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ABSTRACT

In this paper, we introduce a new approach to study several notions of fuzzy geometry. This approach

uses a modi�ed de�nition of fuzzy points using connected and simply connected instead of convexity

on the study of fuzzy geometry. We have shown that the center of a fuzzy circle is a fuzzy point.
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Introduction

Zadeh in 1965 [21] initiated the theory of fuzzy
sets as a new mathematical tool for dealing with
uncertainties. The ideas on fuzzy geometrical no-
tions have been proposed by many researchers.
In 1997, Buckley and Eslami [3,4] introduced
some ideas on the construction of the basic fuzzy
geometrical entities in a mathematical frame-
work. An overview of fuzzy geometry and some
topological properties have been introduced later
in 1984 [17] and modi�ed in [1,18]. In [3,4] the
authors introduced the idea by conforming to
Zadeh's extension principle [20], using sup-min
combination of fuzzy sets. This concept was fur-
ther extended to de�ne fuzzy space geometry by
Qiu and Zhang [5].

Fuzzy geometry was further studied by Ghosh
and Chakraborty [9] in 2012. A new concept of
same and inverse points have been introduced in
this regard. De�nitions of Fuzzy line segment
and fuzzy line, which is obtained by extending
fuzzy line segment are introduced in four di�er-
ent forms by Chakraborty and Ghosh in [6]. The
idea of same points also rede�ned with a para-
metric expression in [5]. A detailed study on the
parametric and general form of fuzzy lines can
be found in [10].

Recently, Chakraborty and Das [8] have shown
that the intersection of two perpendicular fuzzy
lines is a fuzzy point where the fuzzy lines are
obtained by joining fuzzy points. Seçil O zek-
inci and Cansel Aycan [15,16] studied about a
detailed analysis of fuzzy hyperbolas and ellipses
in 2022. One of the most signi�cant steps for the
construction of fuzzy geometry was fuzzy points.
However, in the former de�nition of fuzzy points
the constraint that α-cuts of fuzzy points must be
convex subsets of R2. In this paper, we propose a
new de�nition for fuzzy points by replacing the
concept of convexity by connected and simply
connected using algebraic topology. We also ap-
ply this concept to study fuzzy distances, fuzzy
lines, fuzzy circles and their properties. Further,
in Ghosh and Chakraborty [11] the center of a
fuzzy circle is not in general a fuzzy point but we
have also shown that the center of a fuzzy circle
is a fuzzy point.

Now let us introduce the notation that will be
used in the rest of this paper. We will place a
"bar" over a capital letter to denote a fuzzy sub-
set of R or R2. So Ā, B̄, C̄,... all represent fuzzy
subsets of Rn, n=1,2. Any fuzzy subset is de-
�ned by its membership function. If Ā is a fuzzy
subset of R, we write its membership function as
µ(x|Ā), x ∈ R, with µ(x|Ā) in [0, 1] for all x ∈ R.
If P̄ is a fuzzy subset of R2 we write µ((x, y)|P̄ )
for its membership function with (x, y) in R2.
Unless and otherwise α-cut of any fuzzy subset
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Ā of R, written Ā(α) and I = [0, 1].

The arrangement of rest of the paper is given as
follows. In section , a brief preliminary of rel-
evant de�nitions along with some theorems are
presented. Section contains a new approach of
fuzzy point de�nitions, their illustrations with
examples and some results. Finally, Section 1
draws conclusion.

Preliminaries

De�nition 0.1. [19] Let X be a topological
space.

(1) A path in X from x0 to x1 is a continu-
ous map f : I → X such that f(0) = x0
to f(1) = x1.

(2) A topological space X is said to be path
connected if for every pair of points of X
there exist a path in X.

Theorem 0.2. [13] A subset of Euclidean n-
space is compact if and only if it is closed and
bounded.

De�nition 0.3. [19] Let f, g : X → Y be con-
tinuous maps. A homotopy between f and g is
a continuous map H : X × I → Y such that
H(x, 0) = f(x) and H(x, 1) = g(x) for all x in
X.
Notation: If f is homotopy to g, we write f ≃ g.

De�nition 0.4. [19] Let X and Y be topologi-
cal spaces and let y0 ∈ Y. The constant map at
y0 ∈ Y is the map C : X → Y with C(x) = y0
for all x in X.
A continuous map f : X → Y is nullhomotopic
if there is a constant map C : X → Y such that
f ≃ C.

De�nition 0.5. [19] A topological space X is
contractible if idX is nullhomotopic.

De�nition 0.6. [19] Let f be a path in X from
x0 to x1 and g be a path in X from x1 to x2. We
de�ne the composition f ∗ g of f and g to be the
path given by the equations

(f ∗ g)(s) =

{
f(2s) s ∈ [0, 12 ],

g(2s− 1) s ∈ [12 , 1].

De�nition 0.7. [19] Let X be a topological
space and x0 be a point of X. A path in X that
begins and ends at x0 is called a loop base at x0.
The set of path homotopy classes of loops based
at x0, with the operation * is called the funda-
mental group of X relative to the base point x0.
It is denoted by π1(X,x0).

Theorem 0.8. [14] Every convex set is con-
nected, but the converse is not true.

De�nition 0.9. [19] A topological space X is
said to be simply connected if it is a path con-
nected space and π1(X,x0) is trivial (one ele-
ment) group for some x0 ∈ X and hence for every
x0 ∈ X.

Theorem 0.10. [14] A convex set is simply con-
nected but not vice versa.

De�nition 0.11. [19] A subset A of Rn is star
convex if there is a0 ∈ A such that the line seg-
ment joining a0 to any point of A lies in A.

Theorem 0.12. [19] If A is star convex in Rn

then A is contractible.

Theorem 0.13. [19] If a topological space is
contractible then it is simply connected.

Theorem 0.14. [19] If a topological space is star
convex then it is simply connected.

Theorem 0.15. [19] A topological space X is
simply connected if and only if all paths in X with
�xed end points are homotopic.

De�nition 0.16. [12] Let X be a non-empty
set which should be evaluated with regard to a
fuzzy statement. Then the set of order pairs
Ā = {(x, µ(x|Ā)) : x ∈ X} is called a fuzzy
subset of X.

De�nition 0.17. [7] A fuzzy subset Ā of R is
called a real fuzzy number if its membership
function has the following properties:

(1) µ(x|Ā) is upper semi-continuous;
(2) µ(x|Ā) = 0 outside some interval [c, d]

and
(3) there are real numbers a and b so that

c ≤ a ≤ b ≤ d and µ(x|Ā) is increasing
on [c, a], µ(x|Ā) is decreasing on [b, d] and
µ(x|Ā) = 1 for each x in [a, b].

Remark 1. [3] If Ā be a fuzzy number then Ā(α)
is a bounded closed interval for any α ∈ [0, 1].

De�nition 0.18. [12] For a fuzzy subset Ā of
Rn, n = 1, 2, its α-cut is de�ned by:

Ā(α) =

{
{x : µ(x|Ā) ≥ α}, if 0 < α ≤ 1

Closure{x : µ(x|Ā) > 0} if α = 0.

Remark 2. [2] If α-cuts of a fuzzy subset are
closed sets, then their membership functions are
upper semi-continuous.
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De�nition 0.19. [3] A fuzzy point at (a, b) in
R2, written as P̄ (a, b), is de�ned by its member-
ship function which satis�es the following condi-
tions:

(1) µ((x, y)|P̄ (a, b)) is upper semi-
continuous;

(2) µ((x, y)|P̄ (a, b)) = 1 if and only if
(x, y) = (a, b) and

(3) P̄ (a, b)(α) is a compact and convex sub-
set of R2 for each α ∈ [0, 1].

De�nition 0.20. [11] Let C̄2 be a fuzzy circle
that passes through three fuzzy points P̄1, P̄2 and
P̄3. The center of C̄2, C̃, can be de�ned by its
membership function as µ(c|C̃) = sup{α: where
c is the center of a circle that passes through the
same three points on P̄1, P̄2 and P̄3 with mem-
bership value α}.

Theorem 0.21. [11] Let C be the center of a
fuzzy circle C̄2 that passes through three fuzzy
points P̄1, P̄2 and P̄3. Then for each α ∈ [0, 1],

(1) C̃(α) = {c: where c is the center of a
circle that passes through the same three
points in P̄1(α), P̄2(α) and P̄3(α)},

(2) if no pair of the same points in P̄1, P̄2

and P̄3 are collinear, then C̃(α) is a com-
pact and connected set.

Remark 3. [11]

i. For a fuzzy circle, its α-cuts must
be closed, connected, and arcwise con-
nected. However, α-cuts might not al-
ways be convex.

ii. The center of a fuzzy circle that passes
through three fuzzy points might not be
a fuzzy point. However, the fuzzy center
satis�es all of the properties of a fuzzy
point, except the convexity for α-cuts.

iii. The α-cuts of the center of a fuzzy circle
that passes through three fuzzy points is
star convex.

Fuzzy Points

De�nition 0.22. A fuzzy point at (a, b) in R2,
written as P̄ (a, b), is de�ned by its membership
function which satis�es the following conditions:

(1) µ((x, y)|P̄ (a, b)) = 1 if and only if
(x, y) = (a, b) and

(2) P̄ (a, b)(α) is a compact, connected and
simply connected subset of R2, for each
α in [0, 1].

De�nition 0.23. Let d denotes the usual Eu-
clidean distance metric on R2. We now de�ne
the fuzzy distance between fuzzy points P̄1 and
P̄2. Let Ω(α) = {d(u, v) : u ∈ P̄1(α), v ∈ P̄2(α)}.
The fuzzy subset D̄(P̄1, P̄2) of R is de�ned by
D̄(P̄1, P̄2)(r) = ∨{α : r ∈ Ω(α)},∀r ∈ R.

Theorem 0.24. Let P̄1 and P̄2 be fuzzy points.
Then D̄(P̄1, P̄2)(α) = Ω(α) for all α in [0,1].

Proof. First we show that D̄(P̄1, P̄2)(α) = Ω(α)
, 0 < α ≤ 1.

i. Let r ∈ Ω(α) = {r ∈ R|u ∈ P̄1(α), v ∈
P̄2(α) such that r = d(u, v)}.
From the de�nition of D, we have
D̄(P̄1, P̄2)(r) = ∨{θ : r ∈ Ω(θ)} ≥ α.
Thus r ∈ D̄(P̄1, P̄2)(α). Hence, Ω(α) is a
subset of D̄(P̄1, P̄2)(α).

ii. Let r ∈ D̄(P̄1, P̄2)(α). Then
D̄(P̄1, P̄2)(r) ≥ α. Put D̄(P̄1, P̄2)(r) =
β. Hence we have two cases either β > α
or β = α.

Case I: Suppose β > α.
Then there is δ ∈ [0, 1] with α < δ ≤ β .
Let t ∈ Ω(δ).
Then t = d(u, v) for some u ∈ P̄1(δ), v ∈
P̄2(δ) .
It follows that t = d(u, v) for some u ∈
P̄1(α), v ∈ P̄2(α).
Hence t ∈ Ω(α) . Therefore Ω(δ) is a
subset of Ω(α).
Hence D̄(P̄1, P̄2)(α) is a subset of Ω(α).

Case II: Assume that β = α
Let K = {δ : r ∈ Ω(δ)}. Then supK =
α = β = D(r). Hence there is a sequence
inK, say Sn which converges to α. Given
ϵ > 0 there is a positive integer N such
that α − ϵ < Sn for all n ≥ N . Now
if r ∈ Ω(Sn) for all n then r ∈ Ω(α − ϵ)
for ϵ > 0. Thus r = d(u, v) for some
u ∈ P̄1(α− ϵ), v ∈ P̄2(α− ϵ).This im-
plies that P̄1(u) ≥ α − ϵ and P̄2(v) ≥
α − ϵ. Since ϵ was arbitrary, P̄1(u) ≥ α
and P̄2(v)≥α . Thus r ∈ Ω(α) . There-
fore D̄(P̄1, P̄2)(α) is a subset of Ω(α) .
Hence D̄(P̄1, P̄2)(α) = Ω(α) for all α in
(0,1]. But D̄(0) = cl(

⋃
0<α≤1D(α)) =

cl(
⋃

0<α≤1Ω(α)) = Ω(0). So D̄(0) =

Ω(0) . Therefore D̄(α) = Ω(α) for all
α in [0, 1].

Corollary 0.25. D̄(P̄1, P̄2) is a fuzzy number.
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Proof. i. Since α-cuts of a fuzzy point are
compact subsets of R2, Ω(α) is a closed
and bounded interval for all α by theo-
rem 0.2. Let Ω(α) = [s(α), t(α)] for all
α ∈ [0, 1]. By remark 2 its membership
function is upper semi-continuous.

ii. Let Ω(0) = [c, d]. Then µ(d/D̄) = 0 out-
side [c, d].

iii. Let Ω(1) = a, where a =
d((a1, b1), (a2, b2)). We need to show that
D̄ is increasing from c to a and decreas-
ing from a to d. Since D̄(α) = Ω(α),
D̄(α) is a closed interval. Hence we
can write D̄(α) = Ω(α) = [l(α), r(α)].
Let α1 ≤ α2. Then we need to show
that Ω(α2) ⊆ Ω(α1). Let r ∈ Ω(α2) =
{d(u, v) : u ∈ P̄1(α2), v ∈ P̄2(α2)}. So
it follows that r ∈ Ω(α1) = {d(u, v) :
u ∈ P̄1(α1), v ∈ P̄2(α1)}, this is be-
cause P̄1(α2) ⊆ P̄2(α1), i = 1, 2. Hence
D̄(α2) ⊆ D̄(α1). Now since D̄(α) =
[l(α), r(α)] for all α, it follows that
[l(α2), r(α2)] ⊆ [l(α1), r(α1)]. This im-
plies l(α1) ≤ l(α2) and r(α2) ≤ r(α1).
So l is increasing and r is decreasing. But
Ω(1) = [a, a] = [l(1), r(1)] . Hence l is
increasing in [c, a] and r is decreasing in
[a, d] . That is l(α) is increasing from c
to a and r(α) decreasing from a to d. So
we obtain µ(d/D̄) is increasing on [c, a]
and decreasing on [a, d] with µ(d/D̄) = 1
at d = a. This concludes our argument
that D̄ is a fuzzy number.

Example 0.26. Let P̄1 be fuzzy point at (1,0)
with base (x−1)2+y2 = 1

4 and let P̄2 be a fuzzy

point at (3,0) with base (x− 3)2 + y2 = 1
9 . Then

D(P̄1,P̄2)(r) =
6r−7
5 for r ∈ [76 , 2].

Solution: Let P̄1 be a fuzzy point at (1,0) with
base (x − 1)2 + y2 = 1

4 and let P̄2 be a fuzzy

point at (3,0) with base (x − 3)2 + y2 = 1
9 . See

the �gure below.

Figure 1. Fuzzy Points P̄1 and P̄2

The equation of the right circular cone that de-
�nes P̄1 is given by (x − 1)2 + y2 = (12 − z

2)
2

and the equation of the right circular cone that
de�nes P̄2 is given by (x − 3)2 + y2 = (13 − z

3)
2.

Consider P̄1 : (x − 1)2 + y2 = (12 − z
2)

2. This

implies z = 1− 2
√

(x− 1)2 + y2.
Therefore,

P̄1(x, y)

=

{
1− 2

√
(x− 1)2 + y2, if (x− 1)2 + y2 ≤ 1

4

0, Otherwise.

So P̄1(α) = {(x, y) : P̄1(x, y) ≥ α}
={(x, y) : 1− 2

√
(x− 1)2 + y2 ≥ α}

={(x, y) : 1− α ≥ 2
√
(x− 1)2 + y2}

= {(x, y) : (x− 1)2 + y2 ≤ (1−α)2

4 }
That is; P̄1(α) = {(x, y) ∈ R2 : (x − 1)2 + y2 ≤
(1−α)2

4 } which is a disc center at(1,0) and radius

r = 1
2 − α

2 and similarly

P̄2(α) = {(x, y) ∈ R2 : (x − 3)2 + y2 ≤
(1−α)2

9 } which is a disc center at(3,0) and ra-

dius r = 1
3 − α

3 . So D(P̄1, P̄2)(r) = ∨{α : r ∈
Ω(α)} and Ω(α) = {d(u, v) : u ∈ P̄1(α), v ∈
P̄2(α)}.= [dmin, dmax], where dmin is the min-
imum distance between P̄1(α) and P̄2(α) and
dmax is the maximum distance between P̄1(α)
and P̄2(α). From geometry it is known that the
minimum (maximum) distance between points
on two discs lies between points on the line
connecting the center of the two discs. Thus
dmin = 3 − (13 − α

3 ) − (1 + (12 − α
2 ) =

7+5α
6 and

dmax = 3+(13−
α
3 )−(1−(12−

α
2 ) =

17−5α
6 . Hence
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Ω(α) = [7+5α
6 , 17−5α

6 ]. Thus, D(P̄1, P̄2)(r) =

∨{α : r ∈ [7+5α
6 , 17−5α

6 ]}. We know that for

α < β, we have [7+5α
6 , 17−5α

6 ] ≤ [7+5β
6 , 17−5β

6 ]. So

α is suppremum when 7+5α
6 = r, provided that

r ∈ [76 ,
12
6 ]. This implies α = 6r−7

5 . Therefore,

D(P̄1, P̄2)(r) =

{
6r−7
5 , ifr ∈ [76 ,

12
6 ]

0, Otherwise.

De�nition 0.27. Let P̄1 and P̄2 be fuzzy points
in the plane. De�ne

Ω3(α) =
{
(x, y) :

y − v1
x− u1

=
v2 − v1
u2 − u1

,

(u1, v1) ∈ p̄1(α), (u2, v2) ∈ p̄2(α)
}
,

for 0 ≤ α ≤ 1.

Then we let L̄3 denote the fuzzy subset of R2 de-
�ned by for all (x, y) ∈ R2.
L̄3(x, y) = ∨{α ∈ [0, 1]|(x, y) ∈ Ω3(α)}.

Theorem 0.28. L̄3(α) = Ω3(α), 0 ≤ α ≤ 1 for
α ∈ [0, 1].

Proof. The proof is similar to that of theorem
0.24.

Example 0.29. Let P̄1 be a fuzzy point at (1, 0)
with base (x−1)2+y2 = 1

9 and let P̄2 be a fuzzy

point at (3, 0) with base (x− 3)2 + y2 = 1
9 . Find

L̄3(0.5).

Solution: Let P̄1 be a fuzzy point at (1, 0) with
base (x−1)2+y2 = 1

9 and let P̄2 be a fuzzy point

at (3, 0) with base (x− 3)2 + y2 = 1
9 . Then the

equation of the right circular cone that de�ne P̄1

and P̄2 respectively are :

P̄1(x, y)

=

{
1− 3

√
(x− 1)2 + y2, if(x− 1)2 + y2 ≤ (13)

2

0, Otherwise

P̄2(x, y)

=

{
1− 3

√
(x− 3)2 + y2, if(x− 3)2 + y2 ≤ (13)

2

0, Otherwise.

Hence,
P̄1(α) = {(x, y) : 1− 3

√
(x− 1)2 + y2 ≥ α} and

= {(x, y) : (x − 1)2 + y2 ≤ (13 − α
3 )

2} which is a

disc centered at (1, 0) and radius (13 − α
3 ) and

P̄2(α) = {(x, y) : 1− 3
√

(x− 3)2 + y2 ≥ α}.
= {(x, y) : (x − 3)2 + y2 ≤ (13 − α

3 )
2} which is a

disc centered at (3, 0) and radius (13 − α
3 ).

We know that

L̄3(α) = Ω3(α)

=
{
(x, y) :

y − v1
x− u1

=
v2 − v1
u2 − u1

,

(u1, v1) ∈ p̄1(α), (u2, v2) ∈ p̄2(α)
}

⇒ L̄3(0.5) =
{
(x, y) :

y − v1
x− u1

=
v2 − v1
u2 − u1

,

(u1, v1) ∈ p1(0.5), (u2, v2) ∈ p2(0.5)
}

But P̄1(0.5) = {(x, y) : (x−1)2+y2 ≤ (13−
0.5
3 )2}

= B1

and P̄2(0.5) = {(x, y) : (x−3)2+y2 ≤ (13−
0.5
3 )2}

= B2

Thus

L̄3(0.5) =
{
(x, y) :

y − v1
x− u1

=
v2 − v1
u2 − u1

,

(u1, v1) ∈ B1, (u2, v2) ∈ B2

}
which is the set of all lines through any point
(u1, v1) ∈ B1, (u2, v2) ∈ B2. It is thin between
B1 and B2 but gets wider and wider as we move
along L̄3(1) in the x-axis.

Corollary 0.30. For α ∈ [0, 1], the α-cuts of L3

are closed and connected.

Proof. i. We need to show L3(α) closed.
Let α ∈ [0, 1]. We know that by theo-
rem 0.28 L̄3(α) = Ω3(α). So

Ω3(α) =
{
(x, y) :

y − v1
x− u1

=
v2 − v1
u2 − u1

,

(u1, v1) ∈ p̄1(α), (u2, v2) ∈ p̄2(α)
}
,

for 0 ≤ α ≤ 1 Since p̄1(α) and p̄2(α) are
fuzzy points, then the α-cuts are com-
pact. By theorem 0.2, the α-cuts are
closed and bounded. So it follows that
Ω3(α) is bounded and closed subset of
R2 for all α. Hence L3(α) is closed.

ii. We need to show that L3(α) is connected.
Suppose not. Let L3(α) is not connected.
This implies there exist a pair of dis-
joint non empty open sets of L3(α) whose
union is L3(α) .Since U and V are non
empty open set and union of open sets is
open , L3(α) = U ∪ V is open. But this
contradicts the fact that L3(α) is closed.
Hence L3(α) is connected.

Theorem 0.31. Let C be the center of C2 that
passes through three fuzzy points P̄1, P̄2 and P̄3.
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If no pair of the same points in P̄1, P̄2 and P̄3

are collinear then C is a fuzzy point.

Proof. We need to show X=C(α) is simply con-
nected.
Let f, g : I → Y such that f(0) = g(0) = x0 and
f(1) = g(1) = x1.
Consider the map H : I × I → X de�ned as
H(s, t) = (1− t)f(s) + tg(s) ∀s, t ∈ I.
So H(s, 0) = f(s) and H(s, 1) = g(s) and
H(0, t) = x0, H(1, t) = x1. Therefore H is a
homotopy between f and g. Hence by theorem
0.15, C(α) is simply connected. Thus C is a
fuzzy point.

Theorem 0.32. The α-cut of the center of the
fuzzy circle that passes through three fuzzy points
is contractible.

Proof. The proof directly follows from theorem
0.12 and remark 3.

Theorem 0.33. The α-cut of the center of the
fuzzy circle that passes though three fuzzy points
is simply connected.

Proof. The proof directly follows from theorem
0.14 and remark 3.

1. Conclusion

In this paper, we proposed a new de�nition of
fuzzy points. We applied this de�nition to study
fuzzy distance, fuzzy lines, fuzzy circles and their
properties. In the preliminaries from theorem 0.8
and theorem 0.10 it follows that every convex set
is connected and simply connected so the state-
ment using convex sets is stronger. Moreover,
from remark 2 and Theorem 0.2 if the α-cuts are
compact, we have noticed that the mapping is
upper semi-continuous. Therefore, our de�nition
of fuzzy point reduces the condition (1) of Buck-
ley and Islami de�nition of fuzzy point. Finally,
in Ghosh and Chakraborty paper the center of a
fuzzy circle is not in general fuzzy point but we
have also shown that the center of a fuzzy circle
is fuzzy point. Similarly, one can ask the same
question for other conic sections.
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