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ABSTRACT: In a commutative weak idempotent ring R with unity, we prove that bR = {0, b}
or {0,b,n,b+ n} for idempotent and nilpotent atoms b and n of R respectively provided that any

two nilpotent atoms have an upper bound in R. Further, we prove that the subgroup generated by

{n:}ier in R is a lattice, where {n; }:cs is the collection of nilpotent atoms of R corresponding to the

idempotent atoms {b; };cr of R. We also prove that R is atomic if and only if Rp is atomic provided

that the set of all nilpotent elements of R is nil-free and any two nilpotent atoms have an upper

bound in R. Finally, we state and prove the direct product decomposition theorem of R.
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INTRODUCTION
Foster(1946) defined a Boolean-like ring (BLR,

for short) as a commutative ring with unity R in
which ab(l — a)(1 —b) = 0 and a + a = 0 for
all a,b € R. A weak idempotent ring (WIR, for
short) is a ring (R, +,-) of characteristic 2 such
that a* = a? for every element a in R. It is clear
that a BLR is a WIR but not conversely. For
an element a in R: a = a® + (a + a?) and if a is
nilpotent, then a? = 0. Observe that the product
of any two nilpotent elements of R need not be
equal to zero (See Dereje Wasihun et al.(2022)).
In ( Tamiru Abera et al. 2024; Lemma 2.1), an
order relation is defined as y < « if and only if
there exists b € Rp such that bx = y, a non zero
element m is called an atom if for every x in the
ring , * < m implies either x = m or x = 0, and
b < a implies that bc < ac for any a, b, c in R.
In Section 2, we prove that the subgroup gen-
erated by {n;}icsr in a commutative WIR with
unity is a lattice.

In the last section, we prove that Rp is a sym-
metric Boolean ring, N is nil free and the set of
all nilpotent atoms is complete if and only if R
is isomorphic to the direct product of WIR each

of which is either a copy of 2 element field or a
four element BLR Hy (see Foster (1946)).

LATTICE ON THE NIL RADICAL

In this section, we use the concepts of atom
and partial order in commutative weak idempo-
tent ring with unity. Throughout this paper, R
denotes a commutative WIR (cWIR, for short)
with unity, Rp and N denote the set of all idem-
potent and nilpotent elements of R respectively.

Lemma 0.1. Ifni and ny are nilpotent elements
of R such that n1 < na, then ning = 0.

Proof. For n1 = ng, clearly nins = 0. Suppose
that n1 and ng are distinct nilpotent elements of
R such that ny < ne. Then, there exists b € Rp
such that bny = ni. Hence, niny = 0.

Lemma 0.2. If ny and no are distinct atoms of
N, then ni + no is the least upper bound of nq
and ng. Further n1 + ns 1s not an atom.

Proof. Suppose that n; and ng are distinct atoms
of N. Then, n; < ny + ng for ¢ = 1,2. For: if
ni1+ng < ny, then ny = ny or ny = 0 which con-
tradicts the hypothesis. Therefore, n; < ni + ns
for i = 1,2. Let n1 < n and no < n for an
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arbitrary element n € R. Then, there exist
b1,bs € Rp such that byn = ny and bon = no.
This implies that (b; +b2)n = nj + ng and hence
n1 + no < n. Therefore, ny + no is the least up-
per bound of n; and ny. Suppose, if possible,
n1+ng is an atom. This and n; < ni +ng imply
that n; = 0 or no = 0 which is a contradiction.
Hence, n1 + n9 is not an atom.

Lemma 0.3. For 0 # b € Rp, the following are
equivalent.

1. b is an atom of R.
1. b s an atom of Rp.
1. For every * € Rp, either b < z or
bx = 0.

Proof. (i) = (i7) is obvious.

(#4) = (¢it) : Suppose that b is an atom of Rp.
Let x € Rp. Assume that bx # 0. As both b
and z are idempotent elements, bx = y for some
y € Rp. Thus, y < b. Since b is an atom of Rp,
y =0or y =b. Hence, bx = b. Therefore, b < z.
(#91) = (i) : Suppose that for every x € Rp, ei-
therb < xorbxr =0. Let r € Rand r < b. Then,
bz = r for some z € Rp. From our assumption,
bz="0or bz =0 as bis an atom. Thus, r =0 or
r = b. Hence, b is an atom of R.

Lemma 0.4. If z is an atom of R, then xp and
xn are atoms of R provided that xtp # 0, xn # 0,
where xp and xyn represent the idempotent and
nilpotent part of x.

Proof. Let x be an atom of R. If xp # 0 and
xy = 0, then xp = = and is an atom of R as z
isso. If xp =0 and xy # 0, then xy = x and is
an atom of R.

The converse of the above statement is not in
general true. See the following.

Example 0.1. Consider the ring

Hy = {0,1,p,1 + p}, where + and - are de-
fined by the following tables (See Tamiru Abera
et al.(2024), Example 2.1).

Let B = {0,a,b,a + b} be a Boolean group of 4
elements. Define a unitary Hi-module structure
on B? by the multiplication generated from the
following: pa = a and pb = 0. Consider the ring
(H? x B?,+,.) where the operations are defined
as:

((a1,a2), (b1,b2)) + ((c1,¢2), (d1,d2)) = ((a1 +
ci,a2 + Cz), (bl +dy, by + dg))

and ((a1,az), (b1, b2)).((c1,¢2), (d1,d2))

= ((a1c1,a2c2), (a1, a2)(dy, dz2) + (c1,c2) (b1, b2)),
where the operation between (Hy)? and B? is

component-wise. Then, (H2xB?,+,.) is a cWIR
with unity.

Let =z = ((1,0),(0,a)). Then, zp =
((1,0),(0,0)) is an atom of R and zy =
((0,0),(0,a)) is an atom of R. But z is not
an atom of R as ((0,1),(0,0)).((1,0),(0,a)) =
((0,0), (0,a)) # x or 0.

Lemma 0.5. Let a be an atom of R and r € R.
Then, ra is an atom of R provided that ra # 0.

Proof. Let a be an atom of R such that ra # 0
for r € R. Then Vb € Rp,ba < a as ba = ba
and b € Rp. This implies that either ba = a or
ba = 0. So, bra = ra or bra = 0. Hence ra is an
atom of R.

Lemma 0.6. Let b be an atom of Rp and any
two nilpotent atoms have an upper bound. Then,
either bN = {0} or bN = {0,n}, where n is an
atom of N. Furthermore, bN = {0,n}, bn; = 0
for all atoms ny # n.

Proof. Let bny; and bne be non-zero elements
of bN. Then, bn; and bns are atoms of R by
Lemma 0.5 and hence atoms of N by Lemma
0.3 as bny,bny € N. Thus, there exists x € R
( particularly x in N) such that bny < = and
bno < x as any two nilpotent atoms have an up-
per bound by the hypothesis. Then, yx = bn;
for some y € Rp. For: if x € Rp, then
0= (bm)? = (yz)? = yxr = bny as 7,y € Rp
which is a contradiction. Thus, x € N and so
that ybr = bni as b € Rp. Hence, bn; < bx.
Similarly, bne < bz. But 0 < a for every a € R.
Thus, bz # 0 and it is an atom of N by Lemma
0.5. Hence, bny = bny = bz as bny # 0,bng # 0.
Therefore, bN = {0} or bN = {0,n}. Suppose
that bV # {0}. Then, there exists ny € N such
that bny # 0. Let bny = n. Then bny = bn =n
and hence bN = {0,n}. By Lemma 0.5, bn = n
is an atom of N. Let ny be an atom of N and
n # ng. Assume that bng # 0. Then, bny = n.
But bns = n9 as no is an atom of N and bnsy # 0
from our assumption. Thus, n = ng which is a
contradiction. Therefore, bny = 0, Vng # n.

Lemma 0.7. Let any two nilpotent atoms have
an upper bound in R. Then, by N NbaN = {0} for
every two distinct idempotent atoms by and ba.

Proof. Suppose that by and bs are two distinct
idempotent atoms with 54N = {0,n1} and
boN = {0,n2}. Assume that bjN N byN #
{0}.Then, n; = ny by Lemma 0.6 which implies
bany = bang = ng. Thus, bibon; = ny = ny. But
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b1bs < b; for ¢ = 1,2 which implies b1by = 0 as
b1 and by are distinct idempotent atoms. Hence,
n1 = no = 0 which is a contradiction. Therefore,
biN NbaN = {0} for every two distinct idempo-
tent atoms b1 and bs.

Lemma 0.8. Let any two nilpotent atoms have
an upper bound in R. For an idempotent atom b,
bR ={0,b} or bR ={0,b,n,b+n}, where n is a

nilpotent atom.

Proof. In a c¢WIR R with unity, R = {rp +ry:
r € R}. Thus, bR = {brg + bry : r € R}. By
Lemma 0.6, bry = 0 or bry = n for all rn. As
brg < b and b is an idempotent atom, either
brg = b or brg = 0. Hence, bR = {0,b} or
bR = {0,b,n,b+ n}.

Definition 0.1. Let any two nilpotent atoms
have an upper bound and {b;},c; be the sel of
all idempotent atoms such that b;N # {0}. If
biN = {0,n;}, then {n;}icr is called the set of
nilpotent atoms corresponding to the idempotent
atom bi Of {bi}ie[.

Note: Here and after, we use the notations
{bi}ier and {n;};c; in the context of definition
0.1.

Lemma 0.9. If nilpotent atoms n1 and ns have
an upper bound in R, then nino = 0.

Proof. Suppose that n; and ny have an upper
bound in R. By Lemma 0.2(i), nj +ng is the least
upper bound of ny and no. So, n1 < ni + ng
and nj(ny + n2) = 0 by Lemma 0.1. Hence,
ning = 0.

Note.

i. From now onwards, we use {n; };cs to de-
note the set of nil potent atoms corre-
sponding to each idempotent atom b; for
all i € I, {b;}ier be the set of all idempo-
tent atoms as in definition 0.1.

ii. Let ri1,79 € R. If there exists an upper
bound of 71 and 79, then the least upper
bound of 1 and 7y is 1 V ra.

iii. Let 71,79 € R. If there exists a lower
bound of r; and 79, then the greatest
lower bound of r; and r9 is r1 A ro.

Lemma 0.10. Let ny,ne € {n;}icr be in R.
Then, n1 V no and ny A ng exist and are equal
to n1 + ng and 0 respectively.

Proof. Let ni,n2 € {n;}ic;. By Lemma 0.6,
bin1 = ny and byng = 0. Consider by (n1 +ng) =
bini + bing = ny. By Lemma 0.2(ii), ny + ng is

not an atom. lHence, nj 4+ ng is the least upper
bound of n; and ng by Lemma 0.2. Let < ng
and x < no. If x # 0, then x = ny = ny which is
a contradiction as n; and ny are distinct atoms.
Hence x = 0. Therefore, 0 is the greatest lower
bound of n; and ns.

Theorem 0.1. The subgroup generated by
{n;}icr in N is a lattice.

Proof. Let A be a subgroup generated by {n; }icr

and a,b € A. Then, a = ) nj and b =
jeF,

> ng, where F, and F} are finite subsets of

keF,

I. We point out that a +b = > ng
tEFGUF,

Fa = {Oél,ag, ...,ar} and Fb = {ﬂl,ﬁg, ...,ﬁs},
where F, N Fy, = {71,7%2,...,7p} and p < r and
p < s. Then (ba, +bay + ... +ba,)(a+b) = a and
(bg, +bs, +...+bg,)(a+0b) =b. Hence,a < a+b
and b < a 4+ b. That is, a + b is an upper bound
of a and b. Let z be an upper bound of a and
b. Then, there exist ¢,d € Rp such that cx = a
and dz = b. Thus, (c+ d)z = a + b and hence
a+ b < x. Therefore, a + b is the least upper
bound of a and b. Let e = n,; + 14, + ... + 1,
Then, (b, +by, +... +by,)a = e and (by, + b, +
. +by,)b = e. Thus, e is the lower bound of
a and b. Let x be the lower bound of a and b.
Then, there exist ¢,d € Rp such that ca = x and
db=z. If x # 0, then ¢(na;, +Nay+-...+Na,) =
and d(ng, +ng, +... +ng,) = x implies cn,; # 0
for some o € F, and dng, # 0 for some
By € Fy. Let c(n%1 + N, + ..+ najq) =z
and d(ng, +ng,, +...+ng, ) =z Thus, na, +
Naj, ot Nay, =T and ngy, TNy, +tng, =1
since bo,;na; = na; and bg ng, = ng,. If
ba,, & {bgy, bBrys - bpy, } for some i =1,2,....q,
then bo; x = ba, (ng, +np, + ... +ng,) = 0.
Thus, Nay, =0 which is a contradiction. Hence,
{bah,bah,...,bajq} - {bgkl,bﬁkg,...,bgkv}. Simi-
larly,

{bﬁkl»bﬂkzv b, b € {bay, s bay, ...,bajq}.

This gives us {bg, ,bs,, .- g, }

= {bajl,b%,--~,bajq} C {by;,byy, ..., b4, }. Thus,
(bgy, +bpy, + .- +bs,, )Je = . Therefore, e is the
greatest lower bound of a and b.

Let

NiIL FREE NIL RADICAL

Recall that an element x in R is said to be nil
if bx = 0 for each idempotent atom b. The nil
radical N of R is called nil free if the only nil
nilpotent element is zero.
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Lemma 0.11. Suppose that Rp has atoms and
any two nilpotent atoms have an upper bound.
Then, the following are equivalent.

1. N is nil free.

1. For any 0 #n € N, there exists an atom

b of Rp such that bn # 0.
1. N is atomic and the set of all atoms of N
is precisely {n;}icr.

Proof. (i) and (ii) are clearly equivalent by def-
inition. Suppose that for any 0 £ n € N, there
exists an atom b of Rp such that bn # 0. Then,
bN # {0} for every idempotent atom b. Thus,
{n;}icr # 0. Suppose that there exists a nilpo-
tent element n ¢ {n;}icr. Thus, bn = 0 for all
atom b € Rp which is a contradiction. Hence,
{ni}tier is the set of all nilpotent atoms. Let
0 #n € N and there exists an idempotent atom
b such that bn # 0. So, bn < n. Therefore, N
is atomic since bn is an atom. Assume that N
is atomic and {n;};es is the set of all nilpotent
atoms. Let 0 # n € N. Then, n; < n for some
1 € I. Hence, bn = n; # 0 for some b € Rp.

Remark 0.1. If Rp has atoms and N is nil free,
then N has atoms.

Proof. Suppose that Rp has an atom say b and
N ig nil free. Then b is an atom of R and bn # 0
for some 0 # n € N as N is nil free. Then bn is
an atom of R as bn # 0 and b is an atom of R.
But bn € N. This implies bn is an atom of N.

Lemma 0.12. Let N be nil free and any two
nilpotent atoms have an upper bound. R is
atomic if and only if Rp is atomic.

Proof. Obviously, Rp is atomic if R is atomic.
Suppose that Rp is atomic. Since N is nil free, it
is atomic by Lemma 0.11. Let » € R be neither
nilpotent nor idempotent. So, r = rg 4+ rny and
either rg # 0 or vy # 0. Thus, there exists an
atom b € Rp such that b < rp which implies
brp = b. Hence, br =brg +bry =b+bry #0
as b is non zero. By Lemma 0.5, br is an atom
of R and also br < r. Therefore, R is atomic.

Lemma 0.13. Let Rp be atomic, N be nil-
free and any two nilpotent atoms have an upper
bound. For any 0 #n € N,
i. Bvery atom of Rpn is of the form bjn for
some atom bj € {b;}icr.
1. Rpn 1s atomic.

Proof. i. Let bn be an atom of Rpn. Then,

bn is an atom of N. By Lemma 0.11,

bn € {ni}ticr. Thus, bn = n; for some
nj € {n;}icr. By definition, there exists
an atom b; of Rp such that bjn; = n;.
If bb] = O, then bn = bnj = bbjnj =0
which is a contradiction. Thus, bb; # 0
and hence bb; = b;. Therefore, bn =
bn]‘ = bbjnj = bjnj = bjbn = bjn.

ii. Let bn € Rpn. Then, there exists ng €
{ni}tier such that ny < bn by Lemma
0.11. Thus, bgng = ng < bgbn. If
brb = 0, then np = 0 which is a contra-
diction. Therefore, byb = by and hence
ng < bgn. So, there exists ¢ € Rp such
that cbpn = ny. If cby = 0, then np =0
which is a contradiction. Thus, bpn = ny
and hence byn < bn. Therefore, Rgn is
atomic since bin is an atom in Rgn.

Lemma 0.14. Let Rp be atomic and any two
nilpotent atoms have an upper bound. If N is nil
free, then for alln(# 0) € N, n =\/..;n; where
J is some subset of I.

Proof. Let n € N. Then, by Lemma 0.13
Rpn is atomic and every atom of Rpn is of
the form b;n for some atom b; of {b;}icr. In
??, Vier Ok = 1, where {by}rex is the set of
all atoms of Rp. Now, n = (Ve bi)n =
(Vierbi)n = (Ve bj)n, where J C I and
bjn # 0. Therefore, n = \/,;bjn. bjn # 0 im-
plies that b;n is an atom of Rgn and bjn = n;.
Hence, n =\, n;.

=

Lemma 0.15. Let Rp be atomic and {by}rex
be the set of all atoms of Rp. If {b; ek is join-
complete, then

bA(V jesci i) = Vjescx (bAb)) for any b € Rp.

Proof. Suppose that {by}rex is join-complete
and b € Rp. Take {bj}jcs for J C K. Then,
there exists * € Rp such that z = V,c;b;.
Thus, b; < x and hence bb; < bx for all j € J.
So, bx is an upper bound of {bb; }jc ;. Let u be an
upper bound of {bb;};cs. Then, bb; < u for all
J € J. By definition of partial order, bbju = bb;
as both bbj,u € Rp. So, bj = bbju + bb; + b; =
bbju+bbj:v+bjx as bb] < bxr = bb]x = bb] by def-
inition of partial order for b,bb;, x € Rp. Thus,
bj(bu+br+x) = b; which gives us b; < bu+bxr+x
for all j € J. So,we obtain that x < bu + bx + x
as x is lub{b;};es. This gives us bxu = bx and
hence bz < u. Therefore, bx = \/,,;bb;. That
is, b A (ijJCK bj) = \/jEJCK(b A bj) for any
b € Rp as Rp is a Boolean lattice.
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Lemma 0.16. Let Rp be atomic, N be nil
free and any two nilpotent atoms have an upper
bound. Let {n;}icr be join-complete and b be an
idempotent atom of R. Then:

i b (\/jEJCI ”j) =04f b ¢ {bi}icr-
i. b (Ve ni) = ni if and only if n; €
{nj}jes-

Proof. Suppose that {n;};cs is join-complete, b
is an idempotent atom of R and J C I. Then,
n= VjeJ nj exists in N by the hypothesis.

i. If b ¢ {bi}icr, then BN = {0} by def-
inition 0.1 and Lemma 0.6. Therefore,
bn = 0 and hence b (V¢ ;n;) = 0.

ii. Suppose that n; € {n;};cs. Then, n; <
n and hence 0 # b;n; < byn. By Lemma
0.6, b;N = {0,n;} and hence n; = byn; =
bin. So, we obtain that b;(V;c;n;) = n
and also n; < n. Hence, n; < n for all
atoms n;. Suppose that n; ¢ {n;}jes
by Definition 0.1. Then, n;, = bn =
(bin) A (V ey bjn) since n; = bjn and
Rpn is a Boolean lattice. Therefore,
n; = Vjesl(bin) A (bjn)] from (i). That
is, i = Ve (bi Abj)n = 0 since b; # b,
for any j € J which is a contradiction.
Hence, n; € {n;};ec.

Theorem 0.2. The set of all nilpotent atoms is
complete, Rp is a symmetric Boolean ring and N
s nil free if and only if R is isomorphic to the di-
rect product of Wli-rings each of which is a copy
of a two element field or a four elements BLR
Hy.

Proof. Let the set of all nilpotent atoms be com-
plete, Rp be a symmetric Boolean ring and N
be nil free. Assume that {b;}rer is the set of
all idempotent atoms, {b;}icrck is the set of
all idempotent atoms for which b;N # {0} and
{n;}icr is the set of all nilpotent atoms corre-
sponding to {b;};c;. Then, Rb, is either {0,b,}
or {0,b;,np,b, + n,} and Rb,, N Rb,, = {0}
for all 1,79 € K, r1 # 19 by Lemma 0.8 and
Lemma 0.7. Hence, Rb, is either a copy of the 2-
element field or a copy of the four-element BLR
Hy. Consider the direct product @, . Rb,. De-
fine ¢ : R — @, c i Rb, by ¥(x) = (2b;)rek-
Then, (z + ) = (2 + 9)by)rexc = (wbr)rex +
(Ybr)rex = () +P(y).

Y(zy) = (2ybr)rex = (@br)rex - (Ybr)rex =
Y(x)Y(y) as b, € Rp and R is commutative.

Y(1) = (bp)rex = Vyexg br = 1 as Rp is a sym-
metric Boolean ring.Therefore, ¢ is a homomor-
phism. Let ¢(z) = ¢(y). So, we get (xb,)rerx =
(yby)rer. Then, zb, = yb, for all r € K. This
implies zpb, = ypb, and xnb, = yyb, for all
re K.

Now, zp = xp(V,exbr) =
\/reK ypbr = ?JB(\/reK br) = yB.
Again xnx = \/,c; bizny by Lemma 0.14 and hence
TN = \/reK bran = \/TEK bryn

= (V,ex br)yn = yn. Therefore, z = y and so
, ¥ is one to one. Let (z,b,),cx be any element
of @, cx Rb;. Then,

xpby = spby+t,n, where s,,t, € {0,1}. Consider
Vick $rbr + Ve trnr in R

V(Voer srbr + Vypextrne) = ([Vyeg sebr +
VTGK trnr]br)reK

= (\/reK[srbr + trne)br)rerc = \/reK[(wrbr)reK]
= (2b;)rex by Lemma 0.15 and Lemma 0.16.
Hence, 1 is onto and so that R is isomorphic to
®T‘EK Rbr'

Let R be isomorphic to @iel R, where R, =
{O,bz} or {O, b;,mg, b; + TLZ} Let x € @iel R;.
Then, © = (z;)ie; where z; € R;. x is an
idempotent if and only if (m?)ig = (x;)ier and
:zf = x;,Vi € I which implies either x; = 0 or b;.
z is nilpotent if and only if 22 = 0 which implies
either x; = 0 or n;. Hence, the set of all idem-
potent elements of @, ; R; is Rp = {(%)ier :
xz; = 0 or b;} and the set of nilpotent elements
of @,c; Riis N = {(xi)ier : x; = 0 or n;}. Let
0 # = = (5)ier € Rp. x is an atom if and
only if x; = b; for some i € I and z; = 0 for
all j # ¢ and j € I. For: if x is an atom,
then x; # 0 for at least one ¢ € I. If z; #£ 0
and x; # 0 with ¢« # j and 4,j € I, then we
have z; = b; and z; = b; from the hypothesis.
So, ¢ = (.’L'Z')j;éie[ +x; = (bi)j;ﬁie[ + bj. Let
y = (yi)ier with y; = b;,y; = 0 for all j # i and
1,J € I. Then, y is neither equal to zero nor x.

Considering zy = (x;)ier(bi)icr + (i) jzicr =
(wibi)ier + (wbi)j2icr = (bi)ier = y which con-
tradicts the fact that x is an atom. Hence, z; # 0
holds for at most one ¢ € I. Conversely, let
0 # = € Rp such that x; = b; for some i € [
and z; =0 for all j #4 with 4,5 € I. Let y < 2.
Then, y € Rp and y; = b; for some ¢ € I and
y; = 0 for all j # 4 with 4,7 € I by the hypoth-
esis. Thus, 2y = (2i)icr(¥i)ier = (bi)icr = .
Hence, x is an atom. Let z = (x;);c; € Rp.
Then, there exists at least one ¢ € I such that
w; # 0. Let 0 # y = (yi)ier € Rp with y; = b;
and y; = 0 for all j # ¢,5 € I. Then, y is an

erK biT =
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atom and xy = y. This implies y <  and hence
Rp is atomic. Let {yr}rex be any set of atoms
of Rp such that y; = b; if y;, = b; for some
ke K and y; =0 if yy, = 0 for all k € K. Then,
Y = (Yk)kex = (Yk;)ier = (Yi)ier. Hence, y is
the upper bound of {y }rer. Let = be an upper
bound of {y }rex. Then, there exists an element
zr € Rp such that yi = zpx by definition. So, we
have y = (Yr)rex = (26%)zerp = T(2k)z.€Rp
by Lemma 0.15 which gives us y < x. Thus, y
is the supremum of {yi}rex. Therefore, Rp is
complete. Let 0 # x € N and « = (z;);er. Then,
there exists an ¢ € I such that x; # 0. There-
fore, x; = n;. Consider y = (y;)ier with y; = b;
and y; = 0 for all j # ¢, € I. Then, y is an
atom of Rp and yx # 0. Hence, N is nil free.
Also, atoms of N are of the form (x;);c; with
x; = n; for some 7 € I and x; = 0 for all j # ¢
and i,7 € I. If {z;}rex is any set of atoms of
N, then z = (z;);er is the supremum of {zj }rek,
where, z; = n; if 2z, = n; for some k € K and
zi = 01if 2, = 0 for all k € K. And 0 is the infi-
mum of {z}rex. Hence, the set of all nilpotent
atoms of ;. R; is complete.

CONCLUSIONS

In this paper we have studied the lattice of the
sub group generated by the collections of nilpo-
tent atoms corresponding to idempotent atoms of
a commutative weak idempotent ring with unity.
We also studied the isomorphic properties of a
c¢WIR with unity to the direct product of WIRs
each of which is a copy of two elements field and
a BLR Hy. This may motivate to study further
isomorphic properties and lattice structure of a
cWIR with unity.
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