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In this work, we treat the problem of free vibrations of sandwich 

beams with viscoelastic core by considering its frequency 

dependence. The formulation of the equation of motion is carried out 

by the Hamilton principle whose Euler-Bernouilli theory is applied to 

the faces and the Timoshenko theory to the viscoelastic core. The 

discretization of the bending motion equation is carried out by the 

finite element methods to obtain the eigenvalues problem 

corresponding to linear free vibrations. The difficulty of solving the 

eigenvalues problem due to the frequency dependence of the stiffness 

matrix leads us to use the asymptotic numerical methodto get the 

eigenmodes and the damping properties characterizing the 

viscoelastic sandwich beam. 

 

 

RESUME 

 

Dans ce travail, on traite le problème des vibrations libres des poutres 

sandwichs à âme viscoélastiques en considérant sa dépendence en 

fréquence. La formulation de l’équation de mouvement est réalisée 

par le principe de Hamilton dont la théorie d’Euler-Bernouilli est 

appliquée aux faces et la théorie de Timoshenko au cœur 

viscoélastique. La discrétisation de l’équation du mouvement de 

flexion est réalisée par la méthodes des éléments finis afin d’obtenir 

le problème aux valeurs propres correspondant aux vibrations libres 

linéaires des poutres composites munies des matériaux 

viscoélastiques. La difficulté de résoudre le problème de valeurs 

propres en raison de la dépendance en fréquence de la matrice de 

rigidité nous ramène à utiliser la méthode asymptotique numérique 

pour obtenir les modes propres et les propriétés amortissantes 

caractérisant les poutres sandwichs viscoélastiques. 
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1. INTRODUCTION  

 

The specific mechanical properties in damping have presented the viscoelastic materials as a 

remarkable solution allows attenuating the vibrational amplitudes. They are widely applied in many 

fields because of their dissipative abilities of vibratory energies. In practice, the technique of damping 

of the vibratory amplitudes so-called passive technical can be realized by combining a thin layer of 

viscoelastic polymer between two metal or composite skins for manufacturing composite sheets with 

high damping capacity while maintaining its characteristics of strength and rigidity. From a 

mechanical point of view, the passive damping of the sandwich beams is entrained by the high shear in 

the viscoelastic layer  due to the difference between the longitudinal displacements of the face layers 

and the low rigidity of the viscoelastic core. As a result, the characterization of behavior of structures 

with viscoelastic materials is required to define all appropriate design parameters. Several researchers 

have presented analytical models characterizing their damping properties [1-4]. The Hamilton 

principle was used to formulate the governing equation of vibration motion of sandwich beams with 

constant modulus of viscoelastic core and to examine their vibration amplitudes Rao [5]. However, 

many authors have used numerical approaches to study structures with viscoelastic materials with 

more complex geometries Irazu and Elejabarrieta [6].  Several approaches have been used to solve the 

problem of eigenvalues. Daya [7] used the asymptotic numerical methodfor the eigenvalue problem 

characterizing the free vibrations of viscoelastic sandwich beams taking into account the frequency 

dependence. Bilasse et al [8-9] used the generic approach of "Diamand" which combines both the 

asymptotic numerical methodand the automatic differentiation method. Arikoglu and Ozkol [10] used 

the differential transformation method (DTM) to solve the motion equations governing the free 

vibrations of the sandwich beam obtained by the Hamilton principle. The authors considered several 

kinematic models for their studies describing the damping of the viscoelastic layer among others 

Kirchhoff-Love [11], Mindlin [12], and Reddy [13]. Recently, kinematic models consist of describing 

the displacement field layer-by-layer, which then leads to zigzag-type models. Cai et al [14] used an 

analytical approach to examine the vibratory response of the beam using the Lagrange energy method. 

The model of Mead and Markus [15] was used by Arvin et al [16] to describe the kinematic relations 

between the three layers, the authors presented a higher order theory to study the free and forced 

vibrations of composite beams with viscoelastic core by considering asymmetrical geometries. The 

aim of this work is to solve the problem of free vibrations of composite sandwich beams equipped 

with viscoelastic materials using a numerical approach based on the finite element method. In 

addition, we use the asymptotic numerical methodto solve the eigenvalue problem of free and linear 

vibrations of viscoelastic core sandwich beams with the consideration of the frequency dependence of 

its properties. 

 

2. MATHEMATICAL FORMULATION  

 

The configuration of the viscoelastic sandwich beam presented in this work (figure1.a) is 

composed of a viscoelastic layer placed between two layers constituting the sandwich skins. Figure 1.b 

shows the geometric deformation of a viscoelastic sandwich beam.       The displacement field of the 

viscoelastic sandwich beam is given by the zigzag model of Rao [5]. Adding that many assumptions 

have been considered:  

 

 The transverse plane sections remain plane during bending. 

 The transverse normal stress is very small compared to the axial normal stress. 

 The shear effect is considered only for the central viscoelastic layer. 
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Figure 1: (a) sandwich beam with viscoelastic core;       (b) deformed configuration of the sandwich beam [9] 

 

Taking into account the hypotheses considered, the displacement and strain fields for the three 

composite layers are given by equations (1): 

              (1) 

where ,  et  are the longitudinal displacement, the transverse displacement and the normal 

deformation considered in the context of small deformation and defined by the Green-Lagrange 

formula for each layer of the sandwich. The shear strain of the viscoelastic layer is given by: 

               (2) 

is the rotation of the normal to the middle plane of the central layer. The formulation of the equation 

of motion is described by the Hamilton principle, we consider only the potential energy and the kinetic 

energy. The bending motion equation is given by: 

     

where Wp, Wc are potential energy and kinetic energy respectively. The bending moments resulting 

Mβ and Mw associated with the three layers are given by: 

(4)   

The discretization of the equation of motion eqt.(3) by the finite element method and the 

expression the displacement field as a function of the nodal displacements make it possible to form the 

elementary matrix equation eqt.(5) which describes the free vibratory behavior of the beam. 

                (5) 

where [M]
e
 and [K]

e
 are respectively the elementary mass and stiffness matrices given by: 

            (6) 

               (7) 

The global matrix system describing the free vibratory behavior of the sandwich beam after 

the assembly of the elementary matrices is written in the form: 

 

       (8) 

 

with  and are respectively the global mass and stiffness matrices, q is the global displacement 

vector. In order to study the free vibrations of the viscoelastic core sandwich, we have to solve the 

problem with the following complex eigenvalues: 

 

      (9) 
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The resolution of equation (9) is complex because of the frequency dependence of the stiffness 

matrix, the asymptotic numerical methodappears as one of the most efficient numerical methods to 

approximate the solution. The algorithm (figure 2) presents the main steps of this method. This 

method consists of expressing the variables in Taylor series and replacing them in the eigenvalues 

problem decomposed. The problem solving is done starting from : 

- a linear initial problem R(U,λ)=[[K0]-ω0^2 [M]]U0 for  aj=0  

- to the nonlinear problem R(U,λ)=[[K0]+En(ω)[Kc]-ωn^2[M]]Un  for aj=1.  

 

Therefore, a continuation procedure is applied which consists of defining a new slice of solution from 

a starting point ( ). The solution is obtained for each iteration by solving a system of linear 

equations. The process ends when the value of a(j+1)>1. A Matlab code of the asymptotic numerical 

method has been established describing eigenvalue problem solving (9). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Algorithm of solving the eigenvalue problem by the asymptotic numerical method. 

The free vibrations of the viscoelastic sandwich structures make it possible to characterize not 

only their mechanical properties but also their vibratory behavior under different loads, which will be 

the aims of future works. The damping properties of the sandwich structures that are the natural 

frequency f and the loss factor η can be calculated from eigenvalue problem resulting from the 

problem (9). 

    (10) 

3.     RÉSULTS  

 

In order to examine and characterize the properties of sandwiches with viscoelastic materials, 

several law models of viscoelastic behavior have been studied. Starting from a frequency independent 

viscoelastic law, passing thereafter a law of viscoelastic behavior that is highly dependent on the 

frequency.  It is Noticed that the study has already been realized by Bilasse et al [16] who used the 

generic approach of "Diamond" to solve the eigenvalue problem (9), this approach combines the 

asymptotic numerical method and automatic differentiation method. We propose our model of the 

Perturbation technique  
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asymptotic numerical methodwhose small accuracy parameter is fixed around ε = 10
-8

, the truncation 

order of the series N = 20. Thus, we propose here a model of finite elements with 20 elements, the 

number of degrees of freedom nodal is three (3) which are the transverse displacement w, the rotation 

dw/dx, and the rotation of the central layer β. 
 

2.1. Viscoelastic model with constant modulus 

The first case studied in this work is a model of viscoelastic behavior with a frequency 

dependent of Young’s modulus E, this model is widely used to study the viscoelastic behavior. Some 

research shows that this model remains only an approximation when the complex modulus of the 

material varies very little in frequency[8,16]. 

 

                            (11) 

 

where E0 is the storage modulus, ηc is the loss factor of the viscoelastic material, the loss modulus Ed 

is given by: 

              (12) 

 

The mechanical and geometrical properties of the viscoelastic sandwich structure are 

presented in table 1, it consists of a viscoelastic layer sandwiched between two aluminum skins. 
 

Table 1. Mechanical and geometrical properties of the sandwich with a frequency-independent viscoelastic core 

[8] 

 
 Elastic face Viscoelastic core 

Young Modulus  
 

 

Poisson Coefficient  
 

 

Density (  
 

 

Thickness  
 

 

Length   

 Width (m) 

 

The damping properties represented by the naturel frequencies and the loss factors of the first 

three modes are reported in table 2 for different values of viscoelastic loss factor ηc.  
 

Table 2. Natural frequencies and loss factors of the cantilever sandwich beam with viscoelastic core independent 

of frequency 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results show that as the damping factor of the viscoelastic core increases, the naturel 

frequencies also increases, thus implying the improvement of the overall damping of the structure. It is 

noticed that low frequencies can generate large amplitudes when they are close to the loading 

frequencies inducing what is called resonance. We can see the efficiency of our Matlab program of the 

asymptotic numerical method , wich residue was generally less than 2.5×10-7 that validates the 

precision of the results obtained. Figures 3.a, 3.b, 3.c and 3.d show the variation in amplitudes of the 

deflection of the three first eigenmodes normalized with respect to the maximum deflection Wf = 

W(x0) for different loss factor values ηc = {0.1,0.4,0.8,1.2}. 

 

 

 

N° :  f (Hz)  
 

R(U,λ) 

0.1 

1 64.594 2.8119e-02 1.1876e-07 

2 299.26 2.4202e-02 5.0980e-08 

3 753.07 1.5283e-02 1.1492e-07 

0.4 

1 65.244 1.0583e-01 1.1868e-07 

2 300.38 9.4985e-02 5.0965e-08 

3 753.85 6.0888e-02 1.1492e-07 

0.8 

1 66.945 1.7920e-01 2.0183e-07 

2 303.58 1.8003e-01 5.8352e-08 

3 756.26 1.2028e-01 1.1500e-07 

1.2 

1 68.971 2.1699e-01 2.0188e-07 

2 308.03 2.5113e-01 5.8328e-08 

3 760.12 1.7696e-01 1.1496e-07 
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Figure 3. Eigen modes of the cantilever sandwich beam with viscoelastic core for different values of viscoelastic 

loss factor ηc ((a) -0.1; (b) -0.4; (c) -0.8; (b) -1.2). 

The position x0 depends on the mode order and the boundary conditions of the beam. The 

figures show the importance of the imaginary part of the eigenmodes particularly for the large values 

of damping factor of viscoelastic core. Several researchers such as Daya [12], Boutyour [17] 

considered that the real part of the stiffness matrix, which implies the negligence of the loss modulus, 

this approach generally, leads to less accurate results in vibration analysis. The consideration of the 

imaginary part of the eigenmodes and the use of complex modes is very necessary especially with a 

high viscoelastic damping. This means that the magnitudes relative to the imaginary parts of the 

complex modes are indices representing the damping capacity induced in the structure. Table.3 reports 

the natural frequencies and the loss factor of the simply supported sandwich beam corresponding to 

the first three modes for ηc={0.1,0.4,0.8,1.2}.  
 

Table 3. Natural frequencies and loss factors of the simply supported sandwich beam with viscoelastic core 

independent of frequency 

 

 

N°  f (Hz)  
 

R(U,λ) 

0.1 

1 149.59 3.5003e-02 3.7593e-09 

2 492.79 1.9470e-02 2.3415e-09 

3 1047.5 1.0526e-02 2.0584e-09 

0.4 

1 150.55 1.3695e-01 3.7590e-09 

2 493.34 7.7637e-02 2.3604e-09 

3 1047.8 4.2074e-02 2.0701e-09 

0.8 

1 153.49 2.5598e-01 3.6937e-09 

2 495.09 1.5375e-01 2.3180e-09 

3 1048.8 8.3948e-02 2.0499e-09 

1.2 

1 157.92 3.4621e-01 3.7600e-09 

2 497.97 2.2691e-01 2.3332e-09 

3 1050.3 1.2542e-01 2.0265e-09 

 

(a) (b) 

(d) (c) 

(a) 

(c) (d) 

(b) 
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The same findings have been made, where the natural frequency increases with the increase in 

the damping factor of the viscoelastic core. Obviously, the eigenfrequecies obtained for simply 

supported beam are higher than those obtained for the clamped-free beam, the latter condition 

typically allows show the lowest frequency that can reach larger magnitudes. Thus, we can see again 

the effectiveness of our Matlab program of the asymptotic numerical method that residue is less than 

1.7×10-5, which validates the precision of the results obtained. Figures 4.a, 4.b, 4.c, 4.d show the 

normalized amplitude variations of three first vibration modes for different values of ηc. 

Figure 4. Eigen modes of the simply supported sandwich beam with viscoelastic core for different values of 

viscoelastic loss factor ηc ((a) 0.1; (b) 0.4; (c) 0.8; (b) 1.2) 

 

In order to study the effect of loss factor of the viscoelastic layer on the overall damping of the 

sandwich, a study of variation of loss factor of the structure as a function of viscoelastic loss factor is 

presented in figures 5.a and 5.b for the clamped-free and simply supported boundary conditions 

respectively. We can see the proportional relationship between the two loss factors, which shows that 

dispersion becomes significant when the viscoelastic loss factor is greater. This property can be used 

in systems working under dynamic load in order to reduce or attenuate the structural vibrations 

generated by these types of stresses in the context of the passive damping system by integrating the 

viscoelastic materials. 

(a) 
(b) 

(b) (a) 

(c) (d) 
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Figure 5. Variation of viscoelastic loss factor of the sandwich beam with frequency independent viscoelastic core 

for different values of viscoelastic loss factor ηc ((a) clamped-free; (b) simply supported) 

 

2.2. Viscoelastic model with frequency dependent module 

 

In the previous section, we studied the free vibrations of a viscoelastic sandwich beam 

between two elastic skins, which the modulus of the viscoelastic core was independent of the 

frequency. In this section, we present another model of viscoelastic behavior strongly dependent on 

frequency. The viscoelastic core consists of polymeric material ISD112 , which viscoelastic modulus 

is described by the generalized Maxwell model considered for two different temperatures 20 ° and 27 ° 

(Tab. 4). The mechanical and geometrical properties of sandwiches are presented in table 5. 
 

Table 4. Shear module of ISD112 viscoelastic core 

 

 

  

j 
 

  
 

  

1 

5.11×104 

2.8164 31.1176 

5×105 

0.746 468.7 

2 13.1162 446.4542 3.265 4742.4 

3 45.4655 5502.5318 43.248 71532.5 

 

Table 5. Mechanical and geometrical properties of the sandwich with a frequency dependent ISD112 viscoelastic 

core 

 
 Elastic face  viscoelastic core  

Young‘s modulus (Pa) Ef=7.037×1010 (14) 

Poisson Coefficient  υf=0.3 
 

Density  
 

 

Thickness   
 

 

Length   

 Width  

 

The natural frequencies and the loss factors corresponding to the first three eigenmodes with the two 

boundary conditions (Clamped-Free; Supported-Supported) are reported in table 6 and table 7 for the 

two viscoelastic modulus considered at temperatures 20° and 27° respectively. 
 

Table 6. Natural frequencies and loss factors of the sandwich beam with dependent frequency viscoelastic core 

ISD112 at 20 ° for different values of viscoelastic loss factor ηc. 

 
 Encastrée-Libre Appuyée-Appuyée 

N° f (Hz) η R f (Hz) η R 

1 64.93 2.45e-01 2.78e-08 157.67 2.77e-01 .63e-08 

2 321.29 2.21e-01 8.87e-08 544.22 2.36e-01 4.84e-09 

3 843.96 1.68e-01 4.55e-08 1160.50 1.26e-01 5.65e-09 

 

Table 7. Natural frequencies and loss factors of the sandwich beam with dependent frequency viscoelastic core 

ISD112 at 27 ° for different values of viscoelastic loss factor 
 

 Encastrée-Libre Appuyée-Appuyée 

N° : f (Hz) 
 

R(U,λ) f (Hz) η R(U,λ) 

1 65.54 1.72e-01 3.92e-08 159.47 3.07e-01 5.85e-09 

2 325.26 3.03e-01 3.71e-08 548.41 3.88e-01 5.16e-09 

3 853.82 3.29e-01 6.39e-08 1160.9 3.29e-01 6.35e-09 

The loss factors obtained for the two sandwiches are very high which are very close to those 

obtained with a constant viscoelastic model and viscoelastic loss factor ηc = 1.2. This illustrates the 

highly damping that can be brought by this model of the viscoelastic core. On the other hand, it is 

noticed that the loss factors obtained for the ISD112 core at 27 ° are generally higher compared to 

those obtained with the ISD112 core at 20 °, implying that the mechanical properties of the materials 

depend not only on the frequency but also on the temperature. However, it is possible to note the 
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precision of the results obtained, the calculated residual of which is generally less than 7×10
-8

. The 

real and imaginary modes are presented in figure 6 and figure 7 for the first three eigenmodes of the 

sandwich beam with two viscoelastic core at temperatures 20° and 27° respectively. The results show 

the importance of the imaginary part of the eigenmodes which plays an important role in improving  

the accuracy of different simulations based on this modal base that can be used to examine the forced  

vibratory behavior of various configurations of sandwich beams with viscoelastic core. 

 

Figure 6. Eigenmodes of sandwich beam with viscoelastic core ISD112 at 20° ((a) clamped-free; (b) simply 

supported) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Eigenmodes of sandwich beam with viscoelastic core ISD112 at 27°  

((a) clamped-free; (b) simply supported) 

 

3. CONCLUSION 

 

In this work, we studied the free vibrations of viscoelastic sandwich beams with different 

models of viscoelastic behavior, the first of which is frequency independent model, and the second of 

which is frequency dependent model.   Different boundary conditions were examined to evaluate the 

accuracy of our numerical algorithm based on finite element discretization and the asymptotic-

numerical method, and to construct a modal basis to study linear and non-linear vibrations behavior of 

sandwich beams under various dynamic load. The following conclusions can be drawn from this work: 

(a) (b) 

(a) (b) 
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 The efficiency of the present numerical algorithm based on the finite element method and the 

asymptotic numerical method to solve the eigenvalue problem related to the free vibrations of 

viscoelastic sandwich beams. The obtained results are very acceptable for approximating the 

damping properties of different sandwich configurations. 

 The effect of the increase in damping factor of the viscoelastic core with frequency-

independent modulus on the damping properties of the sandwich, involving the improvement 

of the overall damping of sandwich beams. 

 The importance of the imaginary parts of the eigenmodes which make it possible to improve 

the precision of the results particularly when this modal basis is used to study the forced 

vibrations. 
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