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Abstract. The notion of almost analytic extension has found numerous appli-
cations in various fields. This paper provides a comprehensive characterization
of ultradifferentiable functions by examining the existence of almost analytic
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1. Introduction

The construction of almost analytic extensions
has been explored by varios authors. In chapter
8 of Dimassi and Sjöstrand (1999), two different
almost analytic constructions were presented for
f ∈ C∞

0 . The first one is following Hörmander’s
approach, based on Borel’s construction.

f̃(x+ iy) =

∞∑
k=0

f (k)(y)

k!
(iy)kχ(λky),

where χ ∈ C∞
0 (R) equal to 1 near 0 and λk

tending to ∞ sufficiently fast. The other is the
construction introduced by Mather, Jensen and
Nakamura based on Fourier inversion formula: If
χ(x) ∈ C∞

0 (R) equal to 1 in a neighborhood of the
support of f.χ as above.

f̃(x+ iy) =

∫
R
e(x+iy)ξχ(yξ)f̂(ξ)dξ,

where f̂ is the Fourier transform of f .
These constructions have garnered significant at-
tention due to their potential applications in di-
verse fields. By extending analytic functions to
almost analytic ones, these constructions offer a
broader range of mathematical tools and tech-
niques for analysis and problem-solving. In recent
years, researchers have delved deeper into the in-
tricacies of these constructions, seeking to refine
and expand upon the existing methodologies. By

investigating the properties and limitations of al-
most analytic extensions, they aim to uncover new
insights and possibilities for their utilization in var-
ious domains.
The comprehensive almost analytic description of
ultradifferentiable classes can be traced back to
Petzsche and Vogt (2009). In Berhanu and Hailu
(2017), the authors discussed the local and mi-
crolocal characterization of Gevrey functions as
boundary values of almost analytic functions. A
natural extension of the Gevrey classes can be
achieved by considering a sequence of real num-
bers M = (Mj)j∈N that satisfy certain properties.
The objective of this study is to characterize ul-
tradifferentiable functions based on the existence
of almost analytic extentions. To accomplish this,
we utilize the higher dimensional version of the
inhomogeneous Cauchy integral formula to con-
struct almost analytic extension of ultradifferen-
tiable functions.
The structure of this paper is as follows: Section
1 deals with introduction. Section 2 presents the
definition of ultradifferentiable functions and ex-
plores some of their properties. In Section 3, we
establish the characterization of ultradifferentiable
functions in terms of the existence of almost ana-
lytic extensions.
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2. Ultradifferentiable functions and some
properties

We will start by recalling a sequence of num-
bers that possess certain properties as mentioned
in Jemal and Tadesse (2020). Consider a sequence
M = (Mj) consisting of positive real numbers that
satisfy the following conditions. (1) Initial Condi-
tions:

M0 = M1 = 1. (2.1)

(2) Non-quasianalyticity:

∞∑
j=1

Mj

Mj+1
< ∞. (2.2)

(3) Stability under differential operators: There
exists a constant A,H > 0, independent of j, k,
such that for all j, k ∈ N

Mj+k ≤ AHj+kMjMk. (2.3)

(4) Invariance under composition: For all j, k ∈ N
with 0 ≤ j ≤ k, we have(

k

j

)
Mk−jMj ≤ Mk. (2.4)

(5) Logarithmic convexity: For all j ∈ N

M2
j ≤ Mj−1Mj+1, (2.5)

and this in turn implies that for all j, k ∈ N

MjMk ≤ Mj+k. (2.6)

(6) Invariance under division: The sequence Q0 =

1 and Qj =

(
Mj

j!

) 1
j

for j ≥ 1 is increasing, that

is, for all j < k

Qj ≤ Qk. (2.7)

For the reader who are interested in delving deeper
into to this sequence and its properties, as well as
the subsequent function spaces, we highly recom-
mend referring to the papers Adwan and Hoepfner,
(2010), and Adwan and Hoepfner, (2015), Ko-
matsu, (1973) and references herein.
Here we remark that:

Remark 2.1. i) From (??), (??), and (??), it fol-
lows that
(7) Faá di Bruno: For all j, k ∈ N, if n = jk, there
is a constant C > 1, independent of n, so that

Mk
j ≤ CnMn−k. (2.8)

This condition is utilized when there is a require-
ment to apply the multi-variable Faá di Bruno for-
mula for calculating the derivatives of composition
of function.
ii) If M satisfies (??)and (??), then it satisfies the
following: For all j = 1, 2, . . .

Mj ≥ j!. (2.9)

Example 2.2. Let s > 1 be a real number and
choose

Mj = (j!)s.

Then M = (Mj) satisfies (??) to (??). If Mj = j!,
thenM = (Mj) satisfies all conditions except (??).

Definition 2.3. Let Ω ⊂ Rm be an open set and
(Mj)j∈N be a sequence of positive real numbers
that is increasing and satisfies certain properties
mentioned above. The ultradifferentiable (Denjoy-
Carleman) spaces, denoted as EM (Ω), is defined as
the set of all functions f in C∞(Ω) that satisfies
the following property: for each K ⊂⊂ Ω there
exist a constant C > 0, depending on K and f ,
such that

|∂αf(x)| ≤ C|α|+1M|α|, ∀α ∈ Nm
0 , ∀x ∈ K.

(2.10)

Example 2.4. Let s > 1 be a real number and

Mj = (j!)s.

Then EM (Ω) = Gs(Ω) denotes the s− Gevrey
space. If Mj = j!, then EM (Ω) = Cω(Ω) (the
space of real analytic functions).

Example 2.5. (For more examples, see Rainer,

(2009)) a) Let q > 1. Put Mj = qj
2

, j ∈ N. The
corresponding EM functions are called q−Gevrey
regular. Then M = (Mj) is non-quasianalytic.

b) Let δ > 0 and Mj =

(
log(j + e)

)δj

for j ∈ N.

Then M = (Mj) is quasianalytic for 0 < δ ≤ 1
and non-quasianalytic for δ > 1.

Note that if M = (Mj) and N = (Nj) sat-
isfy Mj ≤ CjNj , ∀j and a constant C, then
EM (Ω) ⊂ EN (Ω). The converse is true as well
by the logarithimic convexity assumption. In par-
ticular, if f ∈ Gs(Ω) and s ≤ t, then f ∈ Gt(Ω).
Thus G1 ⊂ Gs, ∀s ≥ 1.

3. Ultradifferentiable functions and
almost analytic extensions

We begin the section by defining the M− al-
most analytic extensions.

Definition 3.1. Let Ω ⊂ Rm be an open set and
f = f(x) ∈ EM (Ω). A function F = F (x, y) ∈
EM (Ω× (−1, 1)m) is said to be an M− almost an-
alytic extension of f if the following holds:
i) F (x, 0) = f(x) for all x ∈ Ω; and
ii) for all (x, y) ∈ Ω × (−1, 1)m and for all N =
1, 2, . . . there exists a constant C > 0, indepen-
dent of N , such that, for all j = 1, . . . ,m it holds∣∣∣∣ ∂F∂zj (z)

∣∣∣∣ ≤ CN+1

N !
MN |y|N

where ∂
∂zj

= 1
2
( ∂
∂xj

+ i ∂
∂yj

).
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We will use the following Faá di Bruno general-
ized formula to prove a lemma in this section and
in the subsequent section.

Theorem 3.2 ([?], Corollary 2.10). Let α ∈ Nm
0

and h(x1, . . . , xd) = f(g(x1, . . . , xd)) with g ∈
Cα(Ux0) and f ∈ C|α|(Vy0), where y0 = g(x0),
and Ux0 ⊂ Rd and Vy0 ⊂ R open neighborhoods of
x0 and y0, respectively. Then

∂αh =

|α|∑
r=1

∂rf
∑

p(α,r)

(α!)

|α|∏
j=1

(∂αjg)kj

kj !(αj !)kj
,

where

p(α, r) = {(k1, . . . , k|α|;α1, . . . , α|α|)

for some 1 ≤ s ≤ |α|, ki = 0 and αi = 0

for 1 ≤ i ≤ |α| − s; ki > 0 for |α| − s+ 1 ≤ i ≤ |α|;
and 0 < α|α|−s+1 < . . . < α|α| are such that

|α|∑
i=1

ki = r,

|α|∑
i=1

kiαi = α}.

In particular, we have (see [?], page 515) that
there exist C > 0 such that

r!
∑

p(α,r)

|α|∏
j=1

1

kj !
=

(
|α| − 1

r − 1

)
≤ C|α|. (3.1)

Lemma 3.3. Let α ∈ Nm
0 , x ∈ Rm \ {0} and

h(x) = |x|−2m. Then there exist C > 0 such that

|∂αh(x)| ≤ C|α|+1(m+ |α| − 1)!|x|−2m−|α|.

Proof:
Let

f(t) = t−m, g(x) =

m∑
j=1

x2
j

so that h(x) = f(g(x)). We will use Faa di Bruno
formula to compute this derivative, that is,

∂αh(x) =

|α|∑
r=1

f (r)(g(x))
∑

P (α,r)

α!

|α|∏
j=1

(∂αjg)kj

kj !(αj !)kj
,

where

p(α, r) = {(k1, . . . , k|α|;α1, . . . , α|α|)

for some 1 ≤ s ≤ |α|, kj = 0 and αj = 0

for 1 ≤ j ≤ |α| − s; kj > 0

for |α| − s− 1 ≤ j ≤ |α|; and
0 < α|α|−s+1 < . . . < α|α| are such that

|α|∑
i=1

kj = r,

|α|∑
j=1

kjαj = α}.

Now f ′(t) = −mt−m−1, f ′′(t) = −m(−m −
1)t−m−2 and in general

f (r)(t) = (−1)rr!

(
m+ r − 1

r

)
t−m−r

= (−1)r(m+ r − 1)(m+ r − 2) . . .mt−m−r.

Let αj = (α1
j , . . . , α

m
j ), j = 1, 2, . . . , |α|. Then

∂αjg(x) = ∂
|αj |

∂x
α1
j

1 ...∂x
αm
j

m

g(x) = 0 except when αj =

ej = (0, . . . 1, 0 . . . , 0) in that case it is 2xj and
when αj = 2ej the derivative is 2.

Thus when αj = ej from
∑|α|

j=1 kj = r and∑|α|
j=1 kjαj = α we have |α| = r, α = (k1, . . . , k|α|).

When αj = 2ej , we have |α| = 2r and α =
2(k1, . . . , k|α|).
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Thus, there are nonzero terms only when r = |α| and 2r = |α|. Hence, using the fact that

( |α|
2
)!
(m+

|α|
2

−1
|α|
2

)
≤ |α|!

(
m+|α|−1

|α|

)
, we have

|∂αh(x)| ≤ |α|!

(
m+ |α| − 1

|α|

)
|x|−2m−2|α|

∣∣∣∣ ∑
k1+...+k|α|=|α|

k1! . . . k|α|!

|α|∏
j=1

(2xj)
kj

kj !

∣∣∣∣
+ |α|!

(
m+ |α| − 1

|α|

)
|x|−2m−|α|

∑
2k1+...+2k|α|=|α|

(2k1)! . . . (2k|α|)!

|α|∏
j=1

(2)kj

kj !(2!)kj

= |α|!

(
m+ |α| − 1

|α|

)
|x|−2m−2|α|2|α|

∣∣∣∣x(k1,...,k|α|)

∣∣∣∣ ∑
k1+...+k|α|=|α|

1

+ |α|!

(
m+ |α| − 1

|α|

)
|x|−2m−|α|

∑
2k1+...+2k|α|=|α|

(2k1)! . . . (2k|α|)!

|α|∏
j=1

1

kj !

≤ |α|!

(
m+ |α| − 1

|α|

)
|x|−2m−|α|

(
2|α|

∑
k1+...+k|α|=|α|

1 + |α|!
∑

2k1+...+2k|α|=|α|

|α|∏
j=1

1

kj !

)

≤ |α|!

(
m+ |α| − 1

|α|

)
|x|−2m−|α|

(
2|α||α|+ C|α|

)
from (??)

≤ |α|!

(
m+ |α| − 1

|α|

)
|x|−2m−|α|

(
22|α| + C|α|

)

≤ C|α|+1|α|!

(
m+ |α| − 1

|α|

)
|x|−2m−|α|

≤ C|α|+1(m+ |α|+ 1)!|x|−2m−|α|.

Theorem 3.4. Let Ω ⊂ Rm be an open set.
f ∈ EM (Ω) if and only if there exist F (x, y) ∈
EM (Ω× (−1, 1)m) such that
(1) F (x, 0) = f(x) on Ω and

(2)

∣∣∣∣ ∂F∂zj
(z)

∣∣∣∣ ≤ CN+1

N !
MN |y|N , ∀j = 1, 2, . . . ,m

on Ω × (−1, 1)m for some constant C > 0, where
zj = xj + iyj.

Proof:
Suppose there exist F = F (x, y) ∈ EM (Ω ×
(−1, 1)m)) such that
(1) F (x, 0) = f(x) on Ω and

(2)

∣∣∣∣ ∂F∂zj
(z)

∣∣∣∣ ≤ CN+1

N !
MN |y|N , ∀j = 1, 2, . . . ,m on

Ω× (−1, 1)m for some constant C > 0. (Of course
it suffice to assume that F ∈ C1(Ω × (−1, 1)m)).
We will show that f ∈ EM (Ω). It suffice to show
that f ∈ EM (Br) for each sufficiently small ball
in Ω. Let B2r = {x ∈ Ω : |x| < 2r} such that

B2r ⊂ Ω. Let F (x, y) be as given above on a neigh-
borhood of the closure of Ωr = B2r ×Br. We may
assume that F (x, y) = 0 for y ∈ Br \ (−1, 1)m.
Set ω(z) = dz1 ∧ . . . ∧ dzm. We will identify Cm

with R2m. For k = 1, . . . ,m, let

ωk(z) = (−1)k−1dz1∧. . .∧dzk−1∧ ˆdzk∧dzk+1∧. . .∧dzm,

where dzk is removed. Let σn denotes the area of
the unit sphere Sn−1 in Rn.

Then for each x ∈ Br, from the higher dimensional version of the inhomogeneous Cauchy Integral
Formula, we have

f(x) = F (x, 0) =

2(2i)−m

σ2m

∫
∂Ωr

F (w)

m∑
k=1

(wk − xk)|w − x|−2mωk(w) ∧ ω(w)

− 2(2i)−m

σ2m

∫
Ωr

m∑
k=1

∂F

∂wk
(w)(wk − xk)|w − x|−2mω(w) ∧ ω(w)

= f1(x) + f2(x).
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Since f1(x) is real analytic on Br, f1 ∈ EM (Br). It remains to show that f2 ∈ EM (Br).
Let α = (α1, . . . , αm). Then

∂αf2(x) = −2(2i)−m

σ2m

∫
Ωr

m∑
k=1

∂F

∂wk
(w)∂α

x

[
(wk − xk)|w − x|−2m

]
ω(w) ∧ ω(w).

For x ̸= w,

∂α

[
(wk − xk)|w − x|−2m

]
=
∑
β≤α

(
α

β

)
∂β
x (wk − xk)∂

α−β
x [|w − x|−2m]

= (wk − xk)∂
α
x [|w − x|−2m]− α!

(α− ek)!
∂α−ek
x [|w − x|−2m]

= (wk − xk)∂
α
x [|w − x|−2m]− αk∂

α−ek
x [|w − x|−2m].

Using Lemma ??, we have

|∂α

[
(wk − xk)|w − x|−2m

]
| ≤

|w − x||∂α
x [|w − x|−2m]|+ αk|∂α−ek

x [|w − x|−2m]|

≤ (m+ |α| − 1)!

(
C|α|+1|w − x||w − x|−2m−|α| + αkC

|α|−1|w − x|−2m−|α|+1

)
≤ C|α|+1(m+ |α| − 1)!|w − x|−2m−|α|+1.

Therefore,

|∂αf2(x)| = −21−m

σ2m

∫
Ωr

m∑
k=1

∣∣∣∣ ∂F∂wk
(w)

∣∣∣∣|∂α
x

[
(wk − xk)|w − x|−2m

]
||ω(w) ∧ ω(w)|

≤ 22−m

σ2m
c|α|+1(m+ |α| − 1)!CN+1MN

N !

∫
Ωr

m∑
k=1

|ℑw|N

|w − x|2m+|α|−1
ω(w) ∧ ω(w)|

≤ 22−m

σ2m
c|α|+1(m+ |α| − 1)!CN+1MN

N !

∫
Ωr

|ℑw|N−2m−|α|+1dv

≤ 22−m

σ2m
c|α|+1(m+ |α| − 1)!C|α|+2m M2m+|α|−1

(2m+ |α| − 1)!

∫
Ωr

dv (let N = 2m+ |α| − 1)

≤ 22−m

σ2m
c|α|+1C|α|+2mM2m+|α|−1

≤ 22−m

σ2m
c|α|+1C|α|+2mAH2m+|α|−1M2m−1M|α|

≤ C′|α|+1M|α|.

Therefore, f2 ∈ EM (Br) and hence f ∈ EM (Br).

Conversely, Suppose f ∈ EM (Ω). Let h ∈ DM (Rm) such that h ≡ 1 for |y| ≤ 1
2
and h ≡ 0 for

|y| ≥ 1. Let {µk}∞k=0 be increasing sequence of positive numbers to be chosen appropriately such that
µk → ∞.
Define

F (x, y) =
∑
γ

∂γ
xf(x)

γ!
(iy)γh(µ|γ|y) (3.2)

Clearly, F (x, 0) = f(x). Fix y ̸= 0. Then since limk→∞ µk|y| = ∞, there is k0 ≥ 1 such that

µk|y| ≥ 1, ∀k ≥ k0.

Then h(µ|γ|y) = 0 ∀|γ| ≥ k0. Hence,

F (x, y) =
∑

|γ|≤k0

∂γ
xf(x)

γ!
(iy)γh(µ|γ|y),
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which is a finite sum. Therefore, F is well-defined. We will show that F is in EM for y in a neighborhood
of 0.
For this, let K ⊂⊂ Ω and fix α, β ∈ Nm

0 . Then for x ∈ K

∣∣∣∣∂β
y ∂

α
x

(
∂γ
xf(x)

γ!
(iy)γh(µ|γ|y)

)∣∣∣∣
=

∣∣∣∣∂α
y ∂

γ
xf(x)

γ!

∑
δ≤β

(
β

δ

)
∂δ
y(y

γ)∂β−δ
y (h(µ|γ|y))

∣∣∣∣
=

∣∣∣∣∂γ+α
x f(x)

γ!

∑
δ≤γ,δ≤β

(
β

δ

)
γ!

(γ − δ)!
yγ−δµ

|β|−|δ|
|γ| (∂β−δ

y h)(µ|γ|y)

∣∣∣∣
(since ∂δ

y(y
γ) = 0 if δj > γj for some j)

≤ |∂γ+α
x f(x)|

∑
δ≤γ,δ≤β

(
β

δ

)
1

(γ − δ)!
|y||γ|−|δ|µ

|β|−|δ|
|γ| |(∂β−δ

y h)(µ|γ|y)|

≤ |∂γ+α
x f(x)|

∑
δ≤γ,δ≤β

(
β

δ

)
|y||γ|−|δ|µ

|β|−|δ|
|γ| |(∂β−δ

y h)(µ|γ|y)|

≤ |∂γ+α
x f(x)|

∑
δ≤γ,δ≤β

(
β

δ

)
1

µ
|γ|−|δ|
|γ|

µ
|β|−|δ|
|γ| |(∂β−δ

y h)(µ|γ|y)|

(since h(µ|γ|y) = 0 for |y| ≥ 1

µ|γ|
)

≤ M|α|+|γ|C
|α|+|γ|+1
1

∑
δ≤β

(
β

δ

)
1

µ
|γ|−|β|
|γ|

|(∂β−δ
y h)(µ|γ|y)|

Set Cβ = sup
β′≤β

{(
∂β′
y h

)
(y) : y ∈ Rm

}
. Then Cβ ≤ C

|β|+1
2 M|β|.

Thus ∣∣∣∣∂β
y ∂

α
x

(
∂γ
xf(x)

γ!
(iy)γh(µ|γ|y)

)∣∣∣∣
≤ M|α|+|γ|C

|α|+|γ|+1
1 Cβ

∑
δ≤β

(
β

δ

)
1

(µ|γ|)|γ|−|β|

≤ M|α|+|γ|C
|α|+|γ|+1
1 Cβ

∑
δ≤β

(
β

δ

)
1

(µ|γ|)|γ|−|β|

= M|α|+|γ|C
|α|+|γ|+1
1 Cβ2

|β| 1

(µ|γ|)|γ|−|β|

≤ C
|α|+|γ|+1
1 M|α|+|γ|C

|β|+1
2 M|β|2

|β| 1

(µ|γ|)|γ|−|β|

≤ C|α|+|β|+|γ|+1M|α|M|γ|M|β|
1

(µ|γ|)|γ|−|β| (by ??)

Choose {µk}∞k=0 such that µ0 = µ1 = . . . = µ|β|−1 and for k ≥ |β|

µk = sup

{(
µ0M|γ′||γ′|!

) 1
|γ′|−|β′|

: |γ′| ≤ k, |β′| ≤ |γ′|
}
+ k,

where µ0 is chosen that µ0|y| ≤ 1
2
for |y| < N, N > 0. Thus {µk}∞k=0 increases to ∞ and for |γ| ≥ |β|

µ|γ| ≥
(
µ0M|γ||γ|!

) 1
|γ|−|β|

.
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Thus for |γ| ≥ |β|, we get∣∣∣∣∂β
y ∂

α
x

(
∂γ
xf(x)

γ!
(iy)γh(µ|γ|y)

)∣∣∣∣ ≤ C|α|+|β|+1M|α|M|β|
C|γ|

|γ|!

≤ C|α|+|β|+1M|α|+|β|
C|γ|

|γ|! (by ??)

Also, for x ∈ Rm and for |γ| < |β| since h(µ|γ|y) ≡ 1,∣∣∣∣∂β
y ∂

α
x

(
∂γ
xf(x)

γ!
(iy)γh(µ|γ|y)

)∣∣∣∣ = 0,

we have ∑
γ

∣∣∣∣∂β
y ∂

α
x

(
∂γ
xf(x)

γ!
(iy)γh(µ|γ|y)

)∣∣∣∣
=

∑
|γ|≥|β|

∣∣∣∣∂β
y ∂

α
x

(
∂γ
xf(x)

γ!
(iy)γh(µ|γ|y)

)∣∣∣∣
≤ C|α|+|β|+1M|α|+|β|

∑
γ

C|γ|

|γ|!

≤ C|α|+|β|+1M|α|+|β|
∑
γ

C|γ|

γ!

≤ C|α|+|β|+1M|α|+|β|e
Cm

Therefore, letting

gγ(x, y) =
∂γ
xf(x)

γ!
(iy)γh(µ|γ|y),

we have shown that the series
∑

γ gγ(x, y) and any series of the derivatives∑
γ

∂β
y ∂

α
x gγ(x, y)

converges uniformly on K × Rm.
For each k ≥ 1, let

hk(x, y) =
∑
|γ|≤k

gγ(x, y).

Then hk(x, y) → F (x, y) and

∂β
y ∂

α
x hk(x, y) =

∑
|γ|≤k

∂β
y ∂

α
x gγ(x, y) →

∑
γ

∂β
y ∂

α
x gγ(x, y)

uniformly on K × Rm.
Therefore, F (x, y) ∈ EM (Ω× Rm) and

∂β
y ∂

α
xF (x, y) =

∑
γ

∂β
y ∂

α
x gγ(x, y).

We are left to show that ∣∣∣∣ ∂F∂zj (x, y)
∣∣∣∣ ≤ CN+1MN

N !
|y|N .

Now for all |α| ≥ 0,

∂α
y F (x, y)|y=0 =

∑
γ

∂α
y

(
∂γ
xf(x)

γ!
(iy)γh(µ|γ|y)

)
|y=0 = (i)|α|∂α

x f(x).
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Therefore, for all α,

∂α
y

(
∂F

∂zj
(x, y)

)
|y=0 =

1

2
∂α
y

(
∂F

∂xj
(x, y) + i

∂F

∂yj
(x, y)

)
|y=0

=
1

2
[∂xj∂

α
y F (x, y) + i∂yj∂

α
y F (x, y)]|y=0

=
1

2
[∂xj∂

α
y F (x, y)|y=0 + i(i)|α+ej |∂

α+ej
x f(x)]

=
1

2
[∂xj∂

α
y F (x, y)|y=0 + (i)|α|+2∂

α+ej
x f(x)]

=
1

2
[∂xj∂

α
y F (x, y)|y=0 − (i)|α|∂

α+ej
x f(x)]

=
1

2

[∑
γ

(i)|γ|

γ!
∂α
y

(
yγh(µ|γ|y)∂

α+ej
x f(x)

)
|y=0 − (i)|α|∂

α+ej
x f(x)

]
= 0, j = 1, 2, . . . ,m.

Then by Taylor’s theorem for x ∈ Ω′ and |y| < M , (M > 0) there is a point y0 = y0(x, y, α) between 0
and y such that ∣∣∣∣ ∂F∂zj (x, y)

∣∣∣∣ = ∣∣∣∣ ∑
|α|=N

1

α!

(
∂α
y
∂F

∂zj

)
(x, y0)y

α

∣∣∣∣
≤
∑

|α|=N

1

α!

∣∣∣∣(∂α
y
∂F

∂zj

)
(x, y0)

∣∣∣∣|y|N
≤ CN+1MN |y|N

∑
|α|=N

1

α!
since

∂F

∂zj
∈ EM

≤ CN+1MN

N !
|y|N
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