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ABSTRACT: In this paper, we study hypergeometric Bernoulli numbers and polynomials and use
recurrence relations to generate higher order convolution identities involving the sums of these
Bernoulli numbers. We consider cases where the Bernoulli number/polynomial are of various

order.
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INTRODUCTION

In this paper, we give a simple proof of the sums
of products of hypergeometric Bernoulli
numbers, B,(N) defined by the generating
function

~ xV/N!
G(x) _ex_1_x_x2/2!_..._xN_l/(N—l)!
_ ZBn(N)xn (1.1)
n!
n=0

Throughout this paper we assume that N is a
positive integer. Observe that when N = 1, this
reduces to the classical Bernoulli numbers, that is
B,(1) =B,. In his papers[5],[6],[7] F. T.
Howard commenced the study of these numbers
whenN = 2. K. Dilcher in [1] and [2] has studied
these numbers and their sums and products. In
recent years, H. D. Nguyen and the second
author also studied these numbers and the
corresponding polynomials in [3] and [4]. In
2014, H. D. Nguyen and C. L. Cheong in [9]
have established some convolution results
involving these numbers. Our results are similar
to theirs but we arrive at our results from a
different approach.

Theorem 1.1. Let m be a positive integer. Then

D ) B B, )

ko+kq+—+km=

1
ml (=N)™ 4

m k
n
(k) ak—j,m(N: k)Bn—k (N)k!,

0

=07

where ay ., (N, j) are defined by
Pk,m(Nx X) = ZT:k ak.m(N:j)xj

and Py, (N, x) are polynomials given by
(D™ m - DINTT G )™
m

=) Pn,06M @)
k=0
Here G®(x) is the kth derivative of G(x).

PRELIMINARIES

In this section, we shall prove some
preliminary results needed to prove Theorem
1.1. We begin with

Lemma 2.1. The function G(x) given in (1.1)
satisfies the equations

N(G(x))* = (N — 0)G(x) — xG' (x)
And

(2.1)

2N2(G(0)° = [22% + (1 — 4N)x + 2N2]G(x) +
[3x2(13N)x]G’ (x)x*G" (x) 2.2)

Proof. To simplify notation, let

N-1

X
Ty_1(x) = Z F
k=0

Then from the quotient_rule, the fact that
Ty_1(x) = Ty_,(x) and algebraic manipulations,
we get
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xN-1 oy
=Dl @]~ R le” — Ty ()]
G (X) = [ex _ TN—1(x)]2
_N e —Ty_,(x)

= N G G 1 NG
=26 - 6W|1-Z6w)
where we have used
e —Ty_,(x) e*—Ty_1(x) +x"71/(N —1)!
eX —Ty_1(x) B eX —Ty_1(x)
N
=1+—G(x)
x

Rearranging the last line of the previous
equation, we get

N N
G'(x) = (; - 1) 6() - G,

Multiplying through by x and solving for
N[G(x)]? yields (2.1).

Differentiate both sides of (2.1) and multiplying
the resulting equation by - x, we get

—2NxG'(x)G(x) = xG'(x) = (N —x — 1)xG'(x)
+ x2G" (x). (2.3)

From (2.1), we have
—xG'(x) = N[G(x)]* = (N — x)G(x)
Now we use this in (2.3) too obtain

2NG(X)[NG(x)? — (N —x)G(x)] =
xG'(x) — (N —x — 1)xG'(x) + x%2G" (x)

Solving for 2N?G(x)? from the last equation and
some algebraic manipulations yield (2.2) and
completes the proof of the lemma.

We have the following generalization of the
above Lemma
Lemma 2.2. For the function G(x) given in (1.1)
and any positive integer m, we have

CalGEOI™ = Y PGP, 24
k=0

where
Cp = (—=)™mIN™

and Py 1, (N, x) satisfies the recurrence equation:

Py (N, x) m(x — N)Py 1 (N, x)

+ x[Pk’,m—l(N' x)Pk—l,m—l(N’x)] (2.5)

With initial conditions
Pem(N,x) = 0ifk > m.

Poo(N,x) =1 and

Proof. We prove the lemma by induction. First
observe that the recurrence relation (2.5) and the
initial conditions specified, we have

Pl‘l(N,x)Zx, Poll(N,x)zx_N
P,,(N,x) =x* Py,(N,x) =(1—3N)x + 3x?

Py, (N,x) = 2x* + (1 — 4N)x + 2N?

Thus, for m = 1, m = 2, the assertions are
proved in Lemma 2.1.

Suppose that (2.4) holds for some m > 1.
Then differentiating both sides of the equation,
we have

(m+ DCp[G)]™E" (x) =
Z?:O(Pk,m(N' x)G(k+1) (x)PIé,m(N' X)G(k) (X))

We now multiply both sides of this equation by
x and the fact that

xG'(x) = (N — x)G(x) — N(G(x))*
(which is a restatement of (2.1)) to rewrite the
above equation as

m+2

—(m+1)C,N(G(x))
=(m+1)C,(x — N)(G(x))

+ 3 (Pem@,206% D (0) + P (N, 2069 () )
k=0

m+1

Since Cp4q = —(m+1)NC,, and since by the
induction assumption

m
Cn(G0)™" =) Pm(W, 1069 x)
k=0
we obtain
Crns1 (GEO)™

= (m+ D —N) X Pem(N,x)G® (x) +
Yo (Pem (N, x)G*+D (x) + Py (N, x) 6P (x))

This can be expressed as
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m+2

Cmir-r%(G(x))

= (0n+ D = NP, 2)

k=0
+ %Py i (N, x)xPy_q 1 (N, x)) G® (x)
+ XPp (N, x)G™D (x)
Where we have used the initial condition
P_ym(N,x) =0. Finally, from the recurrence
relation (2.5) of Py, (N,x), it is immediate that
Pri1me1(N,x) = xPypm (N, x). Thus

m+1

= D P (N, 69 )
k=1

and this completes the proof of the lemma.

m+2

Cm+1(G(x))

Lemma 2.3. If B , are as given by (2.5), then

m

Pem(N,2) = ) @y, )/

j=k

(2.6)

where ay ,,(N,j) = 0 if
k>mk>j j>mk<0,j<0 2.7

andfor0 <k<j<m,

(N, ) = magm- 1 (N,j — 1) + (G -
mN)ay s (N, ) + Q-1 s (N, j = 1) 2.8)

Proof. @ We shall prove the lemma by
induction. For m =0 and m =1, the lemma
follows from (2.5) and assumptions following
that equation. So suppose the lemma is true for
m—1. From equation (2.5) and induction
assumption, we have

Pk,m(N' x)
=m(x — N)Pk,m—l(N’ x)x(Pli,m—l(N: x) +
Pk—l,m—l(N' x) )
=m(x = N) X7 am-a (N, )+

m-1 m-1
x Z jak,m—l(N;j)xj_l +x Z ak—l,m—l(N;j)xj
=k jek—1
m m—1
= ) MW = DX+ Ny (N, )
j=k+1 i=k

m—1 m
£ Jaema O3+ g g (N, = DY
j=k j=k

By (2,7), we have a;,(N,k—1)=0 and
Axm-1(N,m) = 0. We use this in the first and
second sums of the above to get

Pem(N, %) = X7t [mam-1 (N, j — 1) +
(G —mN)agm1(N,j) + @p_ym1(N,j — D]x

From (2.8), we see that Py, (N, x) has the form
stated in (2,6) and our lemma is proved.

A CONVOLUTION THEOREM FOR
HYPERGEOMETRIC BERNOULLI
POLYNOMIALS

The hypergeometric Bernoulli polynomials are
defined by

eXZxN /N1

G(x,2) = eX—1-x-x2/2!——xN-1/(N-1)!

_eXxN/NY i B, (N, z)

Ty (%) n!

x" (3.1)

n=0

Lemma 3.1. The function G(x,z) satisfies the
following differential equations

N(G(x,2))’
0G(x,2)
= (N —x+xz2)e*G(x,z) — xe"ZT (3.2)

2N2G(x,2)% =[x + 2(N — x + xz)?
—xz(N+1—x + x2)]e??G(x, z)
+ [3x24+ (1 -3N)x
0G (x,2)
dx

2
2 2xza G(.X',Z)
+x“e —
ax?

— 2x%z]e?*?

(3.3)

Proof. Differentiate (3.1) with respect to x to
get:
Multiplying (3.4) by xe** and rearranging terms
yields (3.2)

To prove (3.3), we differentiate (3.2) with
respect to x to get

G (x,
2NG(x,z) (gz 2) =[-x+z(N+1—x+x2z)]e*?G(x)
G (x,
+ (N - 1—x)exzﬂ
dx

076 (x,2)
—Xe T (35)
Multiplying (3.2) by 2NG(x, z), we get

2N2G(x,2)3 = 2(N — x + x2)e*?[NG(x, z)?]
0G(x,z)
— xe** |2NG(x, z)
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In this equation, we replace NG(x,z)? by the
right hand side of (3.2), 2NG(x, z)% by the
right hand side of (3.5), and simplify the

resulting equation to get (3.3), thereby
completing the proof of the lemma.

Remark 3.1. We observe that if we define
Cx(N,z) by

k k
Cy(N,z) = (1 _N) By (N, z) +N(z —1)By_1(N,2)

then (3.2) can be expressed as

N(G(x,2))? = (Z C.(N,z) J;—T) e~?
n=0

It was shown by Nguyen and Cheong in ([10])
that the {C,(N,2)} is an Appell sequence. They
used this to prove the following theorem. But
we shall give a proof based on Lemma 3.1.

Theorem 3.1. The polynomials B, (N,z) satisfy
the convolutions

(i) B, 2By (N, 2)

NgE

=

3 ([(1- DB+ -
DBy_,(N, z)] 2"k

(3.6)

and

n
2N? Z (ky ey, k) Bra (N, 2B, (N, 2) B (N, )

ky+ko+ks=n

(Z) 2n=kzn=k 4, (N, z) (3.7)

A (N, k)

=k(k —1)(z%> =3z + 2)By_,(N,z) + [(k(3N +
1) — 2k?)z + 3k? — 2k(2N + 1)]B,,_,(N, k) +
(2N? — 3kN + k?)B, (N, z) (3.8)

Here we define B, (N,z) = 0 for k < 0.

Proof. We use the series representation of
G(x,z) given in (3.1) to get

N(G(x,2))" =

N30 (Zieo (1) BN, DBV, 2) 5 (39)

On the other hand, using

and

G(x,2) i Bun(V,2) ,

ox n!
n=0
(o)
n
n

n!
n=0

exz —

and applying the Cauchy product formula for
product of series and some rearrangement we
get

0G(x, z)
[(N—x+xz)G(x,z)—x ]

ox
= (z;-;;o[n(z — DB,1(N,2) + (N —
B (N, )] %) (Ese S a™)

= S0 (o () 2"l = DBy (V,2) +

(N -

KB (N, 2)]) = (3.10)
The recurrence in (3.6) follows from
(3.2),(3.9), and (3.10).
To prove (3.7), we rewrite (3.3) as
2N2G(x, 2)*
= [(ax2 + bx + ¢c)G(x,z) + (dx? + ex) % +
2 026(x,z) 2xz

ot (3.11)
where
a=2>2-3z+2, b=((3N-1)z+1—4N,
c=2N%, d=3-2z, e=1-3N (3.12)

Substituting the power series representation for
e?*? G (x,z), and its derivatives in (3.11), we get

[oe)
n=0 \ k;+k,+kz=n

- (00, 2) (32022 e

where

d, =n(n—-1)aB,_,(N,z) = [nb+nn—
1)d]B,_1(N,z) + [c + ne + n(n — 1)]B,(N,z) (3.14)

We now carry out the power series
multiplication in (3.13), use (3.12) and (3.14) in
the resulting equation, and compare coefficients

n
Z (kb k,, k3) Bkl(N;Z)BkZ(N;Z)Bk3(N.Z)

Ji

n
|
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(after some simplifications) to obtain (3.7). This
completes the proof.

A CONVOLUTION THEOREM FOR
HYPERGEOMETRIC BERNOULLI
NUMBERS

We begin this section by stating a consequence of
Lemma 3.1. First note that for N = 1, B,,(1) = B,
is the nth Bernoulli number and from (3.1) we
obtain

n— 1

Bk ok = —(n+1)B,
k=2

which is Euler’s Identity.

For N =2, we have the following theorem,
which was proved by Kamano in [8].

Theorem 4.1. The hypergeometric Bernoulli
numbers B,(2) given by(1.1), satisfy the
convolution formula

122 (30) Be(2)By-ic(2)

= —n[Bu(2) +3Bys ()] (4.1)
Proof. This follows from applying the Cauchy
product formula for infinite series,(3.1), and the
fact that By(2) = 1 and B,(2) = —1/3.

Theorem 4.2. The hypergeometric Bernoulli
numbers of order N satisfy the relation

n 720 Bic; (V)
Lkg+-tkm=n (ko km) TR
(-1)m ag—im(N,k)
= mIN™ Zk OZ] 0 (jlmk)l n—](N) (42)
Proof. We begin by substituting the series

representation of G (x):
(o)

x?’l
6() =) B
n!
=0
and use this in (2.4) to get

(S0 B )" =

T o (S Qrm (N, K0T ) T B (V) £ (4.3)

Dividing by m! (—N)™ and expanding the left
hand side of (4.3) gives

o XM m+1
(Zn:O Bn (N) ;)
BkO(N)---Bkm(N)) n
Ko!-...km!

= Z:f:o (Zk0+-~+km=n

= Yn=o [Zko+"'+km=n (ko, n, km) n!
(4.4)

For the right hand side of (4.3), we have

(_ 1)m = - , i XM
m' Nm Zak,m(Nl k)x] ZBn+k(N) m
. k=0 \j=k n=0
D" oo ~ Brak(V) )
= o 2n=0 Lm0 2=k Gem (N, 1) %xnﬂ

G i i @O DBrcN)

n!

© n k
_ =" z z Z ay—jm(N,k)By_;j(N)
IN™ — k!
m!N Sa\= (n—=k)!
Now, by (2.7), we have that a;,,(N,j) = 0 for

j < k. Then we note that the above sum can be
expressed as

Zk O(Z kakm(N ])x])Zn OBn+k(N)xn

n!

. ) _k .
OZ;( o ajm(Nn )Bn+j(N)) X" (45)

(n—k)!

z;’;o(

The theorem follows from comparing the
coefficients in (4.4) and (4.5).

We now present the rest of the proof of the
main result, Theorem 1.1.

Proof. Looking at the right hand side of (4.2),
we have

ak_j(N,k)

Thea Do G By )
n'kl'a,_;(N,k)
ZZ n'k'gnj ! By (N)
=0 j=0
= S0 B (1) 2 By ()

Removing the common factor of % from both
sides yields the theorem.

A CONVOLUTION THEOREM FOR
HYPERGEOMETRIC BERNOULLI
NUMBERS OF DIFFERENT ORDERS
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In this section we give a convolution formula for
hypergeometric Bernoulli numbers of different
orders. We begin with an important lemma.

Lemma5.1. Let

xN /N

Gy = o T = L anTf!N)xn (6.1
IfN; <N, <+ <Ny, then
Dr () [ g1 Gy, (X)) =
D=1 Pe(0) Gy, (%), (5.2)
where
Dp(x) =
Misicjzm |[Twy-1 () = Ty (] (53)
and
P = (1™ (G Masicyom T (0 -
ij#
] (54)

Here the primes in X' and I1' indicate that the
sum and product are from 1 =1 to | = m with
1+k.

Proof. Letw,y,,z, and 4, (k =1, ...,
complex numbers. If

m) be

m m
Vi _z Ay
w—Z w—Z
k=1 k k=1 k

then a simple calculation shows that

||

A, = ——k=17k
T jex(ze — 2)

Now, assume that N; < N, <--<N,. Let

k
Vi = ; -, w = e*, and z = Ty, _1(x). Then
k!
Ap(x) = Ay
m
-\L1% ;
it M [T (Taer () = T s ()

On the other hand, with D,,(x) as in (5.3), we
have

Dy (X)Ag(x) =

(H];:kN )[( nm kl_[1<]<k<m (TNk 1(x) —

i,j£k

TN]-—1(X))]

But this is p, (x) as defined in (5.4). The lemma
follows from the fact that

l—[ w—z, ﬁ Gi ().
k=1

The cases for m = 2 and m = 3 are the contents
of the following two corollaries.

Corollary 5.1.
N; < N,, then

If Gy(x) is given by (5.1) and

[TN2—1(x) - TN1—1(X)]GN1 ()G, (x)

Gy () — 5 Gy, () (5.5)

Corollary 5.2. If Gy(x) is given by (5.1) and
N; < N, < N3, then

D3(X)GN1(X)GN2 (x)GN3 (x)
= p1 () Gy, (x) + p2(x) Gy, (x) + 3 (X) G, (x),

Where

D3(0) = (Tyyo1 () = Ty -2 () (Toiga () —
TN2—1(x)) (TN2—1(X) - TN1—1(x))

p(x) = # (TN3_1(x) - TN2—1(x))
RO

xN11!N33 (TN3 1(0) — TNl—l(x))

B

o (TNZ 1(x) — TN1—1(x))

The following theorem was proved by Nyugen
and Cheong in [9] by a method different from
the one given here. It is easy to see that this
follows from Corollary 5.1.

Theorem 5.1. The polynomials B,(N, z) satisfy

the convolutions
If N; < N,, then for N; < n <N, — 1, we have

e 22 () (" ; k ) BN DB (V)
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= (v,) Bao, (V) (5.6)
and for n > N,, we have

St () ("7 ) BB ()

(,i ) Baoay (N2 = (7, ) Bacy (W) 5.7)

Proof. We use the series representation in (5.1)
and the fact that

Np-1

TN2—1(X) - T1v1—1(x) = Z

k=N,

Xk
k!
to write

[TN2-1(X) - TN1—1(X)]GN1 ()G, (x)

Np—1 oo

C Xn+k
n
B Z Z k!n!
k=N; n=0
szli i
k=N, n=k
Np—1 n
o x"
= (1) &t 5
n=N; \k=N;

+30 (B () Cm) S 59

where
n
n
Cn =" (¢) BBy (V).
k=0
On the other hand
Ny Ny
N,! GNZ (x) — GN1 (x)
n+N1 n+N,

Z Ba(N) T
Z (,) n_Nz(Nl)’;—T

n=N,

n—N1 (Nz) F -

z e

n

_Zn Nz( ) n— Nl(Nz) +Zn Nz [(N1
(1\7/12) n_NZ(Nl)]Z

) Bn—N1 (Nz) -
(5.9)

It is now clear that (5.6) and (5.7) both follow
from (5.2), (5.5), (5.8), and (5.9).

A similar theorem can be shown using similar
methods for Bernoulli polynomials of different

order. Lemma 5.1 can be extended the same,
proof and all. The difference comes when
recognizing that
xz N;
pr(x,z) = (—1)™ke*2 (H’Nl.) 1_[ [TN —1(x)
1<i<jsm,
i,j#k

- TNi—l(x)] .
When m = 2, this yields
DZ(X)GNl(x Z)GNZ(X Z)

Xz, Nq

= % Gy, (x,z) — GNl(x z) (5.10)

Here is a consequence of (5.10).

Theorem 5.2. If N; < N,, then for N; < n <
N, — 1, we have

>Sor;

k=N; j=0

)B (N1, 2)By_re_; (N, 2)

n

B Z (2) (1]\;1> Bie—n,(Np, 2)z" ¥

k=Ny

(5.11)

and for n = N,, we have

N2—1n-k

2. 26"

k=N, j=

) 8,0, 2By (.2

n\ [k -
fe= =Ny (k) (Nl) Bk_Nl(NZ’Z)Zn -

tos (1) (3, ) B 2027 (512)

Proof. First note that

ex x XZ AN
N,! GNz(x z) — GNl(x:Z)
£+ £+
ZB(Nz.z)N, e “ZB(NZ,z)N, ,
= Yn=0Z" ;Zn=N1(N1) n—Nl(NZtZ)Z_
. n . n n
Yn=0Z" %Zn:Nz (Nz) By—n, (N1, 2) %
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No—-1 n | d(n)
X n! n
n-— Nl(NZfZ)Zn k— ](n) = Z
Z Z ) Je ! (n = Ny + N2)IN ! N3t L (&)
i !
+ Z Z (Z) (161) By—n, (N, 2)z"* mBn—k(NZ) nzN; — N,
n=N, | k=N,
n
ny [ k X" K(n)
=2 (D) () Bem 2 | , ()
k=N, _ n! Z (n)
. (n_N3 _N2 +2N1)N1!N2!k— k
On the other hand, from Lemma 5.1, (with Kl =0
m = 2 in (5.2)), we have mBn_k(Ng) n = N3 + N, — 2N,.
D, (x)GNl(x)GNZ(x) = P1(x)GN1 (x) — 2 (x)GNZ (). Then

We now use (5.2), (5.3),(5.4), and (5.10), simple
but tedious algebraic manipulations, and
comparison of coefficients of powers of x of the
resulting power series yield the theorem.

In exactly the same manner, we can prove the
following consequence of Corollary 5.2.

Theorem 5.3. Suppose N; < N, < N3. Define
k!
i <k < _ —
a = (N1 n k)! if 0 = k = N3 N1 1
0 if k>N;—N, —1
k!
—— if 0<k<N;—N,-1
B = (N + )t ’ 2
0 if k>N;—N,—1
k!
— if <k<N,—-N;-1
ve = (Mo 1 OskERh
0 if k>N,—N;—1

Let a, b, ¢, d, e be functions of n defined by

n if 0<n<2N;—2N, -3
a(m) = {21\/3—21\/1—3 if n>2N;—2N, -3
b = {y. i? asne
cm = {N3 N, — 1? ?1?11/5 —Nﬁ/z_—Nf o
LI T I
SR PP S A B
where

N* = min{N, — N; — 1, Ny — N, — 1}.
Finally, define ], and K by
1 & k!
n !
I(n) = AT Z( )mBn—k(Nl);

) vb(m)
DISSPD AL A Y

1(n) if 0<n<N;—N,—1
=<I(n) —J(n) if N3—N,<n<N;+N,—N;—1

IM)—Jm) +Km) if n=N;+N,—2N;
(5.13)

Remark 5.1. One can exploit the results of
Lemma 5.1 to get more general convolution
theorems. But we found this to be cumbersome
but routine and elaborate calculation similar to
the ones given in Theorems 5.1 and 5.2.
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Appendix

Here are the polynomials Py ., (N, x) for m = 1, ...,6. Note that by (2.6) the associated ay, ,, (N, j) are
here as well. For example, for P 3(N, x), a; 3(N,2) = 10 — 22

m=1 Pyy = —N+x
P, = x
Py, = 2N%+(1-4N)x + 2x?
m=2 P, = (1-3N)x+3x?
Py, = x?
Py; = —6N3+(1—7N+18N?)x+ (7 — 18N)x? + 6x2
B P; = (1—6N+11NH)x+ (10 — 22N)x? + 11x3
m=3 Py = (3—6N)x?+6x3
Py = x°
p = 24N*+(1— 11N +46N? — 96N*)x + (18 — 92N + 144N*)x? + (46 — 96N)x*
o4 +24x*
Py = (1—10N+35N%—50N3)x + (25— 115N + 150N?)x? + (80 — 150N)x> + 50x*
m=4 P,y = (7—30N +35N2)x? + (40 — 70N)x® + 35x*
Py, = (6—10N)x®+10x*
Py = x*
P —120N® + (1 — 16N + 101N? — 326N3 4+ 600N*)x + (41 — 329N + 987N? — 1200)x?
08 +(228 — 978N + 1200N?)x3 + (326 — 600N )x* + 120x°>
P = (1 —15N + 85N? — 225N3 + 274N*)x + (56 — 416N + 1096N? — 1096N 3)x?
s +(383 — 1517N + 1644N?)x3 + (646 — 1096N)x* + 274x5
m=5 P,s = (15— 105N + 255N2 — 225N%)x2 + (180 — 675N + 675N?)x% + (420 — 675N)x* + 274x5
Pys = (25—90N +85N%)x3 + (110 — 170N)x* + 85x°
Pys = (10—15N)x*+ 15x°

Pss = x°
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720N® + (1 — 22N + 197N? — 932N3 + 2556N* — 4320N°%)x

+(88 — 1000N + 4536N? — 10224N3 + 10800N +)x?

+(930 — 6276N + 15336N2 + 10444N%)x? + (2672 — 10224N + 10800N2)x*

+(2556 — 4320N)x5 + 720x°

(1—21N + 175N?% — 735N3 + 1624N* — 1764N°)x

+(119 — 1274N + 5299N? — 10444N°3 + 8820N*)x?

+(1526 — 9674N + 21588N2 — 17640N%)x* + (5110 — 18340N + 17640N2)x*

+(5572 — 8820N)x® + 1764x°

(31 — 315N + 1225N2 — 2205N° + 1624N*)x? + (686 — 4151N + 8701N2 — 6496N3)x>
+(3143 — 10787N + 9744N?)x* + (4291 — 6496N)x® + 1624x°

(90 — 525N + 1050N? — 735N %)x® + (770 — 2555N + 2205N?)x* + (1505 — 2205N)x>
+1624x°

(65 — 210N + 175N?)x* + (245 — 350N)x° + 175x°

(15 — 21N)x> + 21x°

x6




