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ABSTRACT 
The differential scattering cross sections of electron - silver atom are 
calculated using the Eikonal approximation at incident energies of 50 eV, 
60 eV and 70 eV, with the Lenz-Jensen potential. Results obtained are in 
good agreement with the NIST SRD 64 at scattering angles of about 80 to 
180 degrees; and are in very good agreement with the Born approximation 
between 30 to 180 degrees. 
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INTRODUCTION   
The dynamic of electron atom scattering can be explained by Schrödinger 
wave equation. It intensifies that the Schrödinger wave equation can be 
solved based on expansion of the function in power of ħ, which, although 
of a semi convergent or asymptotic character, is also useful for the 
approximate solution of quantum mechanical problems in appropriate 
case. This known as Wentzel Krammers Brillouin  (WKB) approximation 
(Schiff, 1968). It is applicable to situations in which the wave equation can 
be separated in to one or more total differential equation, each of which 
involved a single independent variable. The WKB approximation explains 
that the potential energy changes so slowly that the local momentum ħk is 
sensibly constant over many wavelengths. 
Hence, another approximation that is along the lines of the WKB 
approximation is the Eikonal approximation. The Eikonal (from the Greek 
word ELKOV or “Image”) equation is traditionally encountered in the wave 
and geometric optics literature where the principal concern is the 
propagation of light rays in an inhomogeneous medium (Chartier, 2005). 
Its twin roots are in wave propagation theory and in geometric optics. In 
geometric optics it can be derived from Huygen΄s principle (Arnold, 1989), 
while in wave propagation theory it is obtained when the wave is 
approximated using the WKB approximation (Paris and Hurd, 1969). 
 
The Eikonal approximation is useful in wave scattering equations which 
occur in quantum mechanics, quantum electrodynamics and partial wave 
expansion. The main advantage the Eikonal approximation offers is that 
the equations reduces to a differential equation in a single variable. This 
reduction to a single variable is the result of the straight line approximation 
or the Eikonal approximation which allows us to choose the straight line as 
a special direction. 
 
In scattering theory, the probability of interaction depends on the 
properties of the beams and target particles, for instance, in a scattering 
problem where the potential V(x) is much smaller than the energy, one can 
make use of the Eikonal approximation in order to solve the problem. This 
approximation covers a situation in which the potential varies very little 
over distances of the order of Compton wavelength. It is semi classical in 
nature; its essence is that each ray of the incident plane wave suffers a 
phase shift as it passes through the potential on a straight line trajectory 

(Koonin and Meredith, 1989). 
Furthermore electron-atom scattering are always characterized by the 
differential cross section (measure of the probability distribution ) and total 
cross section , these can be calculated in various approximations – Born 
(Merzbacher, 1970), Eikonal (Innanen, 2010), partial wave method (Cox 
and Bonham, 1967), etc.  
 
Literature Review 
The differential cross section is the main observable in quantum scattering 
experiments. The notion was introduced first to describe the Rayleigh 
scattering of sunlight and the Rutherford scattering of alpha particles. In 
both scattering process, the differential cross section is well established in 
the framework of the correspondingly dynamical equations: The Maxwell 
equations in the case of Rayleigh scattering and the Newton’s equations in 
the case of Rutherford scattering. On the other hand, a satisfactory 
justification of the quantum scattering cross section can be completely 
described by the framework of the Schrödinger wave equation, i.e. 
 
− ħ²

ଶ
ߖ²ߘ  + ߖܸ =   1     ߖܧ

 
Consider the particle beam been incident along the z- axis of mass m and 
energy 
 
ܧ  = ħమమ

ଶ
› 0         2 

 
approaches a target. Suppose the incident and scattered particle are 
described by a plane wave given below and satisfied the Schrödinger 
wave equation: 
 
Ѱ = ݁௭           3 
 
and 
 Ѱ = ݁௭ + (ߠ)݂ 

ೖೝ


            4 

 
Equation (4) shows that the scattered wave is the super position, where 
the complex scattering amplitude ݂(ߠ) embodies the observable 
scattering properties and is the basic function we seek to determine. 
 
Moreover, collisions are always characterized by the differential cross 
section (that is, measure of the probability distribution) given by: 
 
ௗఙ
ௗఆ 

=  ଶ           5|(ߠ)݂|
 
This has the simple interpretation of the probability of finding scattered 
particles within a given solid angle. The total cross section can be obtained 

Fu
ll L

en
gt

h 
Re

se
ar

ch
 A

rti
cle

 

14 



Science World Journal Vol 9 (No 2) 2014 
www.scienceworldjournal.org 
ISSN 1597-6343 

 

 
Differential Cross Sections Of Electron Silver Scattering At Varying Energies 

by integrating the differential cross section on the whole sphere of 
observation (4π steradian) to obtain 
 
ߪ = ∫ ௗఙ

ௗఆ
ߗ݀  = ∫ ݀ф∫ ߠ݀ sinߠగ


ଶగ


ௗఙ
ௗఆ 

     6 
 
Eikonal Approximation 
For scattering problems where the potential V(x) is much smaller than the 

energy, one can make use of the Eikonal approximation in order to solve 
the problem. This approximation covers a situation in which the potential 
varies very little over distances of the order of Compton wavelength. This 
approximation is semi classical in nature; its essence is that each ray of 
the incident plane wave suffers a phase shift as it passes through the 
potential on a straight line trajectory as shown in fig 1. 

 

 
   
     Fig.1:  Geometry of Eikonal approximation. 
 
 
 
The approximation can be derived by using the semi classical wave 
function. 
 
 eiki.r φ(r)      7 = (r)ߖ
 
where φ(r) is a slowly-varying function, describing the distortion of the 
incident wave. The dynamic of the motion can be described by 
Schrödinger wave equation 
 
ିħమ

ଶ
 8     (r)ߖ E= (r)ߖ V(r) + (r)ߖ 2 ߘ 

 
Putting equation (7) in equation (8) we have 
 
 
ିħమ

ଶ
 (2iki 2 ߘ + ߘ) φ(r) + Vφ(r) =0    9 

 
If we now assume that φ(r) varies slowly enough so that the  2 ߘφ term can 
be ignored (i.e. k is very large), we have 
 
ħమ


  డ
డ௭

 φ (b,z) = V(b,z) φ (b,z)     10 
 
Here, we have introduced the coordinate b in the plane transverse to the 
incident beam, so that 
 
 V (b, z) =V(r)      11 
 
 
 

And, from Fig.1,  
 
r = (b2+z2) ½      12 
 
From symmetry considerations we expect that ψ will be azimuthally 
symmetric and so independent of b. Equation (10) can be integrated 
immediately and using the boundary condition that 1→ ߖ as Z→ ∞   
since there is no distortion of the wave before the particle reaches the 
potential, we have 
 
߶(ܾ, (ݖ = ݁ଶఞ(,௭)      13 
 
χ(b, z) =   ି

ଶħమ
 ∫ ,ܾ)ݒ ∞(′ݖ
ି∞  dz      14 

 
Having obtained the Eikonal approximation to the scattering wave function, 
we can now obtain the Eikonal scattering amplitude ݂, inserting equation 
(7) into an exact integral expression for the scattering amplitude we have 
 
(ߠ)݂ = − 

ଶగћమ ∫ ݁
ି .  15   ݎଷ݀(ݎ)߰(ݎ)ݒ

 
we have 
 
݂ = ି

ଶగħమ
 ∫ ݀ଶ ܾ ∫ ∞.ି݁ݖ݀

ି∞  ψ(b,z)   16 (b, z)ݒ
 
Using equation (9), we can relate Vφ(r) directly to డφ

డ௭
. Furthermore, if we 

restrict our consideration to relatively small scattering angles, so that qz=0, 
then the Z integral in equation (16) can be done immediately and using 
equation (14) for φ(r), we obtain 
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݂ =-ି

ଶగ
 ∫݀ଶ ܾ ݁ି. (e2iχ(b) -1)    17 

 
With the profile function 
 
χ(b)=χ(b,z=∞) = -ି

ଶħమ
 ∫ ∞ݒ
ି∞ (b,z)dz    18 

 
Since χ is azimuthally symmetric, we can perform the azimuthal integration 
in equation (6) and obtain our final expression for the eikonal scattering 
amplitude 
 
݂= -ik∫ ܾܾ݀∞

  o(qb)(e2iχ(b) -1)     19ܬ
 
In deriving this expression, we have used the identity of Bessel function 
 
Jo(qb) = ଵ

ଶగ
 ∫ ݁ଶగ


-iqbcosφ dφ     20 
 
Hence, ݂ depends upon both ܧ (through ܭ) and ݍ. An important property 
of the exact scattering amplitude is the optical theorem, which relates the 
total cross- section to the imaginary part of the forward scattering 
amplitude. After a bit of algebra, one can show that fe satisfied this relation 
in the limit that the incident momentum becomes large compared to the 
length scale over which the potential varies. 
 
δ = ସగ


 Imf(q=0) = 8ߨ ∫ ܾܾ݀∞

  sin2 χ(b)     21 
                                                            
Central  Potential  
A three dimensional physical system have a central potential, that is, a 
potential energy that depends only on the distance r from the origin 
V(r)=V(r). If we use spherical coordinates to parameterize our three 
dimensional space, a central potential does not depend on the angular 
variable ߠ and ߔ. Therefore, in a scattering experiment it is easier to work 
in the Centre of mass frame, where a spherically symmetric potential has 
the form V(r) with ݎ = ሬሬሬ⃗ݔ| |, due to the quantum mechanical uncertainty (i.e 
we can only predict the probability of scattering in  a certain direction). 
 
The Born and Eikonal approximation calculations of the scattering of 
electrons from  atoms are, in general, complicated and multi- channel 
scattering problems, since there are reactions leading to final states in 
which the atoms are excited. However, as the reaction probabilities are 
small in comparison to elastic scattering, for many purposes the problem 
can be modeled by the scattering of an electron from a central potential 
(Koonin and Meredith, 1989). This potential represents the combined 
influence of the attraction of the central nuclear charge (Z) and the 
screening of this attraction by the Z atomic electrons. For a target atom, 

the potential vanishes at large distances faster than 1¯ݎ. A very accurate 
approximation to this potential can be solved for the self-consistent Hartree 
Fock potential of the neutral atom. However a much simpler estimate can 
be obtained using an approximation to the Thomas Fermi model of the 
atom given by Lenz and Jensen  
 
ܸ = − ௭²


 ݁ି௫(1 + ݔ + ܾଶݔଶ + ܾଷݔଷ + ܾସݔସ)   22 

  
With, e²=14.409, b� =0.3344, b� =0.0485, b� =2.647× 10¯ଷ, and 
x=4.5397Z1/6 r1/2. 
 
The potential is singular at the origin, However, if the potential is 
regularized by taking it to be a constant within some small radius rmin, (say 
the radius of the atom’s 1s shell), the  calculated cross section will be 
unaffected except at momentum transfers large enough so that  
 
Qrmin >>1       23 
 
The incident particle is assumed to have the mass of the electron and is 
appropriate for atomic systems; all lengths are measured in angstrom and 
all energies in electron volt (eV). The potential is assumed to vanish 
beyond 2 angstrom. Furthermore, the r-1 singularity in the potential is cut 
off inside the radius of the 1s shell of the atom. 
 
METHODOLOGY 
The computations of total cross section of electron strontium atom using 
eikonal approximation were carryout using FORTRAN developed by 
Koonin and Meredith (1989). The FORTRAN code was first installed in the 
computer and this required the knowledge of computer and FORTRAN 
language. The program is made up of four categories: common utility 
program, physics source code, data file and include file. The physics 
sources code is the main source code which contains the routine for the 
actual computation. The data files contain data to be read into the main 
program at run-time and have the exertion. DAT.  The program runs 
interactively. It begins with a title page describing the physical problem to 
be investigated and the output that will be produced; next, the menu is 
displayed, giving the choice of entering parameter values, examining 
parameter values, running the program or terminating the program. The 
parameter value have default value displayed in bracket, to accept the 
default value, press “return” at the prompt, or a new value might be 
decided within the range of allowed values. . When the calculation is 
finished, all values are zeroed (except default parameter), and the main 
menu is redisplayed, giving us the opportunity to redo the calculation with 
a new set of parameters or to end execution. Data generated from the 
program were saved in a file which would be imported into the graphics 
software for plotting (Abdu, 2011). 
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Fig.1: Graph of differential cross section as a function of scattering angle at incident energy of 50 eV. 

 
 
 

 
Fig. 2: Graph of differential cross section as a function of scattering angle at incident energy of 60 eV. 
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Fig. 3: Graph of differential cross section as a function of scattering angle at incident energy of 70 eV. 

 
 
 
 
DISCUSSION 
From Fig. 1, the calculated electron-silver scattering cross sections at 50 
eV are in very good agreement with the ones obtained using the Born 
approximation between the angles of 20 to 180 degrees. Also, these 
calculated cross sections agree favourably with the data obtained from the 
National Institute of standards and Technology data base 64 (NIST SRD 
64) of the USA between the angles of about 100 to 180 degrees.  
 
From Fig. 2 at 60 eV, the computed cross sections  are in very good 
agreement with the ones obtained using the Born approximation between 
the angles of 30 to 180 degrees; and also agree with the NIST SRD 64 
between the angles of about 100 to 180 degrees. 
 
As shown in Fig. 3, at 70 eV, the computed cross sections  are in very 
good agreement with the ones obtained using the Born approximation 
between the angles of 40 to 180 degrees; and also agree with the NIST 
SRD 64 between the angles of about 100 to 180 degrees. 
 
At lower scattering angles of between 0 to 20 degress, the computed cross 
sections disagree with those obtained using the Born approximation and 
those given by NIST SRD 64. Our calculated values are lower than those 
obtained using the Born approximation for all three incident energies 
considered. Also, values obtained from the NIST SRD 64 are much higher 
than those obtained using the Born approximation as well as our 
calculated values. This may be because both approximations are valid at 
high incident energies. 
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