Main Article Content

MPPT DC-DC Buck-Boost Converter for Off Grid Hybrid Solar-Wind-Battery System in Ikuza Island, Tanzania


Nassoro S. Nassoro
Consalva J. Msigwa
Aviti T. Mushi
Bakari M. M. Mwinyiwiwa

Abstract

Ikuza Island in Kagera-Tanzania faces lack of electricity due to cost challenges of extending the grid by marine cables and other transmission facilities. These makes such endeavour not appealing to the supply authority due to those higher charges. Therefore, this paper undertakes to design hybrid renewable energy sources for the island by specifically focusing on the buck-boost converter for the energy conversion from these renewable resources. The design of the bidirectional buck-boost converter for maximum power point tracking in off-grid hybrid renewable energy systems is multifaceted due to the inhomogeneity nature of the renewable energy sources. The bidirectional buck-boost converter, solar PV, wind-based generator, and energy storage system are designed and simulated in MATLAB/Simulink software. The designed system is tested with varying solar irradiance (750 to 1000 W/m2), temperature (20 to 25C) and wind speed (150 to 157.5 radians/s) at constant load of 260 A while load variation involved varying the load current from 0 to 260 A at solar irradiance, temperature, and wind speed of 1000 W/m2, 25 C and 157.5 radians/s, respectively. The variation of DC link bus voltage at different load conditions is reported. The simulation results show that the designed converter is able to maintain DC link voltage at 600 V. Moreover, the DC link voltage shows a maximum drop of approximately 0.67% during the constant load condition. Contrarily, a significant improvement is observed when the designed converter operates with the hybrid system of solar PV, PMSG-based wind generator and with energy storage system.


Journal Identifiers


eISSN: 2619-8789
print ISSN: 1821-536X