfort and improving bioavailability at a minimal dose.
Keywords: Bioadhesive, Cardiac, Diltiazem, Calcium channel blocker, Buccal film, Bioavailability, Sodium carboxymethylcellulose, Polyvinyl pyrrolidone, Polyvinyl alcohol