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ABSTRACT 

In spatial disease mapping, the use of Bayesian models of estimation technique is becoming 
popular for smoothing relative risks estimates for disease mapping. The most common 
Bayesian conjugate model for disease mapping is the Poisson-Gamma Model (PG). To 
explore further the activity of smoothing of relative risk estimates for Bayesian disease 
mapping, this study focused on the use of generalized gamma distribution as conjugate priors 
with respect to Poisson likelihood. Two new empirical Bayesian (EB) models are developed; 
these include Poisson-Generalized Gamma model (PGG) and modified Poisson-Generalized 
Gamma model (MPGG). The model simulation results indicated that PGG and MPGG models 
are more likely to handle dispersion in zero-deflated data, contaminated data and zero-inflated 
data for small and large sample data. Hence, the new EB models are highly competitive to 
improve the efficiency of relative risk estimation for disease mapping. 
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INTRODUCTION 

The term “disease mapping" was first seen in Clayton & Kaldor (1987), and defined as the 
investigation, estimation and visual presentation of summary measures of health outcomes 
across constituent related regions. Disease mapping is mainly used for health risk assessment, 
management and policy making. A well-known empirical Bayes (EB) model to smooth 
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relative risks estimates was proposed by Clayton & Kaldor (1987), due to failure of the 
frequentist approaches to provide satisfactory results. Previously, EB techniques to estimate 
relative risk have been used in Manton et al. (1981), Tsutakawa et al. (1985).Subsequent 
works include Mantonet al. (1987), Tsutakawa (1988), Manton et al. (1989),Clayton & 
Kaldor (1989). Various modifications with applications are found in Besaget al. (1991), 
Marshall (1991), Clayton & Bernardinelli (1992), Cressie (1992), Waller et al. (1997), Maiti 
(1998), Meza (2003), Gelman et al. (2004), MacNabet al. (2004), Venkatesan et al. (2012), 
Lawson (2013), Clement (2014), Srinivasan & Venkatesan (2014, 2015), Abbas et al. (2015), 
Coly et al. (2015). The EB concept was first proposed by Robbins (1955) in a non-parametric 
setting. Recent advances in Bayesian statistics have substituted the non-parametric methods 
for parametric methods. This development was described in Morris (1983), Casella (1985), 
Maritz & Lwin (1989),Carlin & Gelf and (1990), Raghunathan (1993), Altman & Casella 
(1995), Efron (1996), Carlin & Louis (2009), Gelman et al. (2004), which is the widely used 
two-level hierarchical models. Some previous scholarly works on EB include the work of 
Geisser (1965), Maritz (1970), Efron & Morris (1971), Duncan (1974), Rubin (1980), Deely& 
Lindley (1981). Recent applications includes false discovery rates(Chakraborty et al. 2013), 
microarray data analysis (Newton et al. 2011),regularizing maximum likelihood estimation in 
the matrix Gaussian Procrustes problem (Theobald &Wuttke, 2006),monthly students 
allowance (Mbata et al. 2010), vehicular traffic analysis (Okafor et al. 2010,Okafor & Mbata 
2012), voting intentions and election forecasting(Okafor & Ogundeji 2012), investigation of 
disease patterns and analysis (Osei & Yibile 2015, Ngwira & Kazembe 2016).The hallmark of 
EB analysis is thatit has the capacity to remove the random variability which is present in data 
from small population counts (Böhning et al., 2000), as well as the capacity to combine 
independent but related studies; and spatial disease mapping provides such a framework. The 
WHO (1997) reported that the standard Poisson assumption on count data and spatial 
hierarchical models is appropriate and useful for EB disease mapping. However, the choice of 
prior for proper modeling may vary depending on the nature of study and, the conjugate prior 
seems more suitable and flexible. As discussed in Geedipally & Lord (2007), Poisson-Gamma 
(PG) model is usually preferred over Poisson-lognormal and Poisson-Normal models in point 
data estimation because it offers a simple way of accommodating over-dispersion which 
usually features in disease mapping. But one major problem of PG model, as highlighted in 
Lord et al. (2013), is its inability to handle under-dispersion. And its ability to handle over-
dispersion for some certain data conditions such as contaminated data and zero-inflated data 
as well as small sample data is also in doubt. According to Famoye et al. (2011), when the 
data is over-dispersed or under-dispersed, it is pertinent to use a probability model that can 
handle the situation to maintain efficiency in parameter estimation. The current paper is 
proposing an empirical Bayes modeling using generalized gamma distribution as conjugate 
prior with respect to Poisson likelihood for disease mapping, and the investigation of model 
efficiency in handling dispersionin the estimation of relative risk of disease incidence 
underzero-deflated data, contaminated data and zero-inflated data for small and large sample 
size data.  

MATERIALS AND METHODS 

The EB method of estimation of relative risk parameter using generalized gamma distribution 
with respect to Poisson likelihood model is presented for EB disease mapping. 

Notation 

It is assumed that incidence of disease is being investigated in a population that is partitioned 
into K subpopulations or regions, where 
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 = observed number of cases of disease in region  

 = expected number of cases of disease in region  

 = number of persons at risk for the disease in region  

 = Maximum likelihood estimate of relative risk of disease in region  

 = Posterior estimates of relative risk of disease in region  

The  are observed random variables in region , while  are known functions of . 

Hence,  is obtained as;  while  is .  is 

the overall disease risk in the entire study region(called internal standardization (IS). 

1. EB Modeling of Generalized Gamma Distributions with respect to Poisson 
Likelihood 

The generalized gamma distribution, introduced by Stacy (1962), is considered, on the fact 
that the parent gamma distribution is a natural conjugate prior to Poisson likelihood.  

Derivation of Poisson-Generalized Gamma (PGG) Model: Based on the general Bayes’ 
theorem, thus 

Proposition: Let  be the observed cases of disease in region , then 

 

 

Therefore, 

.    (1) 

Data Likelihood Function: The Poisson likelihood,ignoring factors that are free of  is 
jointly given as  

    (2) 

where  is the sufficient statistic, and   is the random effect. 

Prior Distribution: The conjugate prior is the Generalized Gamma (GG) distributiongiven as  

,       (3) 

Derivation of the Posterior Distribution: Therefore plugging the likelihood and the prior 
distributions; the joint posterior distribution is given as  

           
 (4) 
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A proper posterior distribution is achieved by multiplying (4) with the constant of 
proportionality in (5). The constant of proportionality is the inverse of the marginal 
distribution (denominator) in the Proposition. So, 

 , considering the marginal distribution; 

 

 Integrating by substitution;  

        (5) 

Thus, a proper posterior distribution (PGG)is described as in (6); 

, 

                                                      
  (6) 

2. Proof of the probability density function (pdf) of PGG distribution integrates to 
unity 

From the Proposition, given as 

. 

Considering the probability axiom , therefore, 

    

  

 

Integrating by substitution: Let , therefore 

 

Hence, the pdf of the PGG1 distribution is a proper distribution since it integrates to unity [1]. 
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3. The rth Moment, Expectation and Variance of PGG Model 

Using method of moment (MOM), therefore 

 

Integrating by substitution; the rth moment of PGG is 

obtained as in (7). 

         (7) 

Therefore, the mean and the variance are obtained as 

         (8) 

    (9) 

4. Estimation of  for PGG Model 

The method of moment estimation proposed by Huang and Hwang (2006) for estimation of 
three parameter GG family was employed to estimate the hyperparameters ) from the 

prior distribution (GG) to completely specify the posterior distribution (PGG).Therefore, 

         (10) 

          

  (11) 

    (12) 

        (13) 

Therefore, square of the coefficient of variation is obtained as 

   `     (14) 

For optimization,  can assume value 0.5 or 1.5 since  gives gamma distribution and 
 is approximately a generalized normal distribution.   

When in equation (11),       (15) 
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When in equation (14),  (16) 

For further details about the prior distribution; Generalized Gamma Distribution and its 
moment’s derivation, see Dadpayet al. (2007), Khodabin and Ahmadabadi (2010). 

5. Estimation of Relative Risk (RR) and Variance from PGG Model 

Having derived the conditional posterior distribution, the posterior mean and variance, the 
estimation of relative risk (RR) in each Sub-population is obtained as  

         (17) 

and the estimation of variance of relative risk (RR) in each sub-population is obtained as 

      (18)

   

6. Estimation of Relative Risk (RR) and Variance from MPGG Model 

The modified model (MPGG) is derived by putting  in equation (6). The derived 

conditional posterior distribution of MPGGis described as 

, ,      (19) 

and the posterior mean and variance, the estimation of relative risk (RR) in each sub-
population is obtained as  

         (20) 

and the estimation of variance of relative risk (RR) in each Sub-population is obtained as 

      (21) 

The developed EB models with generalized gamma distribution as conjugate prior revealed a 
proper conjugate prior with respect to Poisson likelihood. 

RESULTS AND DISCUSSIONS 

This section presents the characteristics of the simulation study to investigate the effect of 
dispersion on the efficiency of the different EB models, including the existing Poisson-
Gamma model, in the estimation of relative risk parameter under zero-deflated data, 
contaminated data and zero-inflated data. The investigation is carried out through a simulation 
study of 1000 samples using MCMC sampling technique. In order to consider variation, the 
simulated dispersion parameter is obtained for different sample sizes (Y) = 5, 10, 20, 50, 100, 
1000; theoretical dispersion parameter ( ) = 0.5, 1.0, 2.0; and fixed mean ( ) = 0.5, 1.0, 10. 
These are carried out for each scenario. Comparison is based on the precision of predicted 
dispersion parameter value to theoretical value, and the standard deviation obtained in 
different cases. The choice of theoretical values is based on the previous work of Lord (2006) 
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and Lord et al. (2013). The simulation results are presented in Tables 4.1 and 4.2 respectively. 
The corresponding diagnostic plots are in Figures 4.1 to 4.4 respectively, for further 
investigation. 

Table 1: Simulation results for dispersion parameter values in zero-deflated data  

  0.5 1.0 2.0 

  PG PGG MPGG PG PGG MPGG PG PGG MPGG 
n = 5          
0.5  0.2593 0.2649 0.5260 1.0058 0.9037 0.9037 4.0342 3.0228 1.5116 
 SD 0.0097 0.0035 0.0014 0.0159 0.0062 0.0062 0.0764 0.0331 0.0084 
1.0  0.2579 0.2640 0.5305 1.0083 0.9080 0.9080 4.0232 3.0116 1.5114 
 SD 0.0095 0.0044 0.0032 0.0190 0.0130 0.0130 0.0675 0.0197 0.0164 
10  0.2568 0.2696 0.5275 0.9996 0.9117 0.9117 4.0068 3.0412 1.5156 
 SD 0.0113 0.0034 0.0033 0.0176 0.0167 0.0167 0.0553 0.0180 0.0126 
n = 10          
0.5  0.2587 0.2644 0.5256 1.0038 0.9016 0.9016 4.0338 3.0146 1.5050 
 SD 0.0096 0.0043 0.0021 0.0199 0.0137 0.0137 0.0672 0.0369 0.0162 
1.0  0.2576 0.2638 0.5251 1.0051 0.9016 0.9016 3.9913 2.9935 1.5073 
 SD 0.0088 0.0050 0.0035 0.0237 0.0083 0.0083 0.0488 0.0355 0.0183 
10  0.2550 0.2686 0.5270 1.0031 0.9069 0.9069 3.9903 2.9923 1.5000 
 SD 0.0109 0.0048 0.0036 0.0185 0.0070 0.0070 0.0499 0.0291 0.0159 
n = 20          
0.5  0.2510 0.2636 0.5251 0.9974 0.9016 0.9016 3.9930 3.0077 1.5024 
 SD 0.0086 0.0053 0.0022 0.0202 0.0111 0.0111 0.0712 0.0386 0.0178 
1.0  0.2572 0.2626 0.5249 1.0012 0.9050 0.9050 3.9964 3.0045 1.5039 
 SD 0.0087 0.0051 0.0043 0.0231 0.0153 0.0153 0.0677 0.0324 0.0191 
10  0.2523 0.2630 0.5266 1.0027 0.9004 0.9004 4.0063 3.0031 1.5022 
 SD 0.0098 0.0052 0.0040 0.0246 0.0143 0.0143 0.0582 0.0299 0.0160 
n = 50          
0.5  0.2505 0.2623 0.5247 0.9944 0.9008 0.9008 4.0052 3.0126 1.5046 
 SD 0.0085 0.0055 0.0028 0.0183 0.0126 0.0126 0.0618 0.0308 0.0150 
1.0  0.2517 0.2623 0.5237 1.0002 0.9042 0.9042 4.0062 3.0136 1.5064 
 SD 0.0085 0.0053 0.0045 0.0194 0.0133 0.0133 0.0633 0.0281 0.0154 
10  0.2506 0.2622 0.5260 0.9961 0.9022 0.9022 3.9867 3.0057 1.5037 
 SD 0.0089 0.0053 0.0045 0.0221 0.0149 0.0149 0.0633 0.0301 0.0163 
n = 100          
0.5  0.2501 0.2619 0.5226 1.0012 0.9034 0.9034 4.0088 3.0115 1.5062 
 SD 0.0082 0.0056 0.0052 0.0228 0.0139 0.0139 0.0667 0.0293 0.0157 
1.0  0.2510 0.2613 0.5235 1.0011 0.9039 0.9039 4.0078 3.0098 1.5058 
 SD 0.0084 0.0056 0.0046 0.0224 0.0150 0.0150 0.0598 0.0351 0.0146 
10  0.2504 0.2621 0.5251 0.9980 0.9036 0.9036 4.0019 3.0115 1.5052 
 SD 0.0085 0.0055 0.0049 0.0212 0.0148 0.0148 0.0587 0.0327 0.0163 
n = 1000          
0.5  0.2500 0.2618 0.5224 1.0003 0.9027 0.9027 4.0017 3.0092 1.5046 
 SD 0.0078 0.0056 0.0055 0.0221 0.0133 0.0133 0.0642 0.0324 0.0159 
1.0  0.2498 0.2617 0.5234 1.0001 0.9031 0.9031 4.0040 3.0092 1.5046 
 SD 0.0077 0.0058 0.0049 0.0220 0.0133 0.0133 0.0636 0.0319 0.0161 
10  0.2501 0.2617 0.5239 0.9977 0.9031 0.9031 3.9995 3.0085 1.5048 
 SD 0.0079 0.0056 0.0054 0.0227 0.0138 0.0138 0.0598 0.0320 0.0152 

Note:  = Fixed Mean.  = Theoretical Dispersion parameter,  = Posterior estimate, n = 
Sample size 

The simulation results of dispersion parameter for the different EB models have shown the 
following characteristics under zero-deflated data (Table 1): 
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1. For sample size of 1000, 100, 50, 20, 10, 5 (both small and large sample sizes) with 
low or high mean at = 0.5, MPGG EB model accurately predicted the theoretical 
value of dispersion parameter while PG and PGG models tend to underestimate the 
theoretical value ( = 0.5) by a factor of almost 2.  

2. For sample size of 1000, 100, 50, 20, 10, 5 with low mean or high mean, all the EB 
models including the existing PG model predicted values very close to the theoretical 
value of the dispersion parameter for = 1.0. But estimates from PGG models have 
smaller standard deviations.  

3. For sample size of 1000, 100, 50, 20, 10, 5 with high mean, the dispersion parameter 
is likely to be unreliably estimated, no matter which EB model is used for = 2.0. 
However, estimate of the predicted dispersion parameter value from MPGG model 
are much closer with lesser standard deviation to the theoretical value of the 
dispersion parameter. 

4. As the sample size decreases, the distribution of the estimated values from PG 
becomes more skewed, which increases the mean of the estimated values of the 
dispersion parameter for = 0.5 while as the sample size decreases, the distribution of 
the estimated values from PGG and MPGG becomes less skewed with increase in the 
mean of the estimated values of the dispersion parameter for = 0.5. It implies that at 
small sample size, the PGG EB models are highly likely to perform competitively in 
the estimation of relative risk.  

5. Small and large sample size data characterized with a low sample mean or a high 
sample mean are most likely to be highly dispersed for PG model while most likely 
less dispersed for PGG EB models. It implies that over-dispersion or under-dispersion 
is more likely to affect the efficiency of PG model in the estimation of relative risk 
parameter compared to PGG models. Since the standard deviations of the PGG 
models are generally less than the PG model, the PGG models are equally 
competitive in handling dispersion (over-dispersion or under-dispersion) in the 
estimation of relative risk parameter estimation for disease mapping, although the 
models may show the dispersion parameter is underestimated or overestimated in 
some cases. The simulation results of the posterior estimates of dispersion parameter 
are reliable, since there is convergence of MCMC sampling, as shown in the series 
plots (figure 4) for each model. 

The summary analysis using diagnostic error bar plots presented in figure 1 depicted that 
under zero-deflated data (both small and large sample sizes) characterize with low or high 
sample mean bias MPGG model provided much more reliable estimates of theoretical values 
of dispersion parameter. The results implied that under zero-deflated data MPGG has a better 
model efficiency in handling dispersion in the estimation of relative risk parameter for disease 
mapping.  
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Figure 1: Diagnostic Error Bar Plots for Zero-deflated Data 
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Table 2: Simulation results for dispersion parameter values in contaminated data 

  0.5 1.0 2.0 

  PG PGG MPGG PG PGG MPGG PG PGG MPGG 
n = 5          
0.5  0.6867 0.5045 0.8989 1.5329 1.1996 1.1996 3.5828 3.0688 1.6862 
 SD 0.3678 0.1703 0.3167 0.5997 0.2761 0.2761 0.7762 0.4366 0.2500 
1.0  0.5809 0.5374 0.8135 1.2022 1.0614 1.0614 2.6834 2.5138 1.5354 
 SD 0.2979 0.1637 0.2637 0.4042 0.2454 0.2454 0.8552 0.4375 0.2050 
10  0.1827 0.2011 0.2747 0.3826 0.3984 0.3984 1.0646 0.9483 0.6284 
 SD 0.0713 0.0636 0.1502 0.3171 0.2486 0.2486 1.4686 1.0324 0.4597 
n = 10          
0.5  0.5403 0.5034 0.7818 1.3473 1.0985 1.0985 3.6031 2.9679 1.5924 
 SD 0.3266 0.1641 0.2995 0.4798 0.2424 0.2424 0.7108 0.2891 0.1866 
1.0  0.4703 0.5278 0.6975 1.0963 1.0867 1.0867 2.9477 2.5707 1.5129 
 SD 0.2638 0.1382 0.2184 0.2913 0.1806 0.1806 0.9769 0.4467 0.1451 
10  0.1941 0.2055 0.3251 0.5306 0.5117 0.5117 1.8022 1.4618 0.8297 
 SD 0.0708 0.0621 0.1700 0.3950 0.3167 0.3167 1.8226 1.2766 0.5426 
n = 20          
0.5  0.6597 0.5028 0.8719 1.5383 1.1837 1.1837 3.9101 3.1053 1.7008 
 SD 0.5031 0.1634 0.4211 0.7662 0.3615 0.3615 0.9431 0.4773 0.3074 
1.0  0.5672 0.5199 0.7843 1.2460 1.0712 1.0712 3.1327 2.7310 1.5562 
 SD 0.4075 0.1090 0.3484 0.5084 0.2910 0.2910 0.9439 0.4768 0.2512 
10  0.2186 0.2297 0.3519 0.5573 0.5421 0.5421 1.8299 1.4864 0.8694 
 SD 0.0841 0.0748 0.1638 0.3743 0.3039 0.3039 1.7957 1.2527 0.5358 
n = 50          
0.5  0.6398 0.5110 0.8632 1.4711 1.1632 1.1632 3.6547 3.0171 1.6648 
 SD 0.3947 0.1860 0.3302 0.5956 0.2929 0.2929 0.7988 0.3807 0.2340 
1.0  0.5451 0.5325 0.7570 1.1795 1.0378 1.0378 2.8445 2.5800 1.5099 
 SD 0.3153 0.1682 0.2768 0.4000 0.2274 0.2274 0.9255 0.4401 0.1985 
10  0.1920 0.2084 0.3040 0.4609 0.4661 0.4661 1.4352 1.2089 0.7366 
 SD 0.0731 0.0680 0.1583 0.3635 0.2962 0.2962 1.6835 1.1881 0.5067 
n = 100          
0.5  0.6263 0.5084 0.8569 1.4606 1.1571 1.1571 3.7129 3.0488 1.6688 
 SD 0.3719 0.1839 0.3240 0.5396 0.2714 0.2714 0.6621 0.3252 0.2107 
1.0  0.5369 0.5288 0.7582 1.1866 1.0440 1.0440 2.9476 2.6242 1.5197 
 SD 0.2965 0.1617 0.2572 0.3424 0.2033 0.2033 0.8858 0.3862 0.1652 
10  0.2004 0.2162 0.3225 0.5016 0.4999 0.4999 1.6270 1.3430 0.7950 
 SD 0.0649 0.0596 0.1581 0.3698 0.3033 0.3033 1.7562 1.2325 0.5229 
n = 1000          
0.5  0.6243 0.5058 0.8540 1.4660 1.1566 1.1566 3.7653 3.0591 1.6665 
 SD 0.3849 0.1818 0.3339 0.5553 0.2770 0.2770 0.6547 0.3271 0.2161 
1.0  0.5356 0.5168 0.7594 1.1939 1.0450 1.0450 3.0129 2.6572 1.5303 
 SD 0.3052 0.1566 0.2639 0.3500 0.2094 0.2094 0.8779 0.3878 0.1653 
10  0.2045 0.2197 0.3337 0.5248 0.5179 0.5179 1.7181 1.4098 0.8274 
 SD 0.0634 0.0585 0.1583 0.3735 0.3038 0.3038 1.7704 1.2448 0.5309 

 
Note:  = Fixed Mean.  = Theoretical Dispersion parameter,  = Posterior estimate, n = 
Sample size 

The simulation results of dispersion parameter for the different EB models have shown the 
following characteristics under contaminated data (Table 2): 

1. For large and small sample sizes of a contaminated data characterized by a low 
sample mean bias, PGG model provided an unbiased estimate of the theoretical value 
of the dispersion parameter at  = 0.5 while for contaminated data characterized by a 
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high sample mean bias, PGG model, including MPGG and PG models, is likely to 
provide unreliable estimates of the theoretical value of the dispersion parameter.  

2. For large and small sample sizes of a contaminated data characterized by a low 
sample mean, PGG and MPGG models provided a better estimate of the dispersion 
parameter at  = 1.0 while for contaminated data characterized by a high sample mean 
bias, the three models are likely to provide unreliable estimates of the theoretical 
value of the dispersion parameter. 

3. For large and small sample sizes of a contaminated data characterized by a high 
sample mean bias (under-dispersion), the three EB models are likely unreliable to 
handle dispersionat = 2.0. However, estimate of the predicted dispersion parameter 
value from MPGG model are much closer with lesser standard deviation to the 
theoretical value of the dispersion parameter. 

4. For large and small sample sizes contaminated data characterized by a low sample 
mean (over-dispersion), PGG EB models are equally likely efficient in the estimation 
of relative risk parameter, since the standard deviations of the PGG models are 
generally less than the PG model. Although the models may show the dispersion 
parameter is either underestimated or overestimated. The simulation results of the 
posterior estimates of dispersion parameter are reliable, since there is convergence of 
MCMC sampling, as shown in the series plots (figure 5) for each model. 

The summary analysis using diagnostic error bar plots presented in figure 2 depicted that 
under contaminated data (both small and large sample sizes) characterize with low sample 
mean bias, PGG model provided reliable estimates of theoretical values of dispersion 
parameter, which implied that PGG model has a better model efficiency in handling over-
dispersion in the estimation of relative risk parameter for disease mapping. In the other hand, 
contaminated data (both small and large sample sizes) characterize with high sample mean 
bias, MPGG model provided much more reliable estimates of theoretical value of dispersion 
parameter, which implied that MPGG has a better model efficiency in handling under-
dispersion in the estimation of relative risk parameter for disease mapping. 

Figure 2: Diagnostic Error Bar Plots for Contaminated Data 
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Table 3: Simulation results for dispersion parameter values in Zero-Inflated data  

  0.5 1.0 2.0 

  PG PGG MPGG PG PGG MPGG PG PGG MPGG 
n = 5          
0.5  0.4266 0.4022 0.6399 1.2032 1.0463 1.0463 2.8150 2.1792 1.5150 
 SD 0.3048 0.1556 0.2973 0.5016 0.2601 0.2601 0.7505 0.1926 0.2071 
1.0  0.4389 0.3681 0.6313 0.9026 0.8787 0.8787 1.8762 2.0858 1.3148 
 SD 0.2541 0.1538 0.2613 0.3764 0.2443 0.2443 0.5002 0.1358 0.2169 
10  0.1097 0.1302 0.1446 0.1641 0.2091 0.2091 0.2681 0.3676 0.3473 
 SD 0.0635 0.0578 0.0720 0.0684 0.0674 0.0674 0.0715 0.0628 0.0646 
n = 10          
0.5  0.3602 0.3188 0.5702 0.9374 0.8821 0.8821 2.4160 2.1759 1.3944 
 SD 0.2625 0.1378 0.2771 0.4454 0.2338 0.2338 0.6699 0.1740 0.1980 
1.0  0.3002 0.2864 0.4830 0.7030 0.7459 0.7459 1.6108 2.0761 1.2173 
 SD 0.2188 0.1341 0.2420 0.3340 0.2147 0.2147 0.4467 0.1031 0.1902 
10  0.0750 0.0937 0.1023 0.1278 0.1766 0.1766 0.2301 0.3291 0.3082 
 SD 0.0547 0.0513 0.0633 0.0607 0.0605 0.0605 0.0638 0.0576 0.0587 
n = 20          
0.5  0.4013 0.3357 0.6166 0.9963 0.9177 0.9177 2.5009 2.1727 1.4276 
 SD 0.3453 0.1748 0.3343 0.5752 0.2945 0.2945 0.8558 0.1605 0.2526 
1.0  0.3344 0.3047 0.5149 0.7471 0.7779 0.7779 1.6672 2.0272 1.2444 
 SD 0.2876 0.1622 0.2922 0.4312 0.2680 0.2680 0.5704 0.1933 0.2326 
10  0.0836 0.1058 0.1162 0.1359 0.1837 0.1837 0.2382 0.3386 0.3173 
 SD 0.0719 0.0678 0.0808 0.0784 0.0775 0.0775 0.0815 0.0750 0.0755 
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n = 50          
0.5  0.4329 0.3577 0.6524 1.0551 0.9479 0.9479 2.5814 2.1201 1.4485 
 SD 0.3219 0.1631 0.3083 0.5386 0.2764 0.2764 0.7998 0.1356 0.2372 
1.0  0.3607 0.3230 0.5457 0.7913 0.8102 0.8102 1.7209 2.0643 1.2566 
 SD 0.2682 0.1527 0.2760 0.4039 0.2429 0.2429 0.5332 0.1598 0.2160 
10  0.0902 0.1117 0.1239 0.1439 0.1906 0.1906 0.2459 0.3460 0.3256 
 SD 0.0671 0.0630 0.0736 0.0734 0.0721 0.0721 0.0762 0.0669 0.0696 
n = 100          
0.5  0.4163 0.3488 0.6420 1.0262 0.9374 0.9374 2.5399 2.1083 1.4437 
 SD 0.3006 0.1570 0.2955 0.5013 0.2654 0.2654 0.7517 0.1059 0.2259 
1.0  0.3469 0.3182 0.5343 0.7696 0.7959 0.7959 1.6933 2.0485 1.2517 
 SD 0.2505 0.1470 0.2576 0.3760 0.2369 0.2369 0.5011 0.1481 0.2055 
10  0.0867 0.1083 0.1204 0.1399 0.1893 0.1893 0.2419 0.3428 0.3245 
 SD 0.0626 0.0606 0.0683 0.0684 0.0680 0.0680 0.0716 0.0634 0.0659 
n = 1000          
0.5  0.4025 0.3428 0.6236 1.0037 0.9226 0.9226 2.5063 2.0846 1.4320 
 SD 0.2818 0.1489 0.2791 0.4702 0.2475 0.2475 0.7059 0.1880 0.2142 
1.0  0.3355 0.3116 0.5224 0.7528 0.7847 0.7847 1.6708 2.0375 1.2425 
 SD 0.2348 0.1394 0.2447 0.3526 0.2205 0.2205 0.4706 0.1246 0.1934 
10  0.0839 0.1057 0.1173 0.1369 0.1856 0.1856 0.2387 0.3386 0.3202 
 SD 0.0587 0.0564 0.0644 0.0641 0.0631 0.0631 0.0672 0.0576 0.0623 

 
Note:  = Fixed Mean.  = Theoretical Dispersion parameter,  = Posterior estimate, n = 
Sample size 

The simulation results of dispersion parameter for the different EB models have shown the 
following characteristics under zero-inflated data (Table 3): 

1. For large and small sample sizes of a zero-inflated data characterized by a low sample 
mean bias, the estimates from MPGG model are much closer to the theoretical 
dispersion parameter than PG model and PGG model at = 0.5. 

2. For large and small sample sizes of a zero-inflated data characterized by a low sample 
mean, the three EB models provided a good estimate of the dispersion parameter at  
= 1.0. But estimates from PGG models have smaller standard deviations. 

3. For large and small sample sizes of a zero-inflated data characterized by a high 
sample mean bias (under-dispersion), PGG model provided reliable estimates of 
theoretical dispersion parameter value at = 2.0.  

4. The simulation results of the posterior estimates of dispersion parameter are reliable, 
since there is convergence of MCMC sampling, as shown in the series plots (figure 6) 
for each model. 

The summary analysis using diagnostic error bar plots presented in figure 4.3 depicted that 
under zero-inflated data (both small and large sample sizes) characterize with low sample 
mean bias, MPGG model provided a much better prediction of the theoretical value of 
dispersion parameter than PG model and PGG model. In the other hand, zero-inflated data 
(both small and large sample sizes) characterize with high sample mean bias, PGG model 
provided much more reliable estimates of theoretical value of dispersion parameter. Hence, it 
implied that MPGG has a better model efficiency in handling over-dispersion while PGG has 
a better model efficiency in handling under-dispersion in the estimation of relative risk 
parameter for disease mapping. 
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Figure 3: Diagnostic Error Bar Plots for Zero-Inflated Data 
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Figure 4: Posterior Convergence of the Different EB Models for Small and Large 
Sample Sizes Under Zero-deflated Data 
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Figure 5: Posterior Convergence of the Different EB Models for Small and Large 
Sample Sizes under Contaminated Data 
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Figure 6: Posterior Convergence of the Different EB Models for Small and Large 
Sample Sizes under Zero-Inflated Data 
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SUMMARY OF RESULTS 

 The paper has been able to show that there is conjugacy in the use of generalized 
gamma distribution as prior with respect to Poisson likelihood, hence, through this 
conjugacy, the   models: Poisson–Generalized Gamma distribution (PGG) and 
modified Poisson–Generalized Gamma distribution (MPGG) are established for 
Bayesian disease mapping. 

 The paper has shown that the use of generalized gamma distribution as Bayesian 
conjugate prior with respect to Poisson likelihood is more likely to improve precision 
in handling over-dispersion (low sample mean bias) and under-dispersion (high 
sample mean bias) than the existing Poisson–Gamma model, under zero-deflated 
data, contaminated data and zero inflated data for small and large sample data. 

 The proposed EB models PGG and MPGG are highly likely to improve model 
efficiency in relative risk parameter estimation for disease mapping. 

CONCLUSION 

The study aimed at enhancing the efficiency of relative risk parameter estimation for spatial 
disease mapping using generalized gamma distribution as Bayesian conjugate prior with 
respect to Poisson likelihood, for health risk assessment. This study is as a result of recent 
needs for development of Bayesian priors and modeling using generalized distributions. The 
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study has shown that the use of generalized gamma distribution as Bayesian conjugate prior 
with respect to Poisson likelihood is equally likely to improve efficiency in relative risk 
parameter estimation in small and large sample data under a zero-deflated data, a 
contaminated data, and a zero-inflated data characterized with either over-dispersion or under-
dispersion. This implied that the posterior distribution of standardized incidence ratios (SIR) 
derived from the new EB models have smaller variance compared to the existing PG 
model.However, under-dispersion is usually rare in count data. When under-dispersion is 
present PG EB model lack the capacity to handle such situation, as indicated in the results. 
Hence, EB modelling of generalized gamma distributions with respect to Poisson likelihood 
are equally useful and highly competitive in terms of efficiency in relative risk parameter 
estimation for disease mapping. 
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