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ABSTRACT: In a commutative weak idempotent ring R with unity, we prove that bR = {0, b}
or {0, b, n, b + n} for idempotent and nilpotent atoms b and n of R respectively provided that any

two nilpotent atoms have an upper bound in R. Further, we prove that the subgroup generated by

{ni}i∈I in R is a lattice, where {ni}i∈I is the collection of nilpotent atoms of R corresponding to the

idempotent atoms {bi}i∈I of R. We also prove that R is atomic if and only if RB is atomic provided

that the set of all nilpotent elements of R is nil-free and any two nilpotent atoms have an upper

bound in R. Finally, we state and prove the direct product decomposition theorem of R.
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INTRODUCTION

Foster(1946) de�ned a Boolean-like ring (BLR,
for short) as a commutative ring with unity R in
which ab(1 − a)(1 − b) = 0 and a + a = 0 for
all a, b ∈ R. A weak idempotent ring (WIR, for
short) is a ring (R,+, ·) of characteristic 2 such
that a4 = a2 for every element a in R. It is clear
that a BLR is a WIR but not conversely. For
an element a in R: a = a2 + (a + a2) and if a is
nilpotent, then a2 = 0. Observe that the product
of any two nilpotent elements of R need not be
equal to zero (See Dereje Wasihun et al.(2022)).
In ( Tamiru Abera et al. 2024; Lemma 2.1), an
order relation is de�ned as y < x if and only if
there exists b ∈ RB such that bx = y, a non zero
element m is called an atom if for every x in the
ring , x < m implies either x = m or x = 0, and
b < a implies that bc < ac for any a, b, c in R.
In Section 2, we prove that the subgroup gen-
erated by {ni}i∈I in a commutative WIR with
unity is a lattice.
In the last section, we prove that RB is a sym-
metric Boolean ring, N is nil free and the set of
all nilpotent atoms is complete if and only if R
is isomorphic to the direct product of WIR each

of which is either a copy of 2 element �eld or a
four element BLR H4 (see Foster (1946)).

Lattice on the Nil Radical

In this section, we use the concepts of atom
and partial order in commutative weak idempo-
tent ring with unity. Throughout this paper, R
denotes a commutative WIR (cWIR, for short)
with unity, RB and N denote the set of all idem-
potent and nilpotent elements of R respectively.

Lemma 0.1. If n1 and n2 are nilpotent elements
of R such that n1 < n2, then n1n2 = 0.

Proof. For n1 = n2, clearly n1n2 = 0. Suppose
that n1 and n2 are distinct nilpotent elements of
R such that n1 < n2. Then, there exists b ∈ RB

such that bn2 = n1. Hence, n1n2 = 0.

Lemma 0.2. If n1 and n2 are distinct atoms of
N, then n1 + n2 is the least upper bound of n1
and n2. Further n1 + n2 is not an atom.

Proof. Suppose that n1 and n2 are distinct atoms
of N. Then, ni < n1 + n2 for i = 1, 2. For: if
n1+n2 < n1, then n1 = n2 or n2 = 0 which con-
tradicts the hypothesis. Therefore, ni < n1 + n2
for i = 1, 2. Let n1 < n and n2 < n for an
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arbitrary element n ∈ R. Then, there exist
b1, b2 ∈ RB such that b1n = n1 and b2n = n2.
This implies that (b1+ b2)n = n1+n2 and hence
n1 + n2 < n. Therefore, n1 + n2 is the least up-
per bound of n1 and n2. Suppose, if possible,
n1+n2 is an atom. This and n1 < n1+n2 imply
that n1 = 0 or n2 = 0 which is a contradiction.
Hence, n1 + n2 is not an atom.

Lemma 0.3. For 0 ̸= b ∈ RB, the following are
equivalent.

i. b is an atom of R.
ii. b is an atom of RB.
iii. For every x ∈ RB, either b < x or

bx = 0.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii) : Suppose that b is an atom of RB.
Let x ∈ RB. Assume that bx ̸= 0. As both b
and x are idempotent elements, bx = y for some
y ∈ RB. Thus, y < b. Since b is an atom of RB,
y = 0 or y = b. Hence, bx = b. Therefore, b < x.
(iii) ⇒ (i) : Suppose that for every x ∈ RB, ei-
ther b < x or bx = 0. Let r ∈ R and r < b. Then,
bz = r for some z ∈ RB. From our assumption,
bz = b or bz = 0 as b is an atom. Thus, r = 0 or
r = b. Hence, b is an atom of R.

Lemma 0.4. If x is an atom of R, then xB and
xN are atoms of R provided that xB ̸= 0, xN ̸= 0,
where xB and xN represent the idempotent and
nilpotent part of x.

Proof. Let x be an atom of R. If xB ̸= 0 and
xN = 0, then xB = x and is an atom of R as x
is so. If xB = 0 and xN ̸= 0, then xN = x and is
an atom of R.

The converse of the above statement is not in
general true. See the following.

Example 0.1. Consider the ring
H4 = {0, 1, p, 1 + p}, where + and · are de-
�ned by the following tables (See Tamiru Abera
et al.(2024), Example 2.1).
Let B = {0, a, b, a + b} be a Boolean group of 4
elements. De�ne a unitary H2

4 -module structure
on B2 by the multiplication generated from the
following: pa = a and pb = 0. Consider the ring
(H2

4 × B2,+, .) where the operations are de�ned
as:
((a1, a2), (b1, b2)) + ((c1, c2), (d1, d2)) = ((a1 +
c1, a2 + c2), (b1 + d1, b2 + d2))
and ((a1, a2), (b1, b2)).((c1, c2), (d1, d2))
= ((a1c1, a2c2), (a1, a2)(d1, d2) + (c1, c2)(b1, b2)),
where the operation between (H4)

2 and B2 is

component-wise. Then, (H2
4×B2,+, .) is a cWIR

with unity.

Let x = ((1, 0), (0, a)). Then, xB =
((1, 0), (0, 0)) is an atom of R and xN =
((0, 0), (0, a)) is an atom of R. But x is not
an atom of R as ((0, 1), (0, 0)).((1, 0), (0, a)) =
((0, 0), (0, a)) ̸= x or 0.

Lemma 0.5. Let a be an atom of R and r ∈ R.
Then, ra is an atom of R provided that ra ̸= 0.

Proof. Let a be an atom of R such that ra ̸= 0
for r ∈ R. Then ∀b ∈ RB, ba < a as ba = ba
and b ∈ RB. This implies that either ba = a or
ba = 0. So, bra = ra or bra = 0. Hence ra is an
atom of R.

Lemma 0.6. Let b be an atom of RB and any
two nilpotent atoms have an upper bound. Then,
either bN = {0} or bN = {0, n}, where n is an
atom of N. Furthermore, bN = {0, n}, bn1 = 0
for all atoms n1 ̸= n.

Proof. Let bn1 and bn2 be non-zero elements
of bN. Then, bn1 and bn2 are atoms of R by
Lemma 0.5 and hence atoms of N by Lemma
0.3 as bn1, bn2 ∈ N . Thus, there exists x ∈ R
( particularly x in N) such that bn1 < x and
bn2 < x as any two nilpotent atoms have an up-
per bound by the hypothesis. Then, yx = bn1
for some y ∈ RB. For: if x ∈ RB, then
0 = (bn1)

2 = (yx)2 = yx = bn1 as x, y ∈ RB

which is a contradiction. Thus, x ∈ N and so
that ybx = bn1 as b ∈ RB. Hence, bn1 < bx.
Similarly, bn2 < bx. But 0 < a for every a ∈ R.
Thus, bx ̸= 0 and it is an atom of N by Lemma
0.5. Hence, bn1 = bn2 = bx as bn1 ̸= 0, bn2 ̸= 0.
Therefore, bN = {0} or bN = {0, n}. Suppose
that bN ̸= {0}. Then, there exists n1 ∈ N such
that bn1 ̸= 0. Let bn1 = n. Then bn1 = bn = n
and hence bN = {0, n}. By Lemma 0.5, bn = n
is an atom of N. Let n2 be an atom of N and
n ̸= n2. Assume that bn2 ̸= 0. Then, bn2 = n.
But bn2 = n2 as n2 is an atom of N and bn2 ̸= 0
from our assumption. Thus, n = n2 which is a
contradiction. Therefore, bn2 = 0, ∀n2 ̸= n.

Lemma 0.7. Let any two nilpotent atoms have
an upper bound in R. Then, b1N ∩b2N = {0} for
every two distinct idempotent atoms b1 and b2.

Proof. Suppose that b1 and b2 are two distinct
idempotent atoms with b1N = {0, n1} and
b2N = {0, n2}. Assume that b1N ∩ b2N ̸=
{0}.Then, n1 = n2 by Lemma 0.6 which implies
b2n1 = b2n2 = n2. Thus, b1b2n1 = n1 = n2. But
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b1b2 < bi for i = 1, 2 which implies b1b2 = 0 as
b1 and b2 are distinct idempotent atoms. Hence,
n1 = n2 = 0 which is a contradiction. Therefore,
b1N ∩ b2N = {0} for every two distinct idempo-
tent atoms b1 and b2.

Lemma 0.8. Let any two nilpotent atoms have
an upper bound in R. For an idempotent atom b,
bR = {0, b} or bR = {0, b, n, b+ n}, where n is a
nilpotent atom.

Proof. In a cWIR R with unity, R = {rB + rN :
r ∈ R}. Thus, bR = {brB + brN : r ∈ R}. By
Lemma 0.6, brN = 0 or brN = n for all rN . As
brB < b and b is an idempotent atom, either
brB = b or brB = 0. Hence, bR = {0, b} or
bR = {0, b, n, b+ n}.

De�nition 0.1. Let any two nilpotent atoms
have an upper bound and {bi}i∈I be the set of
all idempotent atoms such that biN ̸= {0}. If
biN = {0, ni}, then {ni}i∈I is called the set of
nilpotent atoms corresponding to the idempotent
atom bi of {bi}i∈I .

Note: Here and after, we use the notations
{bi}i∈I and {ni}i∈I in the context of de�nition
0.1.

Lemma 0.9. If nilpotent atoms n1 and n2 have
an upper bound in R, then n1n2 = 0.

Proof. Suppose that n1 and n2 have an upper
bound in R. By Lemma 0.2(i), n1+n2 is the least
upper bound of n1 and n2. So, n1 < n1 + n2
and n1(n1 + n2) = 0 by Lemma 0.1. Hence,
n1n2 = 0.

Note.

i. From now onwards, we use {ni}i∈I to de-
note the set of nil potent atoms corre-
sponding to each idempotent atom bi for
all i ∈ I, {bi}i∈I be the set of all idempo-
tent atoms as in de�nition 0.1.

ii. Let r1, r2 ∈ R. If there exists an upper
bound of r1 and r2, then the least upper
bound of r1 and r2 is r1 ∨ r2.

iii. Let r1, r2 ∈ R. If there exists a lower
bound of r1 and r2, then the greatest
lower bound of r1 and r2 is r1 ∧ r2.

Lemma 0.10. Let n1, n2 ∈ {ni}i∈I be in R.
Then, n1 ∨ n2 and n1 ∧ n2 exist and are equal
to n1 + n2 and 0 respectively.

Proof. Let n1, n2 ∈ {ni}i∈I . By Lemma 0.6,
b1n1 = n1 and b1n2 = 0. Consider b1(n1 +n2) =
b1n1 + b1n2 = n1. By Lemma 0.2(ii), n1 + n2 is

not an atom. Hence, n1 + n2 is the least upper
bound of n1 and n2 by Lemma 0.2. Let x < n1
and x < n2. If x ̸= 0, then x = n1 = n2 which is
a contradiction as n1 and n2 are distinct atoms.
Hence x = 0. Therefore, 0 is the greatest lower
bound of n1 and n2.

Theorem 0.1. The subgroup generated by
{ni}i∈I in N is a lattice.

Proof. Let A be a subgroup generated by {ni}i∈I
and a, b ∈ A. Then, a =

∑
j∈Fa

nj and b =∑
k∈Fb

nk, where Fa and Fb are �nite subsets of

I. We point out that a + b =
∑

t∈Fa∪Fb

nt. Let

Fa = {α1, α2, ..., αr} and Fb = {β1, β2, ..., βs},
where Fa ∩ Fb = {γ1, γ2, ..., γp} and p ≤ r and
p ≤ s. Then (bα1 + bα2 + ...+ bαr)(a+ b) = a and
(bβ1 + bβ2 + ...+ bβs)(a+ b) = b. Hence, a < a+ b
and b < a+ b. That is, a+ b is an upper bound
of a and b. Let x be an upper bound of a and
b. Then, there exist c, d ∈ RB such that cx = a
and dx = b. Thus, (c + d)x = a + b and hence
a + b < x. Therefore, a + b is the least upper
bound of a and b. Let e = nγ1 + nγ2 + ...+ nγp .
Then, (bγ1 + bγ2 + ...+ bγp)a = e and (bγ1 + bγ2 +
... + bγp)b = e. Thus, e is the lower bound of
a and b. Let x be the lower bound of a and b.
Then, there exist c, d ∈ RB such that ca = x and
db = x. If x ̸= 0, then c(nα1+nα2+...+nαr) = x
and d(nβ1 +nβ2 + ...+nβs) = x implies cnαj ̸= 0
for some αj ∈ Fa and dnβk

̸= 0 for some
βk ∈ Fb. Let c(nαj1

+ nαj2
+ ... + nαjq

) = x

and d(nβk1
+nβk2

+ ...+nβkv
) = x. Thus, nαj1

+
nαj2

+...+nαjq
= x and nβk1

+nβk2
+...+nβkv

= x
since bαjnαj = nαj and bβk

nβk
= nβk

. If
bαji

/∈ {bβk1
, bβk2

, ..., bβkv
} for some i = 1, 2, ..., q,

then bαji
x = bαji

(nβk1
+ nβk2

+ ... + nβkv
) = 0.

Thus, nαji
= 0 which is a contradiction. Hence,

{bαj1
, bαj2

, ..., bαjq
} ⊆ {bβk1

, bβk2
, ..., bβkv

}. Simi-

larly,
{bβk1

, bβk2
, ..., bβkv

} ⊆ {bαj1
, bαj2

, ..., bαjq
}.

This gives us {bβk1
, bβk2

, ..., bβkv
}

= {bαj1
, bαj2

, ..., bαjq
} ⊆ {bγ1 , bγ2 , ..., bγp}. Thus,

(bβk1
+ bβk2

+ ...+ bβkv
)e = x. Therefore, e is the

greatest lower bound of a and b.

Nil free Nil radical

Recall that an element x in R is said to be nil
if bx = 0 for each idempotent atom b. The nil
radical N of R is called nil free if the only nil
nilpotent element is zero.
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Lemma 0.11. Suppose that RB has atoms and
any two nilpotent atoms have an upper bound.
Then, the following are equivalent.

i. N is nil free.
ii. For any 0 ̸= n ∈ N , there exists an atom

b of RB such that bn ̸= 0.
iii. N is atomic and the set of all atoms of N

is precisely {ni}i∈I .
Proof. (i) and (ii) are clearly equivalent by def-
inition. Suppose that for any 0 ̸= n ∈ N , there
exists an atom b of RB such that bn ̸= 0. Then,
bN ̸= {0} for every idempotent atom b. Thus,
{ni}i∈I ̸= ∅. Suppose that there exists a nilpo-
tent element n /∈ {ni}i∈I . Thus, bn = 0 for all
atom b ∈ RB which is a contradiction. Hence,
{ni}i∈I is the set of all nilpotent atoms. Let
0 ̸= n ∈ N and there exists an idempotent atom
b such that bn ̸= 0. So, bn < n. Therefore, N
is atomic since bn is an atom. Assume that N
is atomic and {ni}i∈I is the set of all nilpotent
atoms. Let 0 ̸= n ∈ N . Then, ni < n for some
i ∈ I. Hence, bn = ni ̸= 0 for some b ∈ RB.

Remark 0.1. If RB has atoms and N is nil free,
then N has atoms.

Proof. Suppose that RB has an atom say b and
N is nil free. Then b is an atom of R and bn ̸= 0
for some 0 ̸= n ∈ N as N is nil free. Then bn is
an atom of R as bn ̸= 0 and b is an atom of R.
But bn ∈ N . This implies bn is an atom of N.

Lemma 0.12. Let N be nil free and any two
nilpotent atoms have an upper bound. R is
atomic if and only if RB is atomic.

Proof. Obviously, RB is atomic if R is atomic.
Suppose that RB is atomic. Since N is nil free, it
is atomic by Lemma 0.11. Let r ∈ R be neither
nilpotent nor idempotent. So, r = rB + rN and
either rB ̸= 0 or rN ̸= 0. Thus, there exists an
atom b ∈ RB such that b < rB which implies
brB = b. Hence, br = brB + brN = b + brN ̸= 0
as b is non zero. By Lemma 0.5, br is an atom
of R and also br < r. Therefore, R is atomic.

Lemma 0.13. Let RB be atomic, N be nil-
free and any two nilpotent atoms have an upper
bound. For any 0 ̸= n ∈ N ,

i. Every atom of RBn is of the form bjn for
some atom bj ∈ {bi}i∈I .

ii. RBn is atomic.

Proof. i. Let bn be an atom of RBn. Then,
bn is an atom of N. By Lemma 0.11,

bn ∈ {ni}i∈I . Thus, bn = nj for some
nj ∈ {ni}i∈I . By de�nition, there exists
an atom bj of RB such that bjnj = nj .
If bbj = 0, then bn = bnj = bbjnj = 0
which is a contradiction. Thus, bbj ̸= 0
and hence bbj = bj . Therefore, bn =
bnj = bbjnj = bjnj = bjbn = bjn.

ii. Let bn ∈ RBn. Then, there exists nk ∈
{ni}i∈I such that nk < bn by Lemma
0.11. Thus, bknk = nk < bkbn. If
bkb = 0, then nk = 0 which is a contra-
diction. Therefore, bkb = bk and hence
nk < bkn. So, there exists c ∈ RB such
that cbkn = nk. If cbk = 0, then nk = 0
which is a contradiction. Thus, bkn = nk
and hence bkn < bn. Therefore, RBn is
atomic since bkn is an atom in RBn.

Lemma 0.14. Let RB be atomic and any two
nilpotent atoms have an upper bound. If N is nil
free, then for all n(̸= 0) ∈ N , n =

∨
j∈J nj where

J is some subset of I.

Proof. Let n ∈ N . Then, by Lemma 0.13
RBn is atomic and every atom of RBn is of
the form bjn for some atom bj of {bi}i∈I . In
??,

∨
k∈K bk = 1, where {bk}k∈K is the set of

all atoms of RB. Now, n = (
∨

k∈K bk)n =
(
∨

i∈I bi)n = (
∨

j∈J bj)n, where J ⊆ I and

bjn ̸= 0. Therefore, n =
∨

j∈J bjn. bjn ̸= 0 im-
plies that bjn is an atom of RBn and bjn = nj .
Hence, n =

∨
j∈J nj .

Lemma 0.15. Let RB be atomic and {bk}k∈K
be the set of all atoms of RB. If {bk}k∈K is join-
complete, then
b∧(

∨
j∈J⊂K bj) =

∨
j∈J⊂K(b∧bj) for any b ∈ RB.

Proof. Suppose that {bk}k∈K is join-complete
and b ∈ RB. Take {bj}j∈J for J ⊆ K. Then,
there exists x ∈ RB such that x =

∨
j∈J bj .

Thus, bj < x and hence bbj < bx for all j ∈ J .
So, bx is an upper bound of {bbj}j∈J . Let u be an
upper bound of {bbj}j∈J . Then, bbj < u for all
j ∈ J . By de�nition of partial order, bbju = bbj
as both bbj , u ∈ RB. So, bj = bbju + bbj + bj =
bbju+bbjx+bjx as bbj < bx⇒ bbjx = bbj by def-
inition of partial order for b, bbj , x ∈ RB. Thus,
bj(bu+bx+x) = bj which gives us bj < bu+bx+x
for all j ∈ J . So,we obtain that x < bu+ bx+ x
as x is lub{bj}j∈J . This gives us bxu = bx and
hence bx < u. Therefore, bx =

∨
j∈J bbj . That

is, b ∧ (
∨

j∈J⊂K bj) =
∨

j∈J⊂K(b ∧ bj) for any
b ∈ RB as RB is a Boolean lattice.
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Lemma 0.16. Let RB be atomic, N be nil
free and any two nilpotent atoms have an upper
bound. Let {ni}i∈I be join-complete and b be an
idempotent atom of R. Then:

i. b (
∨

j∈J⊂I nj) = 0 if b /∈ {bi}i∈I .
ii. bi (

∨
j∈J nj) = ni if and only if ni ∈

{nj}j∈J .

Proof. Suppose that {ni}i∈I is join-complete, b
is an idempotent atom of R and J ⊂ I. Then,
n =

∨
j∈J nj exists in N by the hypothesis.

i. If b /∈ {bi}i∈I , then bN = {0} by def-
inition 0.1 and Lemma 0.6. Therefore,
bn = 0 and hence b (

∨
j∈J nj) = 0.

ii. Suppose that ni ∈ {nj}j∈J . Then, ni <
n and hence 0 ̸= bini < bin. By Lemma
0.6, biN = {0, ni} and hence ni = bini =
bin. So, we obtain that bi(

∨
j∈J nj) = ni

and also ni < n. Hence, ni < n for all
atoms ni. Suppose that ni /∈ {nj}j∈J
by De�nition 0.1. Then, ni = bin =
(bin) ∧ (

∨
j∈J bjn) since nj = bjn and

RBn is a Boolean lattice. Therefore,
ni =

∨
j∈J [(bin) ∧ (bjn)] from (i). That

is, ni =
∨

j∈J(bi ∧ bj)n = 0 since bi ̸= bj
for any j ∈ J which is a contradiction.
Hence, ni ∈ {nj}j∈J .

Theorem 0.2. The set of all nilpotent atoms is
complete, RB is a symmetric Boolean ring and N
is nil free if and only if R is isomorphic to the di-
rect product of WI-rings each of which is a copy
of a two element �eld or a four elements BLR
H4.

Proof. Let the set of all nilpotent atoms be com-
plete, RB be a symmetric Boolean ring and N
be nil free. Assume that {bk}k∈K is the set of
all idempotent atoms, {bi}i∈I⊂K is the set of
all idempotent atoms for which biN ̸= {0} and
{ni}i∈I is the set of all nilpotent atoms corre-
sponding to {bi}i∈I . Then, Rbr is either {0, br}
or {0, br, nr, br + nr} and Rbr1 ∩ Rbr2 = {0}
for all r1, r2 ∈ K, r1 ̸= r2 by Lemma 0.8 and
Lemma 0.7. Hence, Rbr is either a copy of the 2-
element �eld or a copy of the four-element BLR
H4. Consider the direct product

⊕
r∈K Rbr. De-

�ne ψ : R→
⊕

r∈K Rbr by ψ(x) = (xbr)r∈K .
Then, ψ(x + y) = ((x + y)br)r∈K = (xbr)r∈K +
(ybr)r∈K = ψ(x) + ψ(y).
ψ(xy) = (xybr)r∈K = (xbr)r∈K · (ybr)r∈K =
ψ(x)ψ(y) as br ∈ RB and R is commutative.

ψ(1) = (br)r∈K =
∨

r∈K br = 1 as RB is a sym-
metric Boolean ring.Therefore, ψ is a homomor-
phism. Let ψ(x) = ψ(y). So, we get (xbr)r∈K =
(ybr)r∈K . Then, xbr = ybr for all r ∈ K. This
implies xBbr = yBbr and xNbr = yNbr for all
r ∈ K.
Now, xB = xB(

∨
r∈K br) =

∨
r∈K xBbr =∨

r∈K yBbr = yB(
∨

r∈K br) = yB.
Again xN =

∨
i∈I bixN by Lemma 0.14 and hence

xN =
∨

r∈K brxN =
∨

r∈K bryN
= (

∨
r∈K br)yN = yN . Therefore, x = y and so

, ψ is one to one. Let (xrbr)r∈K be any element
of

⊕
r∈K Rbr. Then,

xrbr = srbr+trnr where sr, tr ∈ {0, 1}. Consider∨
r∈K srbr +

∨
r∈K trnr in R.

ψ(
∨

r∈K srbr +
∨

r∈K trnr) = ([
∨

r∈K srbr +∨
r∈K trnr]br)r∈K

= (
∨

r∈K [srbr + trnr]br)r∈K =
∨

r∈K [(xrbr)r∈K ]
= (xrbr)r∈K by Lemma 0.15 and Lemma 0.16.
Hence, ψ is onto and so that R is isomorphic to⊕

r∈K Rbr.
Let R be isomorphic to

⊕
i∈I Ri where Ri =

{0, bi} or {0, bi, ni, bi + ni}. Let x ∈
⊕

i∈I Ri.
Then, x = (xi)i∈I where xi ∈ Ri. x is an
idempotent if and only if (x2i )i∈I = (xi)i∈I and
x2i = xi, ∀i ∈ I which implies either xi = 0 or bi.
x is nilpotent if and only if x2 = 0 which implies
either xi = 0 or ni. Hence, the set of all idem-
potent elements of

⊕
i∈I Ri is RB = {(xi)i∈I :

xi = 0 or bi} and the set of nilpotent elements
of

⊕
i∈I Ri is N = {(xi)i∈I : xi = 0 or ni}. Let

0 ̸= x = (xi)i∈I ∈ RB. x is an atom if and
only if xi = bi for some i ∈ I and xj = 0 for
all j ̸= i and j ∈ I. For: if x is an atom,
then xi ̸= 0 for at least one i ∈ I. If xi ̸= 0
and xj ̸= 0 with i ̸= j and i, j ∈ I, then we
have xi = bi and xj = bj from the hypothesis.
So, x = (xi)j ̸=i∈I + xj = (bi)j ̸=i∈I + bj . Let
y = (yi)i∈I with yi = bi, yj = 0 for all j ̸= i and
i, j ∈ I. Then, y is neither equal to zero nor x.
Considering xy = (xi)i∈I(bi)i∈I + xj(bi)j ̸=i∈I =
(xibi)i∈I + (xjbi)j ̸=i∈I = (bi)i∈I = y which con-
tradicts the fact that x is an atom. Hence, xi ̸= 0
holds for at most one i ∈ I. Conversely, let
0 ̸= x ∈ RB such that xi = bi for some i ∈ I
and xj = 0 for all j ̸= i with i, j ∈ I. Let y < x.
Then, y ∈ RB and yi = bi for some i ∈ I and
yj = 0 for all j ̸= i with i, j ∈ I by the hypoth-
esis. Thus, xy = (xi)i∈I(yi)i∈I = (bi)i∈I = x.
Hence, x is an atom. Let x = (xi)i∈I ∈ RB.
Then, there exists at least one i ∈ I such that
xi ̸= 0. Let 0 ̸= y = (yi)i∈I ∈ RB with yi = bi
and yj = 0 for all j ̸= i, j ∈ I. Then, y is an
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atom and xy = y. This implies y < x and hence
RB is atomic. Let {yk}k∈K be any set of atoms
of RB such that yi = bi if yki = bi for some
k ∈ K and yi = 0 if yki = 0 for all k ∈ K. Then,
y = (yk)k∈K = (yki)i∈I = (yi)i∈I . Hence, y is
the upper bound of {yk}k∈K . Let x be an upper
bound of {yk}k∈K . Then, there exists an element
zk ∈ RB such that yk = zkx by de�nition. So, we
have y = (yk)k∈K = (zkx)zk∈RB

= x(zk)zk∈RB

by Lemma 0.15 which gives us y < x. Thus, y
is the supremum of {yk}k∈K . Therefore, RB is
complete. Let 0 ̸= x ∈ N and x = (xi)i∈I . Then,
there exists an i ∈ I such that xi ̸= 0. There-
fore, xi = ni. Consider y = (yi)i∈I with yi = bi
and yj = 0 for all j ̸= i, j ∈ I. Then, y is an
atom of RB and yx ̸= 0. Hence, N is nil free.
Also, atoms of N are of the form (xi)i∈I with
xi = ni for some i ∈ I and xj = 0 for all j ̸= i
and i, j ∈ I. If {zk}k∈K is any set of atoms of
N, then z = (zi)i∈I is the supremum of {zk}k∈K ,
where, zi = ni if zki = ni for some k ∈ K and
zi = 0 if zki = 0 for all k ∈ K. And 0 is the in�-
mum of {zk}k∈K . Hence, the set of all nilpotent
atoms of

⊕
i∈I Ri is complete.

Conclusions

In this paper we have studied the lattice of the
sub group generated by the collections of nilpo-
tent atoms corresponding to idempotent atoms of
a commutative weak idempotent ring with unity.
We also studied the isomorphic properties of a
cWIR with unity to the direct product of WIRs
each of which is a copy of two elements �eld and
a BLR H4. This may motivate to study further
isomorphic properties and lattice structure of a
cWIR with unity.
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