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 Corrosive environments are used like concentrated hydrochloric acid which is 

known to react with E-glass fibers. Acoustic emission results reveal different 

corrosion modes of glass fibers in HCl solutions. For the field applications, full 

scale GFRP equipment was instrumented with a range of AE sensors. The 

equipment is used for storage or process of corrosive chemicals. When this 

corrosive content comes in contact with the GFRP wall, via some failure of the 

corrosion barrier, this could lead to chemical degradation of the composite. To 

detect such phenomenon, two approaches were adopted: passive monitoring to 

detect active corrosion (equipment filled in with the service fluid) and AE 

monitoring during a proof test (according to ASTM E1067 standard). To 

correlate these AE measurements, the tanks were visually inspected and 

dissected. The AE results on field were also correlated with AE results in 

laboratory. The results of this work clearly show the efficiency of AE technology 

for glass fiber active corrosion detection. On the other hand, they show a good 

correlation between the proof tests and AE results of corrosion monitoring. The 

results of this research are a good basis for standardization of the corrosion 

monitoring of GFRP by Acoustic Emission. 

RESUME 

Des environnements corrosifs sont utilisés comme l’acide chlorhydrique 

concentré qui est connu pour réagir avec les fibres de verre E. Les résultats des 

émissions acoustiques révèlent différents modes de corrosion des fibres de verre 

dans les solutions de HCl. Pour les applications de terrain, l’équipement GFRP à 

pleine échelle a été équipé d’une gamme de capteurs AE. L’équipement sert à 

entreposer ou à traiter des produits chimiques corrosifs. Lorsque cette teneur 

corrosive entre en contact avec la paroi du PRV, par une défaillance de la 

barrière de corrosion, cela pourrait entraîner une dégradation chimique du 

composite Pour détecter un tel phénomène, deux approches ont été adoptées: la 

surveillance passive pour détecter la corrosion active (équipement rempli de 

liquide de service) et la surveillance de l’état de l’environnement pendant un 

essai d’épreuve (selon la norme ASTM E1067). Pour corréler ces mesures d’EA, 

les réservoirs ont été inspectés visuellement et disséqués. Les résultats d’EA sur 

le terrain ont également été corrélés avec les résultats d’EA en laboratoire. Les 

résultats de ces travaux montrent clairement l’efficacité de la technologie AE 

pour la détection active de la corrosion des fibres de verre. D’autre part, ils 

montrent une bonne corrélation entre les essais d’épreuve et les résultats de 

contrôle de la corrosion. Les résultats de cette recherche constituent une bonne 

base pour la normalisation de la surveillance de la corrosion de la GFRP par les 

émissions acoustiques. 
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1. INTRODUCTION  
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The article drafted in English or French should not it was the object of no previous publication nor to be 

simultaneously subjected to other magazines or scientific newspaper. 

The use of GFRP equipment has grown in the chemical and petrochemical industry in the late 1970s 

and has accelerated in the 1980s because of their excellent chemical resistance, combined with a high strength to 

weight ratio and a competitive cost compared to equivalent equipment in metallic material. 

The structural portion of the laminate, which supplies the majority of the strength and stiffness of the 

GFRP equipment, is generally composed of polyester or vinylester resin, reinforced by E-glass fibers. This 

laminate is protected from direct exposure to corrosive contents by a corrosion barrier. It can be a resin-rich extra 

layer at the inner surface of the equipment or a thermoplastic internal liner. Due to the presence of defects in this 

barrier, the corrosive content may be in contact with the laminate and therefore corrode it. 

The inspection plans of the GFRP equipment mainly consist in external visual inspection and punctually 

a thermography and/or altimetry. An internal inspection is performed periodically, but it generates difficulties in 

the preparation of the inspection (stop of the process, decontamination...). In addition, contrary to metallic 

materials, it is difficult to assess the severity of a visually detected degradation on this type ofmaterial. 

This problematic has led to the development of the NDT methodology using acoustic emission (AE), 

particularly adapted to in-service inspection. The experimental work presented in this paper was aimed at investigating 

the ability of AE technology for evaluation of corrosion phenomena in GFRP structures. 
 

2. LABORATORY EXPERIMENTS 

2.1. Experiments of corrosion of composite with acoustic emission inlaboratory 

 

Various studies have shown that the corrosion of composites could be detected by this NDT method on 

composite specimens in tensile, flexural and fracture toughness test, with chemical attack [1]. However, all these 

studies were done with a combination of corrosion attack and mechanical stress. Experiments carried out in 

laboratory are corrosion tests of composite by different aggressive environments (hydrochloric acid, sulphuric 

acid, sodium hypochlorite, hydrofluoric acid) without mechanical stress. Cylindrical cell shown in figure 1 was 

designed to hold acid. It is made in Polytetrafluoroethylen (PTFE). 

 

 

 

 

 

 

 
 

 

Figure 1. Experimental setup of the corrosion tests monitored by acoustic emission 

 

 

We see on the figure 2 that the different environments will create different acoustic emission 

activity. 
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Figure 2. Different acoustic emission activity due to different aggressive environments 

 

2.2. Corrosion of composite by Hydrochloricacid 

Further investigations have been made on the corrosion of composite by hydrochloric acid. Mineral acid 

like hydrochloric acid is known to react with the glass fiber. The corrosion of glass fibers in mineral acid 

solution is less known but very important. Indeed, this corrosion is thought to be responsible of GRP failure (Fig. 

3). We have shown in a previous work [2] that the variation of cumulative events with time is proportional to the 

microstructure. Thanks to the progress of signal acquisition and treatment technology, it is now possible to save 

more information from recorded signals. Thus, it is possible to determine the specific acoustic signatures of 

observed phenomena. Clustering of the different hit is done by using k-mean algorithmic (Fig. 4). Three different 

clusters have been found [3]. Now, these different clusters have to be related to the observed phenomena. 

 

 

 
 

 

Figure 3. Picture of consequences of the corrosion on GFRP 
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Figure 4. Result of k-mean algorithm on hits in the principal component vector space 

 

3. AE MONITORING ON FULL SCALE GFRPTANK 

3.1. Experimental method 

One horizontal GFRP tank was evaluated during a passive monitoring and a proof test. The proof test 

was performed according to ASTM E1067 standard [4]. The capacity of the tank is 3m
3
, with an internal 

diameter of    1 000 mm, and a length of 4 300 mm. The wall is composed of a maximum 10 mm thick GFRP 

laminate (vinylester resin reinforced with E glass fibers), with a 5 mm thick inner PVDF liner. The tank has been 

in service for 23 years at the time of the tests. The in-service stored liquid is bromine (Br2), with a maximum 

liquid level of 70% of the tank capacity. 

For the passive monitoring, the bromine level was held at the in service level (70%) for 2 hours. For the 

AE proof test, the bromine was replaced with water (for safety reasons). Due to density difference, the water was 

pressurised up to a Pmax, pressure equal to 110% of the maximum pressure applied in service. The maximum 

pressure applied in service is equivalent to the in-service bromine liquid level. Figure 5 shows the loading 

sequence. The initial hold period (0 mbar) and the hold period at Pmax (190 mbar) were at least for 30 

minutes.The intermediate hold periods were at least for 4 minutes. At the end of the sequence, an unloading 

followed by a reloading were applied in order to verify the Felicity effect. 

 

 
 

Figure 5. Loading sequence of the AE proof test on GFRP tank 
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Figure 6 and figure7 show, respectively, the sensor layout on the tank for the passive monitoring and for 

the proof test. For the passive monitoring, the sensor layout is composed of 10 sensors and aims at covering the 

portion of the tank in contact with the liquid. For the proof test, the sensor layout is composed of 20 sensors and 

aims at covering the whole structure of the tank. For both tests, AE signals were recorded with 35dB acquisition 

threshold; gain of preamplifiers was 34dB; sensors were resonant at around 200 kHz. 

 

 

 
 

Figure 6. Sensor layout on GFRP tank for the passive monitoring. 

 

 

 
 

Figure 7. Sensor layout on GFRP tank for the AE proof test. 

 

3.2. AE Results 

3.2.1 Passive monitoring of active corrosion phenomena 

The analysis of the data from the 2 hour passive monitoring was based on classical methods like 

amplitude distribution, activity chronology and source localization. The figure 8 shows the planar localization of 

the AE events, using an algorithm based on the arrival-time differences. The events are localized in the 

developed plan of the tank structure. One can identify an area highly concentrated in AE events, close to the 

sensor C21 (more than 50 events in a 25cm x 25cm section). In addition, the chronologic trend of these events is 

consistent with a natural phenomenon (non-linear but continuous phenomenon). The analysis has led to the 

conclusion that the localized area close to the sensor C21 is probably related to corrosion of the tank structure. 

 

 
 

Figure 8. Planar localization of AE events during the passive monitoring. 
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3.2.2 AE proof test 

Table 1 shows the results of the AE proof test, analyzed with the recommendations of the ASTM E1067 

standard. Each sensor zone was categorized according to the acceptance values of four criteria:  

 None hit for criteria 1,  

 Counts less than 11 832 for criteria 2,  

 Number of hits fewer than 5 for criteria 3,  

 Felicity ratio greater than 0.95 for criteria 4).  

Only one zone was classified as minor (sensor 11); all the other areas are classified as insignificant. This 

means that there is no evolving structural defect affecting the integrity of the tank structure. 

 

Table 1. Results of the AE proof test. 

 

Sensor 
Criteria 

1 (*) 
Criteria 
2 (**) 

Criteria 
3 (***) 

Criteria 
4 (****) 

Category 

(*****) 
Sensor 

Criteria 
1 (*) 

Criteria 
2 (**) 

Criteria 
3 (***) 

Criteria 
4 (****) 

Category 

(*****) 

1 0 121 0 ≥ 1 0 11 6 226 1 ≥ 1 I 

2 0 672 0 ≥ 1 0 12 0 392 0 ≥ 1 0 

3 0 599 0 ≥ 1 0 13 0 726 0 ≥ 1 0 

4 1 357 0 ≥ 1 0 14 1 347 0 ≥ 1 0 

5 0 477 0 ≥ 1 0 15 0 496 0 ≥ 1 0 

6 0 397 0 ≥ 1 0 16 0 438 0 ≥ 1 0 

7 0 412 0 ≥ 1 0 17 0 357 0 ≥ 1 0 

8 0 883 1 ≥ 1 0 18 0 579 1 ≥ 1 0 

9 1 788 0 ≥ 1 0 19 1 729 0 ≥ 1 0 

10 2 114 0 ≥ 1 0 20 0 116 0 ≥ 1 0 

(*) Criteria 1: Hits during hold, with amplitude greater than low amplitude threshold (46dBAE), beyond 2 

minutes (**) Criteria 2: Total counts 

(***) Criteria 3: Hits with amplitude greater than high-amplitude threshold 

(76dBAE) (****) Criteria 4: Felicity ratio 

(*****) Category:0:Insignificant I:Minor II:intermediate III: Follow-up IV: Major 

 

4. FURTHER LABORATORY INVESTIGATIONS FOR CORRELATION OF AE FIELD RESULTS  

4.1 Dissection of tank 

After AE measurements, the tank was removed from service, dissected and inspected. The inspection 

was focused on the emissive area detected and localised during the AE passive monitoring. The figures 9(a) and 

9(b) illustrate the observations performed on the internal PVDF liner. The visual inspection, figure 9(a), shows 

that the internal surface of the liner is colored because of the bromine migration, but no macroscopic crack or 

blister is visible. Micrographic examination, figure 9(b) reveals some micro-cracks, close to the weld seams. 

 

 

 
 

Figure 9. Inspection of the PVDF liner (a) visual (b) micrography. 

The PVDF liner is fixed to a synthetic fiber fabric which provides the adhesion between the 

liner and the GFRP laminate. In the emissive area, the liner is easily detached from the laminate; some 

bromine spots are visible at the interface liner/laminate. In the non-emissive area, the liner is well 

attached to the laminate. No bromine spot is visible at the interface liner/laminate. 

(a) 
(b) 

Dark area observed 

through the liner 

Microscopic crack 
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Examination of laminate was also performed. In all areas (emissive and non- emissive), the 

laminate does not have crack or porosity. The Barcol hardness measured on the resin of the laminate is 

shown in the table 2 (mean values of 5 measurements). The measurements are consistent with those 

expected for this kind of GFRP structure (35-40). No difference is visible between emissive and non-

emissive area. 

Table 2. Hardness measurements on dissected tank. 

 
Barcol hardness 

Emissive area 37 ± 4 

Non-emissive area 39 ± 4 

 

Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) 

investigations were performed on the interface between the liner and the laminate (figure 10 and table 

3). The analysis of these investigations shows a slight diffusion front (≈ 100µm) of bromine in the resin 

of the laminate. This attack of resin is related to the detachment of the PVDF from the laminate. 

 

        

 

Figure 10. SEM pictures of the interfaceliner/laminate 

 

Table 3. EDX results of the area from the figure10. 
 

 PVDF Light resin Dark resin 

Mass 

composition 
(%) 

Atomic 

composition 
(%) 

Mass 

composition 
(%) 

Atomic 

composition 
(%) 

Mass 

composition 
(%) 

Atomic 

composition 
(%) 

C 26.9 39.6 50.6 76.8 71.7 87.6 

F 62.5 58.1     

O   13.1 17.9 27.9 20.4 

Br 10.5 2.3 36.3 8.3 1.4 0.2 

 

4.2 Laboratory tests with Bromine 

Corrosion tests were performed on GFRP specimen in contact with bromine, monitored with 2 

AE sensors. The dimensions of the specimen are 50 x 300 mm, cut from a healthy area of the dissected 

tank. The PVDF layer is removed from the specimen. No surface treatment is done (the synthetic fiber 

fabric is still present). Figure 11 shows the specimen after the corrosion test. 

Synthetic 

fiber fabric 

PVDF 

Light resin 

Dark resin 

Resin attack and 
detachment of fiber 

fabric 
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Figure 11. GFRP specimen after corrosion test with bromine. 

AE data from this test were compared with the AE data from the passive monitoring on tank. 

Cumulative amplitude distributions are shown in the figure 12 (Pollock plots). The slopes of these 

curves are similar for the laboratory test and for the field test. According to Pollock theory, this 

similarity confirms that the same failure mechanism is detected for both laboratory and field 

measurements. Other AE parameters were compared to corroborate this similarity. 

 

 

Figure 12. Cumulative amplitude distributions (a) for the test on specimen (b) for the test on 

tank. 

5. CONCLUSION  

The article must contain a conclusion summarizing the objectives of the proposed work, the results 

obtained and giving future prospects. 

The ability of AE technology to monitor corrosion phenomena in GFRP was evaluated by means of 

laboratory tests, full scale tests and correlation with dissection. Results are summarizedbelow. 

 The use of acoustic emission for damage monitoring of composite materials is a classic and several 

standards describe this application. In the present applied research work, it is clearly demonstrated the 

efficacy of the acoustic emission for the detection and monitoring of composite corrosion phenomena. 

This is an original result. 

 We can assume that the AE activity detected during the passive monitoring of the tank is related to the 

corrosion attack of the interface between the inner liner and the laminate. This proposition is reinforced 

by the similarity of acoustic emission activity recorded on field and in thelaboratory. 

 The visual and mechanical examinations of the dissected tank conclude that there is no damage of the 

structural laminate. This is consistent with the AE results from the proof test indicating that no structural 

defect is detected byAE. 
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