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Abstract 

Data structures is a highly demanding course for computer science students, often associated with 

high cognitive load and consequently, high failure and dropout rates. This study aimed to identify 

the primary causes of difficulties in learning data structures course, as reported in the computer 

science education literature. The study employed a mixed approach. Quantitative analysis methods 

utilized descriptive statistics, while qualitative analysis involved a systematic literature review 

method. A total of 99 research publications were searched from digital libraries and used in this 

study, with 42 papers designated for systematic reviews and analysis after meeting selection 

criteria. The findings reveal that students in computer science education face several difficulties in 

learning data structures, stemming from the inherent complexity of the subject, teaching 

methodologies employed, and individual learner characteristics such as poor student background 

knowledge and low student motivation. Based on these findings, the study recommends the 

adoption of new teaching strategies to address the encountered difficulties and enhance the learning 

experience for students learning data structures. 
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1.0 INTRODUCTION 

Sajaniemi (2002) defines programming as the act of writing computer programs. It is the science 

and practice of instructing the computer to solve real-life problems more efficiently. To master 

programming skills, a novice must learn several programming courses. For most universities, the 

first programming course that students learn during the first year is known as introductory 

programming. The next course is called data structures (Sajaniemi, 2002; Shackelford et al., 2005). 
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The introductory programming course focuses on basic programming concepts such as syntax, 

loops, conditionals, looping, functions, pointers, and basic problem-solving techniques. This course 

aims to give students the foundational skills of programming. The data structures course on the 

other hand is an advanced-level programming course that is mandatory for any computer science 

student, and it is usually studied after learning an introductory programming course (Fouh et al., 

2012; Patel, 2014). The course includes records, linked lists, stacks, queues, trees, graphs, searching 

and sorting algorithms (Shackelford et al., 2005). It also covers set, interface/abstract data type, 

and array (Zingaro et al., 2018). The data structures course emphasizes problem-solving skills and 

algorithmic thinking essential for developing efficient software solutions. 

 

Mastering data structures concepts is crucial as it enables students to solve algorithmic problems 

in various fields of computer science and engineering. In learning data structures, a student is not 

only expected to master the principles for effective program design and implementation but also to 

understand the commonly used data structures, their related algorithms, and most of the design 

patterns found in programming (Shaffer & Tech, 2010, 2012). Studies show that learning data 

structures course is very challenging and less motivating for novice students (Danielsiek et al., 

2012; Qian & Lehman, 2017; Silva et al., 2019; Su & Zhang, 2021). Due to the difficulties 

encountered by students in learning data structures courses, the course is reported to result in high 

failure and dropout rates in computer science education (Gárcia-Mateos & Fernández-Alemán, 

2009a; Pérez-sánchez & Morais, 2016).  

 

The difficulties and challenges of learning data structures, along with other programming courses, 

have consistently drawn the attention of scholars seeking to understand why novice students find 

programming daunting. Researchers have delved into various factors influencing the difficulties 

and high failure rates in programming (Gárcia-Mateos & Fernández-Alemán, 2009; Pérez-sánchez 

& Morais, 2016; Zingaro et al., 2018). While extensive research has explored the difficulties of 

learning programming globally, only a few have comprehensively explored the underlying causes 

of difficulties in learning data structures. Recognizing that learning data structures poses challenges 

stemming from diverse factors, this study aims to comprehensively examine and discuss the hurdles 

encountered in teaching and learning data structures, as revealed in the literature of computer 

science education. 

 

The remainder of the document is structured as follows: The objective of the study is presented in 

Section 2. The overview of cognitive load theory is introduced in section 3. In part 4, the study's 
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methodology is explained. The results of the study are covered in section 5. Section 6 wraps up by 

offering the study conclusion, suggestions, and opportunities for more research. 

 

2.0 OBJECTIVE OF THE STUDY 

The objective of this study is to determine the causes of  difficulties in learning data structures 

courses. The significance of this study is to provide, organize, and document the causes of 

difficulties in learning data structures, thus making it a valuable resource for instructors and 

researchers on the topic. The findings of this analysis will benefit individuals who need a reference 

for such studies on the topic. It will provide a general point of reference for future studies in this 

area. 

 

3.0 COGNITIVE LOAD THEORY 

This section gives an overview of cognitive load theory. The theory has been utilized in this study 

as the basis for identifying the primary causes of difficulties in learning the data structures course. 

 

3.1 Overview of cognitive load theory 

The cognitive load theory is a learning theory that is built upon the idea that working memory has 

a limited "capacity and duration" to store large amounts of unorganized pieces of new information. 

 

According to empirical research, the human brain is only capable of processing two or three things 

at once (Sweller, 1988). It will lose data after 20 seconds if it attempts to store more than seven 

elements at once. Only human long-term memory is capable of permanently storing such 

information, and only when it is organized and practiced can it be later recalled (Sweller, 1988). 

Therefore, only a certain quantity of information can be processed at once by working memory and 

other cognitive processes in humans since information processing takes time and includes several 

cognitive processes. 

 

According to cognitive load theory, a new phenomenon to be learned can impose some degree of 

cognitive load on the learner, which must be reduced to make effective learning possible. Thus, in 

learning, without effort to reduce cognitive load, meaningful learning will not be achieved. 

Cognitive load theory has been more helpful in guiding instructors to pursue effective instruction 

design and in developing effective learning materials. 

3.2 Types of cognitive loads  

Chandler and Sweller (1996) identified three types of cognitive loads, or the mental effort (demand 
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of information processing), that a learner experiences when learning. They include intrinsic 

cognitive load, extraneous cognitive load, and germane cognitive load. These loads are described 

as having unique individual characteristics yet having additive properties that impact learning. The 

total cognitive load is thus a summation of all three loads. For positive learning outcomes, the total 

load should not exceed the maximum available human cognitive capacity.  

 

The intrinsic cognitive load refers to the load imposed on human cognitive processes due to task 

complexity. Intrinsic cognitive load occurs when the information presented is complex and 

"multiple elements must be simultaneously processed in the working memory" instead of "one 

element at a time" (Owens & Sweller, 2008). intrinsic cognitive load is normally imposed on the 

learner's working memory by the learning material and by the characteristics of the item to be 

learned.  

 

The extraneous cognitive load is the load that is caused by the instructional procedures that are 

used to represent the information to the learner (Schnotz & Kürschner, 2007). This type of cognitive 

load depends on how information is presented to learners, or the activities required by the learner, 

and is under the control of the instruction designer. It is also imposed by cognitive processes evoked 

by the instructional design of a learning task that does not contribute to learning. It occurs when 

instructional procedures require the learner to split his or her working memory attention "between 

multiple sources of visual information that have to be integrated for comprehension (Schnotz & 

Kürschner, 2007). 

 

Germane cognitive load on the other hand is described as "effortful learning resulting in schema 

construction and schema automation," which enables the working memory to establish reserves for 

other processes (Schnotz & Kürschner, 2007), 2007, p.476). Germane cognitive load supports 

learners' motivation and effort to "devote more cognitive resources" to solve assigned tasks, which 

results in "deep learning" (Moreno, 2004, p.101). germane cognitive load is thus devoted to 

effortful learning. To raise a germane load, both intrinsic and extraneous loads must be reduced 

(Sweller, 2010). 

 

Whereas intrinsic and extraneous loads adversely affect learning, germane loads highly influence 

successful learning. For effective instruction design, it is necessary to enhance the germane load 

and control both extraneous and intrinsic loads. It is thus emphasized that for better learning results 

when designing instructional materials, care must be taken to ensure that their total cognitive load 
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does not exceed the human memory processing resources available (Paas et al., 2004). 

 

According to cognitive load theory, the difficulties of learning data structures manifest themselves 

in the nature or contents of the subject matter and its organization (intrinsic cognitive load), the 

method used to teach the subjects (extraneous cognitive load), and how the learner’s cognitive 

resources are directed in active learning (germane cognitive load). This study uses cognitive load 

theory to analyze types of difficulties manifested in learning data structures, associate it with three 

types of cognitive loads namely intrinsic cognitive load, extraneous cognitive load, and germane 

cognitive load, and provide recommendations to address such difficulties. 

 

4.0 METHODOLOGY 

This section describes how the study was designed and conducted. It covers the research 

approach, sampling methods, data collection methods, data analysis methods, ethical 

considerations, and quality control.   

 

4.1 Research approach 

This study used mixed methods, incorporating qualitative and quantitative techniques to 

investigate the causes of difficulties in learning data structures concepts for novice programmers. 

The qualitative approach involved a systematic literature review to explore existing literature on 

factors causing difficulties in learning data structures courses. A literature review was conducted 

based on steps proposed by Kitchenham et al. (2009), involving specifying research questions, 

database searches, study selection, data extraction, synthesis, and report writing. Google Scholar 

and databases like ACM, IEEE Explore, ScienceDirect, SpringerLink, and Scopus were used 

during literature search. Quantitative methods, specifically descriptive techniques were used to  

quantitatively summarize the content of qualitative data across 42 publications that were used in 

this study to address the study's main objective. 

 

4.2 Sampling method 

Both purposive and snowball sampling methods were used in selection of the papers that were 

used in this study. The study searched themes attributed to challenges, difficulties, limitations, or 

barriers to learning data structures and programming courses. The search strategy employed 

keywords such as "learning data structures" , "programming failure”, “data structure difficulties" 

, "programming difficulties", and "teaching data structures". The study sample comprises 

programming papers published in reputable journals from 2000 to 2023. Additionally, two papers 
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from 1985 and 1989 were included based on relevance to the discussion by using snowball 

following their essence in literature. In total, 99 research publications formed the sample of this 

study, with 42 papers being used for systematic literatures review to meet the study objective. 

The remaining literature was used in this study to support discussion and interpretation of the 

results findings. 

 

4.3 Data collection tools 

This study primarily used Google Scholar to find research publications. It served as a gateway to 

other databases like ACM, IEEE Explorer, ScienceDirect, SpringerLink, and Scopus. 

Additionally, the Google search engine was employed to locate publications not indexed by 

Google Scholar. Both Google Scholar and the Google search engine allow for keyword searches 

to identify relevant literature. By using targeted keywords, researchers can efficiently gather 

publications and documents on their topic of interest. These tools offer access to a vast range of 

scholarly and non-scholarly sources, facilitating a comprehensive literature review. 

 

4.4 Data analysis 

The data analysis in this study employed both qualitative and quantitative approaches. 

Qualitatively, a content analysis involved the systematic categorization, coding, and 

interpretation of findings from selected literature to identify recurring themes and patterns related 

to difficulties in learning data structure courses. Data extracted from the reviewed papers were 

organized according to research themes. Each theme was descriptively analyzed, indicating its 

frequency, percentage occurrence, and rank within the cited sample, specifically targeting the 

study's objective. Through in-depth examination and synthesis, key insights were drawn 

regarding the nature and implications of these factors, presented thematically for clarity. 

Comparisons across studies and theoretical frameworks were made to achieve a robust 

understanding. Explanations were provided based on reported findings, supplemented by a 

discussion incorporating global literature that both supports and challenges current findings. 

 

4.5 Ethical considerations 

This literature study was conducted with ethics in mind, adhering to Wohlin et al. (2012) research 

ethics principles. To uphold participant rights and advance fairness, inclusion criteria were 

carefully adhered. During the discussion and interpretation of finding the study used citations to 

as an attempt acknowledging previous studies as recommended by Wager et al. (2011). 

Transparency in the collection, analysis and interpretation of data and ethical norms were 
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followed during the study process. These initiatives highlight the dedication to moral rectitude 

during the evaluation procedure Wohlin et al. (2012). 

 

4.6 Quality control   

To ensure quality of the study, data validity was ensured through rigorous selection processes and 

collective verification. The study adhered to prior research emphasizing data cleaning before 

analysis. Criteria for paper selection ensure data validity, with collective verification to maintain 

study quality, aligning with prior research emphasizing data cleaning before analysis (Kadar et 

al., 2021; Lubua et al., 2022). Overall, the comprehensive approach yielded a robust sample for 

investigating programming learning challenges. 

 

5.0 RESULTS AND DISCUSSIONS 

This section presents the results of the analysis, responding to the major aim of this study, which 

was to explore the causes of difficulties in learning data structures concepts as reported in 

computer science education literature.  

 

5.1 Causes of difficulties in learning data structures 

Table 1 provides a summary of the most salient causes of difficulties in learning data structures 

in the literature, indicating the frequency, percentage of occurrence, and rank. 

 

Table 1. Factors contributing to the difficulties in learning data structures course 

Factor  Frequent  Percent  Rank  

Abstract nature of the data structures concepts 13 31.0 1 

Dynamic nature of the data structures concepts 8 19.0 4 

Poor instructional methodology 7 16.7 5 

Ineffective curriculum organization and implementation 4 9.5 10 

Ineffective organization of learning materials, 6 14.3 8 

Poor student background knowledge 7 16.7 6 

The multidimensional nature of the data structures concepts 9 21.4 3 

Difficulties in planning program solution 5 11.9 9 

Students’ faulty mental model  7 16.7 7 

Low student motivation  10 23.8 2 

Source: Research data (2024) 

 



 

 

 

   

33  

Based on Table 1, there are ten main factors contributing to the difficulties in learning data structure 

courses as reviewed from 42 literature sources. According to the results presented in Table 1, the 

most reported factor affecting was the abstract nature of the data structures concepts, which had 13 

citations amounting to 31%, followed by low student motivation with 10 citations, also amounting 

to 23.8%. The other remaining factors were the dynamic nature of the data structures concepts 

(19%), poor instructional methodology (16.7%), ineffective curriculum organization and 

implementation (9.5%), ineffective organization of learning materials (14.3%), poor student 

background knowledge (16.7%), multidimensional nature of the data structures concepts (21.4%), 

difficulties in planning program solutions (11.9%), and students’ faulty mental model (16.7%). 

 

5.2. Discussion 

This section presents the discussion on how each factor presented above contributes to the 

difficulties in learning data structures and recommendations to help students understand is 

presented in the following subsections. 

 

5.2.1 Abstract nature of the data structures concepts  

The abstract nature of the data structures concepts is one of the leading causes of difficulty in 

learning data structures as reported in the literature. Several studies have attributed the difficult of 

studying data structures to the abstract of the data structures terms and concepts (Allred & Allred, 

2009; Anquan et al., 2009; Enstr, 2013; Fairuz & Sadikan, 2012; Fouh et al., 2012; Halim et al., 

2012; Patel, 2014; Pérez-sánchez & Morais, 2016; Qian & Lehman, 2017; Supli, 2016a; Wali et 

al., 2020; Yahong, 2019; Zhu, 2007). 

 

To understand the meaning of the term abstract, let us consider the following example: When a 

geography student is introduced to volcanic mountains, they have the privilege of seeing a 

mountain as a land feature (either physically or pictorially). The mountain as a land feature is an 

elevated area relative to the normal surface. Furthermore, such a student has a chance to see 

volcanic materials (pictorially or physically) that originate from the earth’s crust. In this case, the 

geography student is privileged with concrete examples of the reality being studied. Concerning 

computer programming and specifically data structures materials, such opportunities are not there.  

 

The properties of a computer code cannot be seen or touched as a reality. Even when they are 

pictorially presented, such drawings are still imaginative. Such a situation is what is referred to as 

"abstract." Data structures concepts, like other programming concepts, are expressed using high-
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level terms, while implementation details are hidden. In learning data structures, students learn new 

abstract concepts such as arrays, liked lists, trees, etc. These concepts are not familiar to students. 

Instructors are challenged to represent such unfamiliar concepts with clarity by using real-life 

examples in a way that students can quickly comprehend (Patel, 2014). Since they are abstract, 

they are difficult to understand, interpret, and visualize, which consequently leads to the student’s 

frustration and demotivation. 

 

From a cognitive load theory perspective, teaching student the concept that is abstract and 

unfamiliar is usually very hard and challenging for novice students to learn and understand. To 

address the difficulties of learning data structures on abstractness, researchers have recommended 

different teaching approaches using education visualization tools, case studies, and project-based 

learning approaches (Fernandez, 2014; Kátai & Osztián, 2022; Moselle, 2014; Vagianou, 2006). 

 

5.2.2 Dynamic nature of the data structures concepts 

The dynamic nature of the data structures concepts is another cause of difficulty in learning data 

structures (Fouh et al., 2012; Supli, 2016a, 2016b; Yahong, 2019). Using the geography analogy 

again, a volcanic mountain such as Kungwe-Mahale in western Tanzania is a static reality. It does 

not change when it is sunny, windy, or rainy. The computer program is different. In a text editor 

program, it is text and static, but in a running program, it is dynamic. That is, it’s the state of the 

program, which many times changes during the program's runtime. The dynamic execution of data 

structures concepts poses challenges for novice users running programs in traditional compilers, as 

it occurs invisibly in the background, making it difficult for them to understand (Fouh et al., 2012; 

Yahong, 2019). Even following them in visualization tools is not easy for novices due to the 

runtime behavior of the program under execution. Programming constructs such as recursion, 

loops, functions, dynamic memory allocation, and pointer manipulation, are examples of code 

dynamics that have been reported to be difficult for novices to grasp. 

 

For one to be a programmer, they must know in advance what will happen when the codes execute, 

even before writing the codes. However, most students fail to imagine what will happen when the 

code is executed by the notional machine (Thuné & Eckerdal, 2009). The situation is worse if such 

a program contains data structures and algorithms. To address the challenges associated with the 

dynamic execution of the data structures programs, researchers have recommended the use of both 

static and software visualization tools (Supli, 2016b; Applications & Education, 2013; Urquiza-

fuentes,  Angel, et al., 2009). Other recommendations include using collaborative problem-solving 
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sessions where students discuss and experiment with dynamic data structures (Kumbo et al., 2023; 

Naps et al., 2002). Another approach is to use real human game-based videos (Kátai & Osztián, 

2022). A Hungarian dance is an example of game that demonstrates how sorting algorithms work 

(Kátai & Osztián, 2021). 

 

5.2.3 Curriculum organization and implementation 

The order in which topics are organized in the computer science education curriculum can 

contribute to difficulties in learning data structures. Curriculum organization may impose 

difficulties in learning data structures in three aspects. First, the order of precedence between 

learning procedural programming as a first programming course (imperative first) or object-

oriented programming (object first). Some researchers, such as as Allred and Allred (2009) argue 

that object first approach imposes more intrinsic cognitive load on novice students than the 

imperative first. This is because in object first, apart from using abstract concepts and complex 

syntax which are hard for novices to learn, it also introduces other advanced concepts such as class, 

object, and encapsulations. These concepts impose much intrinsic cognitive load on the learner 

since they demand many skills and efforts from the novices. 

 

The second aspect concerns whether the computer science curriculum used in a particular college 

or university emphasizes practical work over theoretical work during its implementation. If the 

course focuses more on theory than practical work, it makes the subject hard to learn. This is 

because the lack of practical work limits students' ability to understand abstract data structures 

concepts and hinders the development of problem-solving abilities essential for real-world 

programming tasks (Yu et al., 2019). Additionally, it adversely affects students' program planning 

and problem-solving skills (Wu et al., 2021).  

 

The third aspect is the consideration of students’ backgrounds. The computer science curriculum 

that is intended for teaching students with no foundation in mathematics and programming basics 

should be introduced with the bridging course; otherwise, such students will experience a high 

intrinsic cognitive load (Wei & Burrows, 2016). To address the difficulties resulting from poor 

organization of the computer science curriculum, it is recommended to ensure that the computer 

science curriculum progresses logically from foundational programming concepts to more 

advanced topics and to regularly review such curriculum to reflect advancements in the field 

(Garcia & Al-Safadi, 2014). Other researchers, such as Robins et al. (2003) recommend that 

computer science curricula should focus more on practical work than knowledge when it comes to 
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computer programming courses including data structures. 

 

5.2.4 Ineffective organization of learning materials 

Research in computer science education reports poor organization of the learning materials as 

another cause of difficulties in learning data structures. The poor organization of the learning 

materials affects learning data structures in many ways. According to Allred and Allred (2009), the 

organization of the learning materials in most textbooks is not learner-friendly for most novice 

students. There is a disorganization of topics in data structures textbooks and a lack of connectivity 

between concepts (Allred & Allred, 2009; Su & Zhang, 2021; Yu et al., 2019). There is also a lack 

of logical flow and improper organization of the topics and how they are presented (Luukkainen et 

al., 2012). So far, there is no formal agreement on how topics should be organized in books and 

learning materials. Each author or instructor organizes them based on his own decisions. As a 

result, all these shortcomings add both intrinsic cognitive load and extraneous cognitive load to 

novice learners (Su & Zhang, 2021). 

 

Traditionally, programming learning materials are extracted from books. Again, most 

programming books are written as “language books,” where the author concentrates on covering 

the syntax of a language such as C, C++, Java, etc. One should realize that knowledge of language 

syntax is not the ability to use it to implement correct code. Most instructors prepare their teaching 

notes following the book's coverage. This approach is biased towards language syntax as opposed 

to learning programming (Mselle & Ishengoma, 2022). The cognitive load is made light by stating 

simple concepts such as arrays (to represent the initial data structures) and proceeding to other 

familiar objects such as liked lists, which are easier to handle than queues, etc. The study by Mtaho 

et al. (2023) showed that preparing data structures materials with memory-based visualization 

assisted learners. They further showed that presenting data structures material using three different 

approaches (text, memory diagram, and animation) in a congruent fashion did reduce both intrinsic 

cognitive load and extraneous cognitive load while increasing germane cognitive load, hence 

improving their interest and motivation to learn computer science courses. 

 

To help improve the organization of learning materials in a structured manner with clear navigation 

and indexing, it is also recommended to ensure there is an interconnection between the way basic 

data structures are taught and make sure that instructional materials are organized in such a way 

that they do not add more cognitive load to the learners (Luukkainen et al., 2012; Maurer, 2005). 
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5.2.5 Poor instructional methodology  

The use of poor instructional methodology is also another cause of difficulties in learning in 

teaching data structures (Anquan et al., 2009; Fouh et al., 2012; Halim et al., 2012; Pérez-sánchez 

& Morais, 2016; Supli, 2016a; Turner & Zachary, 1999; Yahong, 2019). In this study, we define 

poor instructional methodology as a teaching approach that does not fully engage the learner in the 

learning process. Such approach fails to reduce both intrinsic cognitive load and extraneous 

cognitive load, thereby hindering learners' abilities to devote their maximum cognitive resources 

to the learning process. 

 

There are several teaching methods and strategies that are used in teaching programming courses 

in computer science education. Examples of the most common teaching methods used in teaching 

programming courses are class lectures, laboratory practice, projects, seminars, and tutorials. 

Others are simulations, animation, games, and videos (Sarpong & Arthur, 2013). Likewise, some 

popular teaching strategies used to teach programming courses are problem-based teaching, 

project-based learning, flipped classroom, scaffolding, and inquiry-based learning (Almanza 

Cortés et al., 2019; Amresh et al., 2013; Chis et al., 2018; Feijóo-García et al., 2021; Sarpong & 

Arthur, 2013; Yee-King et al., 2017). 

 

One example of a poor teaching method that is mostly used to teach programming is the traditional 

lecture method. This method involves the presentation of the programming concepts and the 

provision of worked examples, which are verbally explained by the instructor, followed by the 

demonstration of codes on the computer using compilers. This method causes a split attention effect 

because the learned contents, working environments, and demonstrating tools are separate, leading 

to a high extraneous cognitive load (Romanowska et al., 2018a). Another example of poor teaching 

practice is the direct use of online or hardcoded presentations with animation and quick transitions 

that run beyond the human information processing limit (Halim et al., 2012). This practice affects 

learners because it creates a split-attention effect. This, in turn, leads to a loss of concentration and 

makes it difficult for students to focus on the lesson material and achieve meaningful learning 

(Pieter, 2007).  

 

To make learning effective, researchers have recommended the use of lectures along with other 

teaching strategies (Hidalgo-Céspedes et al., 2016; Sarpong & Arthur, 2013). Some of the effective 

methods that have been recommended to be used in teaching data structures include complementary 

congruent visualizations (Burkhard, 2005). Other recommendations include using lectures, group 
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discussions, and hands-on activities (King, 2021). Some of the new approaches are think-pair-

share, flipped classroom, and role-play approaches (King, 2021; Lokare & Jadhav, 2017). 

 

5.2.6 Poor student’s background knowledge 

Several studies have shown that a learner’s prior knowledge, particularly in basic programming 

and mathematics, is the first prerequisite for understanding the data structures course (Alvarado et 

al., 2018; Fouh et al., 2012; Krause-Levy et al., 2020; Tennyson & Beck, 2018; Wei & Burrows, 

2016; Yahong, 2019). Knowledge of programming thresholds such as pointers, procedural 

abstraction, program dynamics, etc. is also mandatory for students who learn data structures; 

otherwise, such students will not understand data structures due to its high intrinsic cognitive load. 

 

Studies have shown that there is evidence that if a student fails to understand fundamental 

programming concepts, which are prerequisites for understanding data structures, they will also 

fail to understand the data structures course (Sanders & Mccartney, 2016; Tennyson & Beck, 2018; 

Wei & Burrows, 2016). Allred and Allred (2009) argue that a student who formed non-viable 

mental models of programming basics cannot understand data structures course. Likewise, Sweller 

(1988) contends that many would agree that people learn better when they can build on what they 

already understand (known as schematization or constructivism), but the more a person has to learn 

in a shorter amount of time, the more difficult it is to process that information. 

 

To help learners strengthen their prior knowledge when learning to program and hence minimize 

the intrinsic cognitive load, researchers have recommended various approaches. Such approaches 

include introducing bridge courses (Allred & Allred, 2009; Cooper et al., 2017), and using 

visualization tools (Colaso et al., 2005; Naps et al., 2003). 

 

5.2.7 Multidimensional nature of the data structures concepts 

Gaining an understanding of data structures requires students to possess a wide range of 

programming abilities, including problem-solving, program-planning, and coding-rule 

comprehension (Allred & Allred, 2009). The need for all these talents at once places a significant 

mental strain on students. Due to the wide variety of data structures, there are numerous obstacles 

within a single subject. Among the issues that students encounter are understanding the operation 

of various algorithms, such as those for sorting or searching (Fouh et al., 2012); finding it difficult 

to apply these algorithms when working with data structures in programs (Supli, 2016b); having 

difficulty formulating solutions (Spohrer & Soloway, 1989); and experiencing difficulties 
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debugging and tracing programs (Qian & Lehman, 2017). 

 

Additionally, there are problems with comprehending fundamental programming ideas such as 

recursion and nested loops, which call for strong problem-solving abilities (Yarmish & Kopec, 

2007). Students often struggle to appropriately use algorithms because they are simply too lengthy 

and complex for them to understand (Patel, 2014). Other frequent difficulties include understanding 

problems to formulate solutions and dealing with syntax issues (Qian & Lehman, 2017). 

 

Due to the multidimensional nature of data structures elements, several skills are needed to make 

data structures learning possible. This in turn increases the intrinsic cognitive load, thus 

complicating the learning process. Spohrer & Soloway (1989) say students learning advanced 

programming concepts, like data structures, find it hard to bring everything together. They might 

understand programming tools like loops or sequences and explain common algorithms; they can 

also define and explain certain common algorithms and how they work, but they may fail to apply 

those constructs to solving real programming problems.  

 

To address the high cognitive load imposed due to the multidimensional nature of the data 

structures course, researchers have recommended the use of multiple teaching tools and strategies. 

Some of the recommended tools include visualization tools (Gárcia-Mateos & Fernández-Alemán, 

2009b; Urquiza-fuentes, Azquez-iturbide, et al., 2009; Végh & Stoffová, 2017). Other 

recommended teaching strategies include  the use of think-pair-share, flipped classroom, role-play 

approaches, and project-based learning (Fernandez, 2014; King, 2021; Lokare & Jadhav, 2017). 

 

5.2.8 Students’ faulty mental models 

Learning to code can be tough because students struggle to develop a clear picture in their minds 

of how programs run (Almadhoun, 2021; Heinsen Egan & McDonald, 2014). In the world of 

programming, "mental model" refers to how people organize their knowledge. It's basically an 

internal map, created by each person, that shows how things and systems work in the real world 

(Norman, 1983). 

 

A mental model is a student's comprehension of how computers work and the fundamental 

information processing that goes into coding (Bayman & Mayer, 1988). Appropriate mental models 

refer to a match between one’s imagination of a certain reality and the reality itself. A structure 

such as a queue of passengers in a computing scenario is different from a queue of fruits. But even 
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a simple structure, such as a two-field node, can evoke multiple mental representations from 

different novices. This property of programming concepts being represented in distinct images by 

different learners results in what is known as inappropriate mental models. The big problem with 

an inappropriate mental model is that once such a feature takes hold of a learner’s mind, it distorts 

all that is supposed to be learned. 

 

Due to the multidirectional nature of data structures concepts, most students find it very difficult 

to form appropriate mental models for many data structures concepts. Most of the literature points 

out that the lack of the correct mental models of some programming concepts has a direct impact 

on the actual implementation of data structures elements (Butler & Morgan, 2007; Danielsiek et 

al., 2012; Decker & Simkins, 2016). Danielsiek et al. (2012) carried out the study to determine the 

misconceptions that students had regarding binary search trees and piles. They discovered that 

while a few students had a proficient understanding of the formal definition of a heap, they were 

unable to distinguish between heaps that had binary search trees. They describe a situation in which 

a student accurately identified a heap as a binary tree, but when asked to define a binary tree, he 

responded that all binary trees are search trees. In another study, Decker and Simkins (2016) found 

that some students would define a data structures concept in one way and implement it differently. 

Students with inappropriate mental models end up committing misconceptions when learning to 

program. 

 

In another study, Yarmish and Kopec (2007) studied a group of students who were nearing 

proficiency in programming (advanced novices). Their research focused on how these students 

handled nested loops, arrays, and recursion. Interestingly, the study found that even after classroom 

instruction, these students still struggled with fundamental concepts like nested loops and 

recursion, which they had already been exposed to. 

 

Misconceptions resulting from students’ inappropriate mental models in learning programming are 

even more perverse when learning algorithms. Most students cannot show the dynamic properties 

of a simple algorithm such as the bubble sort algorithm. If one cannot show the dynamic operation 

of a bubble sort, which is based on nested loops, it is impossible for such a person to decipher the 

dynamic properties of a quicksort, which employs recursion (Decker & Simkins, 2016). The level 

of conceptual difficulty varies from concept to concept. The insight revealed from this review 

shows that misconceptions in conceptual knowledge have a direct impact on program design and 

implementation. 
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To help address the problems associated with faulty mental models, researchers recommend 

encouraging the provision of more practical works for students, and regularly identifying common 

misconceptions through formative assessments and addressing them explicitly in class (Gallego-

Durán et al., 2023). The use of reflective learning practices where students articulate their 

understanding and confront misconceptions in peer discussion is also another strategy that can help 

improve students' mastery of the programming threshold concepts (Almadhoun, 2021; Jonsson, 

2015). 

 

A study by Milne and Rowe (2002) has further emphasized to help student improve their mental 

model in learning programming, instructors should focus first on making their students understand 

specific concepts, which are thresholds in this discipline. Threshold concepts are those basics that 

form the foundation or building blocks for other concepts (Sanders & Mccartney, 2016). Threshold 

concepts must be well understood before any other concept is ventured into. For example, if a 

student does not thoroughly and correctly understand the concept of pointers and their ability to 

store the address of another variable, together with the operations of pointers, such a learner can't 

understand the concept of a queue, stack, linked list, or tree. Concerning algorithms, if the student 

is not well grounded in loops, nested loops, and recursions, they will never be able to understand 

how sorting algorithms work. Again, it has become more evident that visualization, and specifically 

memory-based visualizations, provide mechanisms for learners to build viable mental models and 

surmount the hurdles present in data structures. 

 

 

5.2.9 Difficulties in planning program solution 

Difficulties in planning program solution is another challenge that novice learners face in learning 

data structures. According to Spohrer and Soloway (1989), program planning difficulties are 

divided into two groups, namely, construct-based problems and plan-composition problems. 

Construct-based problems, on the other hand, are problems that make it difficult for novices to 

learn the correct semantics of language constructs. They manifest themselves in three forms: (i) 

inability to understand the semantics of the construct due to the natural language used to formulate 

a problem; (ii) human interpreter problem; failure to interpret the programming construct like the 

machine; and (iii) inconsistency problem; if the machine will always work in the manner expected 

by novices.  
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Plan composition problems, on the other hand, are problems that make it difficult for novices to 

put up plans correctly. According to Spohrer and Soloway (1989), these problems are 

interdependent, but they always occur because most novice programmers face problems mapping 

programming expressed in a natural language into an actual programming language. In other words, 

such novices tend to interpret programming problems by overlooking some of the essential problem 

requirements, whether implicitly or explicitly. This, in turn, may lead to the wrong solution.  

 

In addition to that, plan-composition problems are problems that make it difficult for novices to 

put up plans correctly. Such problems may occur in one of the following ways: (i) The plan 

component is not in the program (missing); (ii) The plan component is in the program, but it is not 

correctly implemented (malformed); (iii) The plan component is in the program but should not be 

(spurious); (iii) The plan component is present but has been wrongly positioned in the program 

(misplaced). Even though they can think critically, some students develop approaches that don't 

solve the problem. These students struggle to create new solutions and instead try to apply old ones 

inappropriately (Spohrer et al., 1985). 

 

To address these difficulties, researchers have recommended using teaching strategies and methods 

that encourage critical thinking and problem-solving, such as think-pair-share (Concept et al., 

2002; Rahman et al., 2020; Reddy et al., 2015), and providing problem-solving guidance to novice 

students (Mtaho, 2023). Another recommended strategy is to use project-based learning methods, 

whereby students implement projects that apply the use of data structures concepts (Fernandez, 

2014). The use of congruent-based visualization has also proved to help students who learn data 

structures to gradually think computationally and therefore improve their planning ability and 

problem-solving skills hence improving their programming comprehension (Mtaho, 2023). 

 

5.2.10 Low student motivation 

Another factor that affects student achievement in learning data structures is low student motivation 

to learn the course (Allred & Allred, 2009; Bergin & Reilly, 2005; Enstr, 2013; Hawi, 2010; Park 

& Ahmed, 2017; Patel, 2014; Santana, 2018; Settle, 2014; Supli, 2016a; Velazquez-Iturbide et al., 

2017). The term motivation refers to a student's willingness, need, desire, and determination to take 

part in the learning process (Bomia et al., 1997). The low student motivation in learning data 

structures course is caused by several factors. The data structures content is usually deep, logical, 

and abstract; thus, students tend to experience high cognitive overload at the beginning of learning, 

such that they feel that the course is overwhelming and thus lose interest in learning the course 
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(Wang & Bednarik, 2012).  

 

Additionally, the course is inherently problem-solving in nature. Understanding it requires both 

theory and practice. Even with a solid grasp of the theory, one may still encounter other difficulties 

in practice. This in turn leads to low cooperation among students and consequently affects their 

ability to implement the algorithm in a real-life setting (Allred & Allred, 2009). The subject 

demands too much of students’ reasoning and thinking abilities, and as a result, some students, 

especially those who do not expect to pursue their careers in programming, become demotivated 

to learn programming (Hawi, 2010). 

 

According to Sweller (2010), there is a strong linkage between student motivation and perceived 

student cognitive load. When student motivation is high, all available working memory resources 

are devoted to dealing with both intrinsic cognitive load and extraneous cognitive load (Sweller, 

2010). Even if students seem equally enthusiastic about a task, their reasons for that enthusiasm 

might be different. Studies show that intrinsic motivation, where students are driven by their own 

interest, leads them to put in more effort to learn and understand the material (Bomia et al., 1997). 

 

One strategy that can help promote learners' motivation in learning data structures courses is using 

animated models (Pieter, 2007). Such models, according to Hidalgo-Céspedes et al. (2016) should 

be designed in such a way that they can help the learner associate prior knowledge with new 

concepts to be learned and which pedagogically map with the used textbooks and instructional 

learning materials (Romanowska et al., 2018a; Vagianou, 2006). 

 

5.3 Difficulties in learning data structures from the cognitive load theory perspective 

Table 2 summarizes the discussion from the previous subsection and identifies how each type of 

cause of difficulties is associated with types of cognitive load as perceived from cognitive load 

theory. 

 

Table 2. Factors contributing to the difficulties in learning data structures course as considered 

from the cognitive load theory perspective 

Factor  Citations Type of 

cognitive load 

Abstract nature of the 

data structures 

Allred & Allred, 2009; Anquan et al., 2009; Enstr, 

2013; Fairuz & Sadikan, 2012; Fouh et al., 2012; 

Intrinsic 

cognitive load 
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concepts Halim et al., 2012; Patel, 2014; Pérez-sánchez & 

Morais, 2016; Qian & Lehman, 2017; Supli, 2016a; 

Wali et al., 2020; Yahong, 2019; Zhu, 2007. 

Dynamic nature of the 

data structures 

concepts 

Fouh et al., 2012; Halim et al., 2012; Kátai & 

Osztián, 2021; Mtaho et al., 2023; Pérez-sánchez & 

Morais, 2016; Supli, 2016a, Qian & Lehman, 2017; 

Yahong, 2019. 

Intrinsic 

cognitive load 

Poor instructional 

methodology 

Anquan et al., 2009; Fouh et al., 2012; Halim et al., 

2012; Pérez-sánchez & Morais, 2016; Supli, 2016a; 

Turner & Zachary, 1999; Yahong, 2019 

Extraneous 

cognitive load 

Ineffective curriculum 

organization and 

implementation 

Allred & Allred, 2009; Çakıroğlu & Öztürk, 2017; 

Robins et al., 2003; Yu et al., 2019. 

Intrinsic 

cognitive load, 

extraneous 

cognitive load 

Ineffective 

organization of 

learning materials, 

Allred & Allred, 2009; Fouh et al., 2012; 

Luukkainen et al., 2012; Romanowska et al., 

2018b; Su & Zhang, 2021; Yu et al., 2019. 

Extraneous 

cognitive load 

Poor student 

background 

knowledge 

Allred & Allred, 2009; Alvarado et al., 2018; Fouh 

et al., 2012; Krause-Levy et al., 2020; Tennyson & 

Beck, 2018; Wei & Burrows, 2016; Yahong, 2019). 

Intrinsic 

cognitive load 

Multidimensional 

nature of the data 

structures  

Allred & Allred, 2009; Fouh et al., 2012; Lahtinen 

& Ala-mutka, 2005; Patel, 2014; Qian & Lehman, 

2017; Spohrer & Soloway, 1989; Supli, 2016b; 

Wali et al., 2020; Yarmish & Kopec, 2007. 

Intrinsic 

cognitive load, 

extraneous 

cognitive load 

Difficulties in 

planning program 

solution 

Butler & Morgan, 2007; Danielsiek et al., 2012; 

Decker & Simkins, 2016; Spohrer et al., 1985; 

Spohrer & Soloway, 1989. 

Intrinsic 

cognitive load 

Students’ faulty 

mental model  

Almadhoun, 2021; Butler & Morgan, 2007; 

Danielsiek et al., 2012; Decker & Simkins, 2016; 

Heinsen Egan & McDonald, 2014; Lahtinen & Ala-

mutka, 2005; Yarmish & Kopec, 2007. 

Low germane 

cognitive load, 

intrinsic 

cognitive load, 

extraneous 

cognitive load 

Low student Allred & Allred, 2009; Bergin & Reilly, 2005; Low germane 
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motivation  Enstr, 2013; Hawi, 2010; Park & Ahmed, 2017; 

Patel, 2014; Santana, 2018; Settle, 2014; Supli, 

2016a; Velazquez-Iturbide et al., 2017. 

cognitive load, 

intrinsic 

cognitive load, 

extraneous 

cognitive load 

Source: Research data (2024) 

 

As presented in Table 2, the abstract and dynamic nature of the data structures concepts, as well as 

the multidimensional nature of the data structures, contribute to the learner’s intrinsic cognitive 

load. Other causes of difficulties in learning data structures are associated with the extrinsic 

cognitive load, which mainly depends on the teaching methodology used by the instructors of the 

course, the curriculum organization of learning materials, and student background knowledge. As 

presented in Table 2, factors such as students’ faulty mental model and low student motivation are 

attributed to all three types of cognitive load because improving them depends on the instructor's 

competence in teaching the data structure concept, how the instructor uses effective teaching tools 

and approaches that stimulate learning, and the effective utilization of the learner’s cognitive 

resources. 

6.0 CONCLUSION, RECOMMENDATIONS, AND PROSPECTS FOR FUTURE 

RESEARCH 

This study has examined, analyze, and discussed the causes of difficulties in learning data 

structures  course as documented in computer science literature. The study has also cognitive load 

theory as a framework to examine the primary cause of each identified difficulty experienced by 

novice student in learning data structures course. The study has revealed that difficulties associated 

with data structures concepts can be attributed to several factors, which include  abstract and 

dynamic nature of these concepts, ineffective curriculum organization and implementation, poor 

organization of learning materials, inadequate instructional methodology, students' limited 

background knowledge, the multidimensional nature of data structures concepts, students' faulty 

mental models, difficulties in planning program solution, and low motivation. Though these are 

not the only difficulties that exist when learning data structures, it is believed that making the effort 

to understand each type of difficulty and measure its resolution is crucial to successful teaching 

and learning data structures. 

 

To address the difficulties encountered by novice students in learning data structures, instructors 

in computer science education are advised to change their attitudes and strategies in teaching 
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programming. Instructors should avoid what is called a “traditional teaching culture”, a kind of 

teaching college students that heavily relies on teaching programming courses using slides with 

limited assessments, and practical and project works. Instructors are encouraged to incorporate 

more engaging methods like peer marking, peer assessment, and peer discussion. Additionally, 

instructors can boost student motivation in data structures by conducting workshops showcasing 

real-world applications in their fields, establishing programming clubs, and fostering regular 

competitions and demonstrations. 

 

The findings presented in this study provide a new roadmap for researchers to come up with 

innovative methods to address the causes of difficulties analyzed in this study. The study provides 

a reference for both course designers and developers of computer programming teaching tools for 

the effective development of programming teaching tools. The study has used the systematic 

review method to study the causes of difficulties in learning data structures in general. Empirical 

studies that examine the difficulties experienced by novices in learning specific data structures 

topics such as trees, graphs, and linked lists are still needed in the future. 
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