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This paper presents a novel robust approach to control the aerodynamics 

instabilities, surge and rotating stall of a Variable Speed Axial Compressor 

(VSAC) in gas turbine process. The used model to design the controller is 

Egeland-Gravdahl who has been commonly recognized as standard when 

reporting some bifurcation behavior of VSAC which cannot be captured by 

constant-speed models. The proposed non-linear robust control is 

reformulated as an optimization problem, the first reformulation is linear 

matrix inequality (LMI) solved by interior point optimization algorithm, the 

second reformulation is non-linear constrained optimization solved by 

genetic algorithm (GA).The two optimization approaches are tested and 

compared using Matlab software. Promising simulation results were obtained 

for both optimization approaches, but the robust controller based on genetic 

algorithm optimization presents better performances to tackle a restricted 

specification and operating conditions.  

 

 

RESUME 
 

Cet article présente une nouvelle approche robuste pour contrôler les 

instabilités aérodynamiques, le pompage  et le décrochage tournant d'un 

compresseur axial à vitesse variable (VSAC) au niveau d’une turbine à gaz. 

Le modèle utilisé pour concevoir le contrôleur est Egeland-Gravdahl, qui est 

reconnu comme le modèle standard qui représente  certains comportements 

de bifurcation, qui ne peuvent pas être représenté par des modèles à vitesse 

constante. La commande robuste non linéaire proposée est reformulée 

comme un  problème d’optimisation : la première reformulation est 

l’inégalité linéaire matricielle (LMI) résolue par l’algorithme d’optimisation 

du point intérieur ; la seconde est une optimisation non linéaire  sous 

contraintes résolue par l’algorithme génétique (GA). Les deux approches 

d’optimisation sont testées et comparées à l’aide du logiciel Matlab. Des 

résultats de simulation prometteurs ont été obtenus pour les deux approches 

d'optimisation. Cependant, le contrôleur robuste basé sur l'optimisation de 

l'algorithme génétique présente de meilleures performances en présences des 

spécifications et des conditions de fonctionnement restreintes. 
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1. INTRODUCTION  

Gas turbines are internal combustion engines, which require pressurized air, and are widely used in 

industrial and aeronautic applications. The pressurized air is delivered by air compressors suffering from two 

kinds of aerodynamic instabilities, namely, surge and rotating stall. These instabilities are deeply affected by 

speed dynamics. Indeed, speed transitions develop temporary rotating stall and cause a pressure drop in the 

output. [1]. Despite reported achievements in several papers [2],[4],[5],[9-13],[17],[18], devoted on stabilizing 

axial compressors being based on the constant speed assumption, or surge control only, or both surge and 

rotating stall,  this paper tackles the simultaneous control of speed and instabilities (surge and rotating stall) in 

variable speed, using the most appeared and representative actuators closed control valve (CCV) and throttle 

valve, which it has remained an open problem [4],[17]. Contrary to Egeland-Gravdahl variable speed model, 

Moore-Greitzer original model does not imply any rotating stall development, since the working point is situated 

by an adequate margin to surge line. This temporary stall development and pressure drop can cause trouble for 

the normal turbo machines operation [4]. Experiment results are very important to study the gas turbine 

performances, but the high cost, test facilities and risks in test make the experiments so difficult [18],[19]. So, it 

is significant to make an early theoretical search with a very representative model as used in this work. In this 

paper, it has important to take Egeland-Gravdahl representation as model, due to its capacity to reporting some 

bifurcation behavior of Variable Speed Axial Compressors (VSAC).The first investigation on qualitative 

behavior of Egeland-Gravdahl non-constant speed model was first proposed by Sari et al. in [3]. Based on the 

results found in [4],[12],[13],[28], this paper investigates not only in the behavior of variable speed but also the 

behavior of the actuators [25],[29], especially the torque of the turbine and the valve throttle. Through a 

quantitative analysis of model, we note the sensitivity of bifurcation point (throttle valve) and its stability to the 

change of acceleration rates and desired speeds. Consequently, we have proposed an optimized state 

feedback control, subjected to different constraints, leads to a proved feasibility condition on the stability 

achieved for bounded disturbances and uncertainties, probably made the proposed  strategy  correctly in the case 

of practical experiments, who make the problem even more challenging [4],[1], and it is a new search hot point 

[18]. This paper wants to provide:  

- An adapted linear matrix inequality (LMI) optimization based on non-linear control. It gives the 

application on a bifurcation nonlinear system. 

- New key condition called in this paper Variable Speed Instabilities Constraints. It’s the result of the 

bifurcation analysis depicted for two different acceleration rates and desired speeds. 

- An adapted formulation of Genetic algorithm (GA) optimized nonlinear control, based on Lyapunov 

function, taking on consideration the non-linear function and constraints. 

Unlike other optimization approaches, GA algorithm is based on the populations representing the 

different solutions for the optimization problem. These properties of mentioned algorithm result in improvement 

of the search ability and increasing the quickness of finding the optimum solution [27]. Since the constrained 

genetic algorithm, on-line LMI and off-line are supposed to find a solution to a given objective function but 

employ different strategies and computational effort, it is appropriate to compare their performance [18]. The 

paper is organized in seven principal sections. The Egeland-Gravdahl model and bifurcation model is presented 

in Section 2. Section 3 shows non-linear robust design. Section 4 describes constrained genetic algorithm 

optimized non-linear robust design. Section 5 shows the simulations results. Section 6, concludes with summary 

and discussion on the potential use of the proposed approaches on experimental test.  

 

2. EGELAND-GRAVDAHL MODEL AND BIFURCATION ANALYSIS 

A complete bifurcation analysis of the variable Speed Axial compressor model is carried out in this 

section.  The Egeland-Gravdahl’s model can be expressed as ordinary differential equations as below [2]:  
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Matcont continuation and bifurcation software [6] are used to conduct the computations, and relevant 

parameters of the system model are given in (Tab. 2). The computed bifurcation diagram, for mass flow  and 

first harmonic of rotating stall with varying throttle parameter
T
 , for the cases s/m65U

d
 and 

s/m90U
d
  is presented. Figure.1 shows one of the bifurcation diagrams of the model where equilibrium of a 

constant and non-constant speed axial compression system are depicted as a function of throttle gain 
T

  

(Bifurcation Parameter).   
TT

  is known as the steady state compressor map which represents 

nonlinear relationship between the pressure rise at the output of the compressor and the mass flow. Figure.1 

contains information about all steady states, and their stability, and identifies bifurcation points (BP) where 

steady states exchange stability, and new steady states are created or existing steady states disappear. The 

subcritical bifurcation point (BP) represents the peak value of pressure rise where the axisymmetric flow loses 

stability. Limit cycles originating from Hopf bifurcation point H (inferior) represent classical surge with J>0. 

Classic surge cycles occur only for an arrow range of values of the throttle parameter
T

 , and are therefore 

plotted separately in Figure 1.b).d).f).h).k) on a different parameters axis scale. Limit cycles from Hopf point H 

(superior) are not plotted because they are found to have negative J and are therefore nonphysical. Bifurcation 

diagrams, such as that in Figure 1, can be used to identify parameter regions of different global stabilities 

behavior [7]. In order to study the effects of speed variations on the system behavior, a simple proportional speed 

controller of the form  UUK
dst
 , with 

d
U  is the desired velocity of the wheel and 

s
K  is a gain defining 

the rate of the acceleration.   

 

Higher (lower) leads to faster (slower) rates of speed variations. Figure 1.e),f),g),h),i),k), which is 

depicted for two different acceleration rates and desired speeds, shows that the variation of the acceleration rate 

changes the bifurcation points over the physical limits 1)max(
T

 , which can causes infeasibility of control 

law. The modification of manifolds form can change the behavior of the system in different ways, including the 

type and the range of instabilities and the relevant domain of attractions as well. The system behavior in the 

interval between the limit point (LP) and the bifurcation point (BP), takes on a considerable importance. The 

deformation also indicates that the amplitude of fully developed stall and the amplitude of the limit cycles 

corresponding to surges vary due the acceleration rate variations.   
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Figure 1. The bifurcation Analysis. (a),(b),(c),(d): Constant Speed behavior,   (e),(f),(g),(h),(i),(k): Variable 

Speed behavior with Bolds lines show stable and dashed lines show unstable manifolds. 
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3.  NON-LINEAR ROBUST CONTROL DESIGN 

 

Gravdahl developed a model for variable speed axial compressors and considered the speed of the  

rotor as a state  variable [2]. Later, Zaiet et al. [8] modified the model to include the pressure drop over a CCV 

and to make it suitable  for control applications. 
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Let us consider the model (5,6,7,8) as: 
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         where f is a continuously differentiable nonlinear function, with the state variables  U,,,Jx
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belongs to R
4
.The actuators forces are input variables u1, u2 and u3 defined respectively as the pressure drop 

over CCV, the throttle gain, and the non-dimensional drive torque being used to increase the speed. 

 

3.1. Control design 

 

Let us consider the following control effort that can stabilize the system the nonlinear system (10) in 

error coordinates [13]: 
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K  construct the decision variables, and   is given by   
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3.2. Stabilizing the system at origin 

 

The result final form of the system can be written as: 
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Lemma1 [14] 

 

The objective of the proposed control law given in  (11),(12),(13)  is to find the appropriate 
i

K that can 

make the system of equations(14),(15),(16),(17) in  converge to a residual subset D around the origin and are 

bounded. This objective can’t be achieved only if  

Hypothesis 1:   is bounded (    ,J,
1

 .  

Hypothesis 2:    U,,JfJ
11J1
  is globally input-to-state stable in D. 

 are verified . 

 

3.3. Robust design  

 

As approved in [13], the boundedness of

 ,


 ,  

maxminv
,  and 

1
J  leads to the boundedness of δ 

as a result of hypothesis 1.  

 

3.3.1. The input to state stability of rotating stall [14]   

 

According to theorem 4.19 in [14], the  U,,JfJ
11J1
  is input to state stable if there is a continuous 

differential function RR:V
1

  

                                                             
121111

JJVJ                                                 (20) 

                                          )J()U,,J(f
J

V
1311J

1

1  



    0)U,(J

1
                

(21) 

with 
1

 and 
2

  are 


  class functions,  is   class functions and as approved in [13], the choice of Lyapunov 

  2

1

2

11
J

1
JV


  with 

  
1

WaUm1

aH3
0

U

2



   lead to positive function )J(

13
  which proves the input to state 

stability of the  U,,,JfJ
11J1

  . 

 

Test of Hypothesis 2: From equation (20) we obtain that: 

                      
12

2

1

2

1111
JJ

2

1
JVJ 


       with 

  
1

WaUm1

aH3
0

U

2



                   (22) 

The dynamic equation (6) of non-measurable state 1J
is reformulated as 
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   










 


32

1

1

U

11 MUM
4

J
M

WaUm1

aHJ3

d

dJ
                                    (23) 

with  

0GC
1

W
2

W
M

2022

0

2

2

0

2

1



 




                                             (24) 

 
0K

Hb3

W1mU2
KGM

3

10

332






                                                        (25) 

 

 

 

0
W

2
C

1

W

2

W

2
C

1
M

2202223






                                            (26) 

 

From equation (22), the derivation of Lyapunov function
1

V                                 

)M4UM4J(
4

J
JMMUM

4

J
MJ)U,,J(f

J

V
321

2

12

1132

1

1

2

111J

1

1  












          

(27) 

For a bounded speed U and mass flow   : 

                                                     
3232

M4UM4M4UM4                                                

(28) 

Taking  
32max23

M,MmaxM   and    ,U , the equation (28) will be written as  


max2332

M4M4UM4                                                        (29) 

The equation (27) has a new upper bound 

)M4J(
4

J
JM)U,,J(f

J

V
max231

2

12

1111J

1

1  



                                (30) 

with 
2

1
J is a positive definite function, 0M

1
 , we obtain 

2

11
JM  a negative define function, then provided that 

0M4J
max231

  i.e. 
max231

M4J   , which yields 

2

1111J

1

1 JM)U,,J(f
J

V





     0M4J

max231
                                   (31) 

The equation (31) leads to the equation (21) (Theorem 4.19 [14]), this completes the test of hypothesis 2. 

 

3.3.2. The Robust stability of closed loop  

 

The Lyapunov like function gives a sufficient condition for input to state robust stability. The notion of 

input to state stability defined for the global case where the initial state and the input can be arbitrarily large [14].   

 

Proof of Lemma 1: 

Let  T

2

2

1
)(V   the Lyapunov candidate definite positive function of  then: 
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(32) 

The verification of the two hypotheses 1 and 2, stats that the robust state feedback control  
321

u,u,u  given in 

(11,12,13) governs the system states to a neighborhood of the origin and are bounded, for 

 
    0UKUUK

UU
K 2

3

2

012

2

2
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2

1

2

1



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                         (33) 
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The equation (33) is strictly negative, implies that   )(WV
32
  , where )(W

3
 is a continuous positive 

definite function [14].  According to theorem 4.19, considering the bounded uncertainties    ,J,
1

 (from 

hypothesis 1), and the application of theorem 4.18 [14] show that in a finite time
0

 , it exist a positive   such 

that:   
2

 
0

  , the smallest 


can guaranteed by the optimal choice of 
i

K subjected to robustness 

equ. (33). 

The input to state stability of the non-measured state 
 UJfJ J ,,111 

 leads to: 

           
0210202121

,)0(J,sup,)0(JJ  Where  and   are 

class ℒ  and class  functions, respectively. Therefore, the ultimate bound of 
21

,J   rotating stall can be 

expressed as     
21

,J . This proves that the proposed control converge the state variables to 

a neighborhood of the origin. This completes the proof of lemma1. 

 

 

 

 

 

 

3.4. Adapted Linear Matrix Inequality for the robust control design 

 

The linear programming is a convex optimization used to find the optimal Ki parameters subjected to 

robust stability condition   0V
2

 . The optimization problem being written as follows, 
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                For all 0 , the proposed control conception leads to feasible solution 
i

K for each constraint 

separately. For a bounded ,  , 
1

 and 
2

 , the condition (a) lead to the inequality 0K
1

1





 for a 

feasible  positive parameter 



1

1
K  , the condition  (b) lead to inequality 0K

2

2
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


 for a  feasible 

positive parameter 



2

2
K  , and the condition (c) leads to inequality   0KUU

3

2

01
  for all feasible 

positive parameter 
3

K . The optimization problem (34) is converted to a feasible convex optimization under 

Linear Matrix Inequality formulation [16]: 
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                                                                                 (35) 

The interior point algorithm used to solve equation (35) is known as the most efficient algorithms used 

for solving LMIs that arise in robust control [16]. 



Rev. Sci. Technol., Synthèse Vol 25, numéro 2: 78-95(2019)    A. Debbah & al 

©UBMA - 2019 
86 

 

4.  CONSTRAINED GENETIC ALGORITHM OPTIMIZED NON-LINEAR ROBUST CONTROL  

 

The genetic algorithm is a heuristic approach to solving a non-linear optimization problem, which is 

essentially based on the theory of natural selection, the process that drives biological evolution. In all global 

search problem, there is an optimization problem of maximizing or minimizing an objective function  zf for a 

given space x of arbitrary dimension [21],[23],[26]. In this section, the design procedure of GA Optimized non-

linear controller is presented. In this research, Constrained Genetic Algorithm (CGA) is used to design an 

optimum robust controller in order to reach the robust behavior of a variable speed axial compressor (VSAC) in 

gas turbine process. The formulation of an optimized controller involves four tasks [21], begins with the choice 

of control law architecture and identifying underlying controller parameters, the second is to identify the 

constraints associated. In this work, the constraints represent robustness criteria of a non-linear control, variable 

speed instabilities and certain actuators limits. The third task in the formulation procedure is to find the objective 

function in terms of controller parameters and other problem parameters. The final task of the formulation 

procedure is to set the minimum and the maximum bounds on each controller parameters [21,22]. The robust 

stability condition (33) is equivalent to 
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(36) 

Thus, finding that provides a bound on  
2

V   can be done by solving a feasible optimization problem (37): 
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For all 0  and 0K
i
 , the feasibility of (36) is guaranteed since 

 
  2

3

2

01

2

2

0

22

1
UKUUK

UU2
K

2

1



 


  is a negative definite function [14]. Moreover, it can be 

optimized over the positive  iK
 by searching for the smallest bound (minimization of a )K,K,K(f

321
), imply 

clearly a high feedback gain. The optimization problem being written as follows: 
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(38) 

The aim of constraints (a),(b) and (c) is to guarantee the stability of the closed loop in the presence of 

the system uncertainties and non-linearity. As demonstrated in section 2, the speed transition affects the stability 

of compression system and physical constraints on control efforts CCV and throttle. For that reason, we 

introduced a new key constraint (e) and (f) on turbine acceleration and torque, called Variable Speed instabilities 
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constraints. The appropriate choice of 
acc

 and 
torque

 , yields to achieve a better performances in terms of control 

dynamics, and intended to eliminate the effect of speed transition. The procedure of the proposed genetic 

algorithm in this work is given below [24],[23]: 

a) Generate randomly a population of parameter strings to form primary population. The population   number of 

each generation is assumed 40. 

b) Calculate the fitness function as given in (38) for each individual in the population. 

c) Choose parents by applying the Roulette wheel as selection function. 

d) Apply crossover function to parents in order to create next generation. 0.8 is assumed as crossover fraction. 

e) Apply mutation function on new population. The adapt feasible function is used in order to generate only 

points that are feasible with respect to linear and bound constraints [23]. 

f) Compute the children and parents fitness. 

g) A variety of constraints-handling methods for genetic algorithms have been developed in the last decades, the 

two most of them can be classified as penalty function and multi-objective optimization concept [20,23]. In this 

work, the used concept to constraints-handling is the penalty function. The concept of penalty function is if the 

individual is infeasible, the penalty function is the maximum fitness function among feasible members of the 

population, plus a sum of the constraint violations of the (infeasible) individual, in the case of a feasible 

individual, the penalty function is the fitness function [20]. 

h) If the stopping criteria satisfied, optimization will stop, otherwise; return to step (c). The number of iterations 

is used as the stopping criteria and the maximum value of it is assumed as 150. An appropriate choice of 

parameters  used for genetic algorithms performed in the present study are given in table 1. 

 

 

 

 

Table 1.Parameters used for genetic algorithm 

Parameter Function or Value  Parameter Function or Value  

Population size 40 Fitness function Equation (38) 

Maximum number of 

generations 

150 Constraints-handling 

methods 

Penalty function 

Type of selection Roulette wheel Type of mutation: adapt feasible 

Type of crossover Intermediate Crossover Ration 0.8 

 

 

5. NUMERICAL SIMULATIONS 

 

For the purpose of optimization (35) and (38), routines from Mathworks robust control toolbox and 

global optimization toolbox are used respectively. In this work, we used the feasibility solver based on Nesterov 

and Nemirovski's Projective Method to solve linear matrix inequality [16], and penalty constrained-handling 

genetic algorithm optimization [23]. As shown previously, the objective function comes from time domain 

simulation of gas turbine model. The relevant parameters of the system model are given in table 2. To conduct 

the simulations tests, two types of perturbations are applied to the system denoted by  
d

and  
d

are 

considered as mass flow and pressure disturbances respectively and  


d ,  


d represent the uncertainty of 

the compressor map and throttle characteristics. 

 

Table 2. Numerical values used in simulations 

 

Symbol Value Symbol Value Symbol Value 

W  0.25  d =   d  )2.0sin(01.0   
El  8 

H  0.18 
il  

2 c 0.7 

  0.01 
d  

−0.05 
0c  0.3 

b  96.17 
d  

0.02 a  0.3 

m  1.75 
1  

2.1685e-4 R  0.1 

cl  
3 

2  
0.0189 

sa  340 
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In the following time-domain simulations, the control of rotor speed without surge and rotating stall 

control is called Open Loop, whereas, simultaneous speed and surge/rotating stall control is called closed-loop. 

Here, we are interested to make the system working inside a constrained stabilizable subset Π  R3, 

 
c0

0   where  
c

 is the compressor map.  The mass flow of compressors is always limited to  

choke0min
   where 

choke
 is the choking value of the mass flow and 

min
 is the minimum negative mass 

flow during deep surge (see [2] for more details). The effort signals are  limited to physical constraints, effort 

signals u1 pressure rise through CCV valve subject to     maxumax
1

 , 
1

u throttle valve opening gain (0: 

fully closed, 1: fully open) subject to 1u0
2
 , 

3
u turbine torque respect the turbine limits. At ζ=0, the 

controller is activate and closes the loop.  Examining the time response manifested in figure 2 and figure 3 for 

the three proposed controllers LMI On-Line (LMI-on), LMI Off-Line (LMI-off), genetic algorithm off-Line 

(GA), we found that the system dynamic in closed loop stay close to effective pressure rate and mass flow point 

under the effect of the start-up speed variation, uncertainties and perturbations.   
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Figure 2. Closed loop System Map. 
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Figure 3. Output dynamic in closed Loop. 

 

In figure 4 and table 3, it can be observed that the proposed genetic algorithm design provide a control 

effort signal inside the physical constraints limits, on the other hand, the  control effort provided by  LMI-on and 

LMI-off controller exceeds the physical limits of the CCV pressure rate , and throttle valve opening, which can 

causes the actuators saturation. It immediately damps out rotating stall (Fig. 5) and as illustrated in [10] the 

throttle should be turned down in order to add some resistance to the system when the flow change is positive 

and the pressure change rises is not negative.  
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Figure 4. Control effort Dynamic in Closed Loop. 
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Figure 5. First Harmonic of Rotating Stall.  

 

By investigating the results summarized in table 3, and highlighting the major difference between two 

controllers with the best performances, GA is an off-line optimization while LMI-on is an on-line optimization,  

this it will give the advantage to GA whose computation time in real-time application will not occur. 

 

Table 3.  GA and LMI results obtained for simulation 1 

 GA LMI-ON LMI-OFF 

Max Min Max Min Max Min 

1
u  0 -0.182 0 -4.885 0 -1.172 

2
u  0.616 0.541 0.616 -0.28 0.615 0.029 

3
u  99.445 0.175 3385 0.175 812.892 0.173 

 Rejection time Rejection time Rejection time 

J  0.4 0.4 0.81 

 

 

 

 

As reported in [2], for the low speeds the system goes to rotating stall and for high speeds, it develops deep 

surge. In the proposed second simulation, we consider the case of low speed (35m/s) operation and demonstrate 

the capacity of the proposed controllers to reject the perturbations and guarantee the stability of the system inside 

a constrained stabilizable subset  Π  R3. From figure 6 and figure 7, we have noted the capacity of three 

proposed controllers to stabilize the system in close to second operating point OP2 (Low Speed), as well as the 

incapacity of LMI-off to attenuate the effect of perturbation   )2.0sin(01.0
d

  . 
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Figure 6. Closed loop system map (Low Speed). 
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Figure 7. Output dynamic in closed loop. 

 

 

Consequently in figure 8 and table 4, the LMI Off-Line controller provides an alternated effort signal, 

and LMI On-Line controller presents a robust stability and accepted time performances, in the detriment of 

control signal feasibility (pick signal), can cause mechanical damage. 
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Figure 8. Control effort dynamic in closed Loop. 

Concerning the rotational stall, vanishing time is satisfactory since the dimensional time t=ζR/Ud with  

R/Ud 1 (Fig. 9). 
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Figure 9. First Harmonic of Rotating Stall. 
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Additionally to the advantages of GA controller cited before regarding the table 3, table 4 proves that 

the combination of control parameters and objective function involved in this optimization technique, and the 

appropriate selection of these is a key point for feasibility and success in different operating conditions 

(Simulation 1 and 2).  

 

Table 4. GA and LMI results obtained for simulation 2 

 

 GA LMI-ON LMI-OFF 

Max Min Max Min Max Min 

1
u  0 -0.18 0 -1.05 0 -0.312 

2
u  0.659 0.612 0.634 0.542 0.71 0.612 

3
u  34 0.121 646.8

33 

0.044 3 0.121 

 Rejection time Rejection time Rejection time 

J  44 43 36 

 Response time Response time Response time 

U  9 12.75 262 

 

 

For the completeness of the proposed controllers compared to the achievement in [28], [30],[31], this 

study  investigated a review on the bifurcation diagrams, which formed a novel key track that involved 

parameters of speed dynamics can modify the transient response of the model. Here, we test this track by 

performing a set of time-domain simulations. Among the model parameters, the desired speed and the 

acceleration rate directly modify the speed dynamics. The initial speed and different operating points (from OP1 

to OP2) are other key factors which determine the range of speed variations and changes the system trajectories. 

Furthermore, we include the constraints on acceleration rate and throttle gain as the two main bifurcation 

parameters of the model to make this study novel. In addition to the mathematical simplicity (compared to 

controllers in [28],[30],[31]), the performances of the GA optimized controller in figure 6 and figure 8 make the 

proposed design very promising. 

 

 

6.  CONCLUSION  

 

This paper proposes a dedicated non-linear robust controllers for the studied model, which combines the 

advantages in terms of robustness, mathematical simplicity (compared to sliding mode control in references 

[28],[30] and [31]), the good convergence speed of constrained Genetic Algorithm.  

 

The proposed approach is applied to gas turbine subjected to two distinct aerodynamic instabilities 

rotating stall and surge, which are associated with bifurcation. MATLAB Simulink platform is used to compare 

and check the  three proposed controllers based on the same framework, to deal with non-linearity (Bifurcation), 

instabilities (surge and rotating stall) in a special operating conditions (Design Constraint, Physical limits). 

Overall, the simulation results indicate the capacity of the genetic algorithm to tackle with this kind of problem, 

due to constraint-handling in restricted solution area, instead to the LMI approach.  

 

The contribution of this paper is to incorporate the non-linear constraints on compressor acceleration 

and turbine torque, and the appropriate choice of these is a key for a feasible solution and accepted 

performances. Additionally, problem reformulation and robust objective function are involved in GA 

optimization, and appropriate selection of genetic parameters is another contribution.  The achieved robust 

performance of optimized GA controller in addressing to system uncertainties and disturbances shows its great 

applicability in a real prototype.     
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Nomenclature 

 

 : Annulus averaged mass 

flow   coefficient of axial 

velocity  

 : Total to static pressure rise 

coefficient 

n
J : The n mode squared 

amplitude of rotating stall  

 U : Rotor tangential velocity 

at mean radius  

d
U : Desired constant velocity  

B : Greitzer’s B-parameter  

T
 : Throttle Gain 

v
 : Close Coupled valve gain  

 : Non-dimensional time 

t : Dimensional (actual) time 

R : mean compressor radius 

 
c

: Compressor characteristic 

 
s

: Stall characteristic 

0c
,W,H  : Parameters of Compressor 

characteristic  

c
 : Non-dimensional Compressor torque 

t
 : Non-dimensional Turbine torque 

c
l ,

i
l ,

E
l : Effective flow passage non-

dimensional length of the compressor , 

Inlet duct and exit duct respectively. 

m : Compressor duct flow parameter 

21
, : Constant blade angles at rotor 

input  

 

a : Reciprocal time lag parameter 

of the blade passage 

s
a : Sonic velocity 

 : Viscosity  

21
, :Constants in Greitzer model  

b : Constant bBU   




d,d : Mass flow and pressure 

uncertainty 

dd
, :Time varying and mass 

flow pressure disturbance  

s
K : Gain defining the rate of the 

acceleration 

i
K :Controller parameters 
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