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ABSTRACT: This study explores the interaction of climate covariates and spatial elements 

with wind speed in Ethiopia. It intends to extrapolate the potential spots of wind at 
unobserved spatial points using a meteorological dataset. We applied a combined dynamic 
spatial panel autoregressive random effects model with a spatial weight of inverse quartile 
separation distances of locations. This spatial weight outperforms the other spatial weights to 
capture spatial dependence and gain efficient estimates. The result describes that mean wind 
speed varies over the longitude range and latitude span, is influenced by climate covariates 
and fluctuates over the months of a year. Wind speed intensity is high along the central, 
eastern and northeastern parts of the region. It is also high in February, March, June, and July 
relative to September and October months. The evidence shows that wind speed is higher in 
summer and spring but relatively lower in winter and fall seasons. This implies that wind 
speed is high mainly after the rainy season ends and before it starts. The model estimates also 
show that mean wind speed is spatially correlated across neighboring stations and over 
temporal points. Particularly, the mean wind speed increases with altitude and temperature 
but decreases as precipitation increases. Sunshine fraction and relative humidity have 
negative effects, but their influence is not statistically significant with p=0.2496 and p=0.4484 
respectively. In conclusion, the methods are recommended for the prediction of data that 
exhibits a stochastic process. 
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INTRODUCTION 
 

Climate change threats and the 

stochastic nature of wind energy sources have 

become major global issues (Yao et al., 2012). 

Every society requires energy supply to meet 

basic human needs (e.g., lighting, cooking, 

space comfort, mobility, communication) and 

to serve productive processes. For sustainable 

development, delivery of energy services 

needs to be secure with low environmental 

impacts. Therefore, the efforts of many 

countries to build green energy have started 

with the introduction of renewable energy 

systems in their future energy plans and 

policies. However, energy supply distribution 

from renewable resources is uneven and had 

been dominated by few countries such as 

China, the United States and the United 

kingdom (Yamba et al., 2011; Belward et al., 

2011). 

One of the most abundant renewable 

energy resources is wind, although Africa’s 

share is very low regardless of its potential 

(Olabi, 2013). The production of wind energy 

is influenced by various local climatic and 

spatial variables, and its distribution varies 

over time (Yao et al., 2012). All renewable 

energy resources including wind are highly 

susceptible to local variations in climate 

making their predictions challenging. Thus, 

for effective production of wind energy, the 
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first measure that has to be taken is 

conducting an adequate survey of wind 

availability. However, the fluctuation of the 

mean wind speed makes it difficult to obtain 

reliable estimates of wind availability. 

Consequently, wind models have been 

developed based on available mean wind 

speed data records (Kadhem, 2017). 

Ethiopia is at the forefront in terms of 

its wind potential in Africa. According to a 

report on wind energy conditions in Ethiopia, 

there is approximately 1350 GW (>7 m/s) 

exploitable reserve of wind energy, of which 

only less than 1% has been developed 

(Derbew, 2013). However, the site selection of 

potential spots is highly subjected to climatic 

variability (global and local) and spatial 

factors, which directly affect the production of 

wind power. A potential spot census has not 

been completed for the vast overland wind 

resource-enriching regions using reliable 

scientific methods in Ethiopia. Wind speed 

potential assessment in Ethiopia was carried 

out in hybrid system for off-grid rural 

electrification by Bekele and Tadesse (2012) 

and the annual average wind speed at a 

nearby station (Debre Markos), the study area, 

was calculated as 3.5 m/s based on 

anemometer data collected at 10m height. The 

minimum of the 3.5 m/s and the 3.1 m/s, 

measured on the data obtained from NASA 

evidenced to the belief that unevenness nature 

of the upper Blue Nile gorge is a good 

resource of wind, the northern part of 

Ethiopia. However, this area is high-relief area 

and is difficult to utilize the wind resources. A 

stand wind power supply system was 

considered for four locations; Addis Ababa, 

Mekele, Nazret and Debrezeyt (Bekele and 

Palm, 2010). The monthly average wind 

speeds for the locations showed relative 

increase from January to April and September 

to November but mild in the months of June 

to August. 

Many previous studies across 

developed countries have relied on climate 

models that require a high-resolution 

downscaling approach. However, the 

statistical downscaling technique is deficient 

in determining all uncertainties at increased 

spatial resolution (Gonz´alez Aparicio et al., 

2017). Prediction of wind power or climate 

variates has often been carried out using the 

General Circulation Model (GCM) or the 

Regional Climate Model (RCM) (Yao et al., 

2012). Breslow and Sailor (2002) conducted a 

study on the vulnerability of wind power 

resources to climate change in the continental 

United States using GCM output from the 

Canadian Climate Center and Hadley Center 

to provide a range of possible variations in 

seasonal mean wind magnitude. The 

projection predicted that wind speed will 

reduce from 1.0 to 3.2% in 50 years, and 1.4 to 

4.5% over 100 years. Another downscaling 

approach involves RCMs that run over a 

limited spatial domain. However, no spatial 

dependence measure was considered and the 

prediction was also limited to small spatial 

scales from 100 to 200 km (Greasby, 2011). The 

reanalysis method has been frequently used 

for the quantification of mean wind speed, 

and wind power in many studies. However, it 

does not have a time variation property, and 

excludes cross-dependence between 

meteorological data which may not be able to 

capture local wind features (Kadhem et al., 

2017). Wind potential spot can be estimated 

based on various local environmental factors 

and global factors using common 

geostatistical models. As climate variables 

vary across space and time, we seek to 

identify areas across the domain (or regions) 

that might influence wind distribution. 

Dominantly, temperature measures have been 

used as a predictor to model wind distribution 

in previous studies, where many other climate 

and spatial variables could have significant 

effects. Thus, geostatistical models do not 

capture the stochastic nature of wind and 

climate variables by customary spatial 

dependence measures. 

In most empirical studies, it is difficult 

to measure uncertainty in the spacetime 

stochastic processes. For instance, the 

stochastic nature of the power production 

system arises from uncertainty in spatial 

resolution particularly for wind power. The 
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measurement of spatial and time effects is not 

easy, as in the case of pure time series and 

when the data structure is flipped from the 

customary cross-sections to the spatial panel 

setting. Difficulties in determining the effects 

of spatial autocorrelation or spatial 

heterogeneity are commonly interrelated, 

causing model identification and 

misspecification problems (Harris et al., 2003; 

cited in Elhorst, 2011). In addition, involving 

all possible spatial interaction effects causes 

problems in parameter identification and 

overfitting. In such cases, we prefer to choose 

among simpler models with less spatial 

interaction effects (Elhorst, 2011). 

Due to expensive installation costs of 

wind energy, it requires a careful planning 

and assessment of wind potential spots. Once 

a potential spot is identified, a proper siting of 

the wind turbine and location greatly 

determines the wind resource management. 

Wind measurement and mapping should also 

be carried out over a long period (at least one 

year) to integrate the different seasonal 

variations prior to installation. However, the 

availability of data is the big challenge for the 

sustainable wind power harvest. 

Therefore, this study lays a 

foundation towards understanding the trends 

of wind distribution, the effects of climate 

covariates and topographic elements on mean 

wind speed which varies over space and time. 

It uses a combined dynamic spatial panel 

autoregressive model with spatial weight 

based on inverse quartile separation distances 

to analyze the effects of climate covariates on 

wind distribution. 

In this paper, we also considered the 

spatial plots and dynamic spatial panel 

autoregressive model with an alternative 

spatial weight design (Bulty et al., 2023). As 

such, Bayesian hierarchical modelling is also 

used for prediction (or estimation) over 

traditional likelihood-based methods to gain 

the more efficiency in the estimates. The 

performance attained through the use of the 

spatial weight matrix of inverse quartile 

separation distances of locations is better as 

compared with the state of the art of the 

works. Explicitly, the contiguity-based spatial 

weight is not the best option for stochastic 

processes distributed over large spatial 

regions since it disregards higher level 

neighborhood relationships, when two 

locations may be indefinitely neighbors to 

each other with decreasing magnitude as the 

locations get far apart. Euclidean distance 

based spatial weight is not also an appropriate 

measure of adjacency for spatial variables 

since it considers a straight-line distance in 

two dimensional space and is influenced by 

the accuracy of the distance measures. The 

data for this study was obtained from records 

of continuous measurement carried out by 

National meteorological Agency of Ethiopia 

from 2000 to 2017 at 60 stations. Obviously, 

wind power is mathematically related to wind 

speed in cubic scale, and thus the prediction of 

mean wind speed leads to the prediction of 

wind power. 

Following the last paragraph in Sec.1, 

Sec. 2 describes the methods of prediction, Sec. 

3 is about the presentation and discussion of 

the results of the study, and Sec 4 concludes 

the result of the study and recommends for 

the best spot of wind. 

 

 

METHODOLOGY 

 

This section discus about the statistics, natural 

condition and wind potential area assessment 

in the study region. It also describes the 

scientific methods employed for the prediction 

of wind potential spots and its interaction 

with climate and spatial variables. 

 

 Description of Wind Potential Spatial 

Domain 

The Federal Democratic Republic of 

Ethiopia (FDRE) is the most populous, 

landlocked, fast-growing non-oil-producing 

country in the Horn of Africa. The total area of 
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the country is approximately 1.104 million 

square kilometers with a population of 

approximately 107 million according to the 

latest United Nations projection in 2018. Of 

the total population, 83% live in rural areas 

with limited or no access to electricity. 

Ethiopia has four seasons namely; 

summer (kiremt)- June to August, spring 

(tsedey)- September to November, winter 

(bega)- December to February and fall (belg)- 

March to May. However, latitudes and 

topographic conditions vary from place to 

place; therefore, the transition time of the 

seasons differs from region to region within 

the country. Summer (kiremt), the rainy 

season is characterized by abundant rainfall 

which is an essential condition for the 

production and life of local people as well as a 

basis for local irrigation farming. Drought 

during this season may be disastrous for 

people in the entire Nile Basin, including 

Ethiopia (Jiangtao, et al., 2012). 

Hydrochina Corporation prepared the first 

wind and solar energy master plan for 

Ethiopia in 2012. The report focused on the 

assessment of wind and solar energy 

resources based on meteorological data, 

observations of wind masts, and numerical 

simulation methods (Jiangtao et al., 2012). It is 

believed that the complex topographic 

conditions of Ethiopia are important causes 

for the formation of wind energy resources. 

Because of regional differences in latitude, 

elevation, topographic conditions, Earth 

surface conditions, and other external 

conditions, wind energy resources have 

complicated and diversified compositions and 

distribution in different regions of Ethiopia. 

The distribution of wind energy resources has 

four major regions: the Great Rift Valley, mid-

north highland, west low-relief, and east 

Somali plain regions. 

The basic north-east to south-west 

strike of the East African Great Rift Valley in 

Ethiopia approaches the northeast trade winds. 

Moreover, under the venturi effect of the 

Great Rift Valley and the forced acceleration 

action of mega relief, vast regions rich in wind 

energy resources form in the Rift zone and on 

both sides. Consequently, these regions have 

become major target regions for wind power 

development in Ethiopia, according to the 

master plan. 

The mid-north highland region of 

Ethiopia mainly includes the middle of 

Oromia State, most of Amhara State and the 

mid-east of Tigray State. This region is the 

principal part of the Ethiopian highlands. In 

this region, plateau tablelands and 

mountainous lands are widely distributed and 

many zones rich in wind energy resources are 

usually in high-relief areas. However, it is 

difficult to develop and utilize these resources 

because of their complex terrain. The western 

part of Ethiopia is mainly a large area near the 

boundaries of Sudan and South Sudan. With 

the gradual fall of relief in the region, the 

forced acceleration action of the terrain 

weakens, and the wind speed on the surface 

layer is low; thus, wind energy resources are 

limited. The Ethiopian east plain region 

mainly refers to a large area of the Somali 

region, which is broad and has small relief. All 

year round, the region has strong winds under 

the alternative influence of the northeast trade 

wind zone and southwest monsoon zone. 

Moreover, the regions rich in wind energy 

resources are centralized along the Great Rift 

Valley, from the capital Addis Ababa to 

Mekele in the north and from Addis Ababa to 

Mega in the south (Ethiopian Wind Energy 

Agency, 2009). It also includes the east and the 

west sides of the Great Rift Valley, from the 

capital city to eastwards up to Harar and Jijiga 

towns. Therefore, this study is limited to the 

potential areas described in Figure 1. 
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Figure 1: Wind Potential Areas of Ethiopia- The Study Area (primary; 2017) 

 
 
Data Sources 

The units used in the analysis are 
meteorological elements that are point-
referenced spatially continuous processes and 
temporally discrete data, which is obtained 
from records of National Meteorological 
Agency of Ethiopia for the period January 
2000 to December 2017 taken at 60 stations. 
The dataset includes monthly observed data 
of wind speed (m/s), temperature (maximum 
and minimum) in 0C, relative humidity (%), 
rainfall or precipitation (mm), and sunshine 
fraction (h). In addition to meteorological 
elements, spatial elements such as elevation, 
longitude (easting) and latitude (northing) at 
each station were included. A spatial panel 
data frame ordered first in time and then in 

space is used for which each record reflects a 
single time and space combination. 

Stations found in Ethiopian east plain 
region and along the Great Rift Valley zone 
are identified as the abundant potential 
regions for harvesting wind energy in 
Ethiopian according to the wind and solar 
energy assessment master plan. Consequently, 
an opportunistic design as indicated by Diggle 
et al. (2007) is considered, whereby continuous 
field data are taken from the selected stations 
in the region (R), which vary over the eastern 
plain of the country and towards the Great 
Rift Valley zones. 

There are 37 surface-based Automatic 
Weather Stations (AWS) at various locations 
in Ethiopia. These stations report wind speed 
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and direction, temperature, relative humidity, 
radiation, and rainfall every 15 minutes. There 
are also special stations for air navigation at 
some airports called automatic weather 
observing system (AWOS). In addition, 
available wind masts in a few regions of the 
country were used, but they could not 
adequately provide valid information across 
the country. The stored data has coverage 
problem as the stations are located in large 
towns and data gaps due to interruptions of 
observations. 

 
Method of Prediction 

The existing stations in the study 
region are selected from over-dispersed large 
spatial scales where this study has no full 
control of every record at each station. There 
is dominantly a north-east trade wind that 
continuously flows from north to east. Thus, 
records at each station show higher similarity 
in orientation and hence, the orientation 
effects assumed to be negligible. Very often, 
during winter season, the weather is sunny 
and dry with strong radiation, bringing rich 
wind energy and solar energy. With the 
coming of summer in Northern Hemisphere, 
subtropical high pressure in North Africa 
moves northwards thus trade-wind zone also 
moves northwards. Besides, the study region 
is mostly a plain field and there are no or little 
wind barriers that affect the direction of wind 
from its natural flow. Also, the sitting of the 
stations with wind records are situated so as 
to avoid the effects of local topographic 
barriers. Even though the influence of wind 
direction is very essential to the subject, it is 
negligible and so, the use of anisotropic 
models takes on distinct model specifications. 
Therefore, the assumption of isotropic 
condition for stationarity in the space and 
time generally holds. From the three core 
spatial autoregressive models, the dynamic 
spatial panel autoregressive model containing 
both interaction effects among the error terms 
and endogenous interaction effect has more 
practical values when all locations are 
assumed to be neighbours to each other in the 
neighbourhood structure set up. 

We have two techniques in spatial 
interpolations (or predictions), namely 
distance-based and geostatistics methods. 

When distance-based technique is chosen, we 
need to define a certain neighborhood that 
would be integrated into the model (Flitter et 
al, 2016). This paper employs a specific dense 
spatial weight design of inverse quartile of 
separation distances between stations 
pertaining to the recent works by Bulty et al. 
(2023). The separation distances between 
spatial locations is great-circle distances 
calculated using haversine formula. The 
Haversine formula is given by, 

 
 

, (1) 

 
 
where θ1 and θ2 are the latitudes of the radius, 
∆θ is the latitude difference (∆θ=θ1-θ1), ∆δ is 
the longitude difference (∆δ=δ1-δ1)) and R is 
radius of the earth (mean radius=6371km). 
The measures of separation distances are 
grouped into intervals according to their 
positions relative to the quantile values and 
weighted to the inverse of their respective 
quairtile values. Briefly, let si and sj be the ith 
and jth locations, respectively. Then, dij =| si − 
sj | is the absolute separation distance 
between locations i and j in kilometers, and Qn 

denotes the nth quantile value. Furthermore, 
l(dij) denotes a function of separation distance 
between pairs of locations. The weights are 
computed for each level of neighbors using 
the inverse quartile of separation distances 
between locations. Thus, l(dij) can be defined 
as; 
 

 ,
 (2) 
 

There are N2-N nonzero links in the 
matrix, where N is the number of diagonal 
elements of the weight matrix in each interval. 
Thus, the weights, wk are assigned as, 
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 .
 (3) 
 

The weights matrix, WN  is zero on-
diagonal (i.e. wij = 0, for i = j, i, j = 1,...,N) and 
non-zero off-diagonals (wij, for i ≠ j), where N 
is the number of locations and is given as, 

 

                     (4) 

 
The spatial weight matrix is 

normalized by making the entries in the rows 
to add up to one. That is, the weights are then, 
row-standardized (row sum is unity) to 
constitute the elements of the weight matrix. 

 

,
 (5) 

Where is the row-sum. Thus, the 
normalized weights matrix, 

                  (6) 

  
 It provides the spatial weight matrix, 

of full rank and positive definite, and 

assumed to be constant over time (or static 
spatial weights). Using the subscripts to 

designate the matrix dimension, with  as 

the weight matrix for the cross-sectional or 
spatial dimension, and observations stacked 
or pooled in regression, the full NT × N 
weight matrix becomes, 
 
                                                                   (7) 

 
IT  is the identity matrix of dimension 

T × 1 for T temporal points, and is a 

spatial weight matrix of dimension N × N, 
where N is the number of locations and ⊗ is 
Kronecker product operator. The shift 
operator for the time component (e.g., time lag) 
is directly incorporated into the A combined 
dynamic spatial panel autoregressive model 
(Anselin et al., 2004). A combined dynamic 

spatial panel autoregressive model is specified 
as,  

 
yt = λ(IT ⊗WN)yt+φ1yt−1+φ2(IT 
⊗WN)yt−1+Xtβ+α1N+µ+ψt1N+ut 
ut = ρ(IT ⊗ WN)ut + εt,
 (8) 
 

Where, yt denotes an N×1 vector of 
dependent variable for every unit in the 
sample i = 1,...,N at time t (t = 1,...,T), yt−1 

denotes an N×1 vector of time-lagged 
dependent variable, φ1 and φ2 are scalar 
measures of strengths of time lag correlation 
and spacetime lag correlations, respectively. 
(IT ⊗ WN)yt−1 denotes a spacetime lag 
endogenous interaction effect component, (IT 

⊗WN)yt denotes spatial lag endogenous 
interaction effect component associated with a 
spatial autoregressive coefficient λ, Xt denotes 
an N×K matrix of exogenous explanatory 
variables with the associated parameter β, 1N 

denotes an N×1 vector of ones associated with 
a constant α, µ is N×1 vector of spatial fixed or 
random effects, ψt is time period fixed effects. 
(IT ⊗WN)ut denotes spatial interaction effects 
among error terms and εt is an N×1 vector of 
disturbance terms (Bulty et al., 2023). 

We used the maximum likelihood 
estimation (MLE) method for spatial panel 
dataset. Since the posterior distribution is 
proportional to the product of the data, 
process and parameter models, sampling can 
be accomplished using standard Markov 
Chain Monte Carlo (MCMC) techniques such 
as Gibbs sampler (Leeds and Wikle, 2012). The 
parameters are functions of the 
hyperparameters with their respective 
conditionally independent set or 
noninformative priors. In this paper, however, 
the default values (noninformative) of the 
priors in the LearnBayes package are applied to 
get appropriate Bayesian estimates (Albert, J., 
2018). 

 
 

RESULTS AND DISCUSSIONS 

 

Spatial Panel Data Description 

Meteorological dataset is described using 
simple tables and spatial plots. Primarily, 18 
years dataset is aggregated into 12 months 
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across 60 stations to get a spatial panel data 
structure of 720 observations of spacetime 
stack. Such aggregation leads to a balanced 
panel data which simplifies computational 
difficulties in spatial panel data models. 

The means of measurements have 
been simulated from 1000 samples based on 
the data at 95% confidence level. The results 

shown in Table 1 reveal that, the study region 
is found in the elevation range of 376 meter 
and 3084 meter with a credible set of mean to 
be from 1679.13 to 1779.37 meter. It is located 
in the longitude range of 36.20 0E to 44.30 0E 
and from 4.88 °N to 
13.88 °N latitude span. 
 

 
 
Table 1. Summary of Meteorological Dataset. 

 

Variables Mean Min. Max. sd 95% Credible set for the 
means 

Elevation (meters) 1729 376 3084 678.1 (1679.13, 1779.37 ) 

Longitude(degree) 39.65 36.20 44.30 1.59 (39.54, 39.77 ) 

Latitude (degree) 8.84 4.88 13.88 2.29 (8.69, 9.01) 

Wind speed (m/s) 1.62 0.10 7.10 0.85 (1.56, 1.69) 

Temperature (Max, 0C) 27.63 13.53 43.13 5.54 (27.23, 28.04) 

Rainfall, precipitation (mm) 67.66 0 381.40 68.62 (62.48, 72.37) 

Relative Humidity (%) 62.39 36.75 90.80 9.79 (61.73, 63.10) 

Sunshine fraction (hrs) 7.41 1.10 10.50 1.66 (7.29, 7.53) 

 
Generally, the climate condition of the 

region in the fall, winter, spring, and summer 
seasons are the mixture of hot, cold, and 
moderate climates. There are also desert, 
humid and rainy places. As indicated in Table 
1, the study region has the lowest relative 
humidity of 36.75 % and the highest relative 
humidity of 90.8 % with a mean of 61.73 to 
63.10 %. The temperature (maximum) has the 
lowest value of 13.53 0C and the highest value 
of 43.13 0C with the mean from 27.23 to 28.04 

0C. The rainfall amount has the minimum of 0 
and the maximum of 381.4 millimeter with the 
mean of 62.48 to 72.37 millimeter and the 
magnitude of the sun fraction lasts from 1 
hour and 6 minutes to 10 hours and 30 
minutes with the mean of 7.29 to 7.53 hr per 
day. Wind speed for the year of 2000 to 2017 
and across the spatial stations has a minimum 
of 0.1 m/s and a maximum of 7.1 m/s with 
the mean of 1.56 to 1.69 m/s. 

 
Table 2. Mean Wind Speed by Month and Season. 

 

Seasons Winter Spring  Summer  Fall  

Months Dec. Jan. Feb. March April May June July Aug. Sep. Oct. Nov. 

Mean wind speed (m/s) 1.57 1.62 1.81 1.80 1.71 1.57 1.75 1.79 1.57 1.32 1.43 1.53 

Mean wind speed per 
Season 

1.67 1.69  1.70  1.43  

 
 

As shown in Table 2, mean wind 
speed in the months of February, March and 
July seems to have relatively higher intensity 
whereas months of September, October and 
November have relatively lower wind speed. 
Months of December, May and August have 
nearly equal wind speed distribution for the 
last 18 years and across the meteorological 
stations. From the seasons, fall has a relatively 

low mean wind speed whereas the remaining 
seasons have equal wind speed distribution 
which implies that wind potential is more or 
less stable over the three seasons of a year in 
Ethiopia. 

Wind speed catchment spot within the 
potential area was identified using Horizon 
plots for latitude, elevation, and longitude 
elements. The result shows that there is more 
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wind speed distribution in the longitude 
range of 38.2 0E to 39.7 0E and in the latitude 
span of 7.2 0N to 8.9 0N. In addition, the wind 

speed is found to be high within the elevation 
range of 1151 to 1634 meter (Figure 2). 

 
 

  
Figure 2. Horizon plots of wind speed versus topographic elements. 

 
 
 
From wind speed map based on 

randomly defined intervals, it can be seen that 
high wind speed potential is observed at 
central, eastern, and northeast parts of the 
country. The maximum wind speed reaches 
up to 3.61 m/s on average. However, in the 
south and southeast parts, wind speed is as 
low as 1.22 m/s or below. As shown in Figure 
3, mean wind speed magnitude is less than 5 
m/s across the stations whereas more than 
50% of the stations have got mean wind speed 

greater than 1.5 m/s and half of the stations 
have got mean speed in the range of 2.14 and 
3.61 m/s over the years 2000 to 2017 in the 
study region. Particularly, the mean wind 
speed distribution gets higher towards the 
east and northeast part of the country. This 
result implies that regardless of the climate 
and topographic factors, the wind speed 
distribution is more or less stronger in the 
study region. 
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Figure 3. Spatial Plot of Mean Wind Speed Distribution in Ethiopia. 

 
 
We used the Pearson’s product-

moment correlation of the wind speed and its 
spatial lag to test for the presence of spatial 
dependence. The result depicts that the 
correlation coefficient is highly significantly 
different from zero (r=0.272, p=1.1×10−15). This 
implies that there is stronger correlation of 
wind speed between the neighbouring 
stations. Furthermore, a Global Moran’s I 
statistics is employed to test for spatial 
dependence after the inverse quartile spatial 
weight introduced in to spatial regression 
residual. The result shows that there is 
positive and statistically significant spatial 
autocorrelation in the residuals across the 
neighboring stations (Moran I statistic = 10.78, 
p < 2.2×10−16). 

From both visual inspection of the 
plot and the tests, it is evident that spatial 

dependence exists in the neighbouring 
stations. That is, near stations have similar 
wind speed distribution as compared to the 
stations located at distant. Therefore, 
prediction of wind speed can be made using a 
stochastic spatial model by accounting for a 
proper measure of spatial dependence. 

 
Maximum Likelihood Estimation 

A meteorological dataset is organized 
into 60 stations and 12 time points to form a 
balanced panel data structure. Seven predictor 
variables are used to fit the model for wind 
speed variation including the time lag and 
spacetime simultaneous (a spatial lag in the 
previous period in time) components. The 
spatial panel data structure is partially 
displayed in Figure 4. 
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Figure 4: Spatial Panel Data Structure of Meteorological Dataset. 
 
 

A dynamic spatial panel 
autoregressive model with random effect 
specification is applied for Bayesian inferences 
to perform the prediction of wind speed. The 

model estimates are presented using 
maximum likelihood estimation (MLE) 
methods in Table 3. 

 
Table 3. Maximum Likelihood Estimates of Parameters. 
 

Description of Parameter Parameter Estimate Std. Error t-value Pr(>| t |) 

Spatial autoregressive coefficient λ -0.999 0.074 10.33 8.5×10−05 *** 

Spatial error parameter ρ 0.761 0.345 -2.89 0.0038** 

Coefficient of wind speed time-lag (m/s) θ1 0.279 0.033 8.43 < 2.2×10−16*** 

Coefficient of wind speed spacetime-lag (m/s) θ2 0.561 0.29 1.91 0.0559 

Intercept β0 1.78 0.628 2.83 0.0047 

Coefficient of elevation (m) β1 0.002 0.00012 1.67 0.0958 

Coefficient of temperature-max (0C) β2 0.036 0.012 3.0 0.0026** 

Coefficient of precipitation (mm) β3 -0.002 0.0004 -4.2 2.7×10−05*** 

Coefficient of sunshine fraction (hrs) β4 -0.02 0.017 -1.15 0.2496 

Coefficient of relative humidity (%) β5 -0.003 0.00034 -0.76 0.4484 

 
 

The maximum likelihood estimates 
are generated using splm function in R at 1%, 
5%, and 10% levels of significance. The main 
focus of the study is assessing spatial 
autoregressive coefficients, λ and the spatial 
error parameter, ρ. The result reveals that both 

spatial autoregressive coefficients (  = -0.999, 
t= -2.89, p=0.0038) and spatial error parameter 

(  = 0.761, t= 10.33, p= 8.5×10−05) are 
significantly different from zero. This implies 
that a negative spatial dependence is inherent 
in the data when measuring the average 
influence of observations with respect to their 
neighbouring observations but positive 

autocorrelation in the spatial errors. This 
means, spatial lag of wind speed imposes 
simultaneity or endogeneity effects within 
spatial neighbours as well as in the spatial 
errors for the meteorological dataset. 

The time-lag ( = 0.279, t= 8.43, p < 

2.2×10−16) and the spacetime-lag (  = 0.561, 
t= 1.91, p=0.0559) are statistically significant at 
1% and 10% levels of significance, respectively. 
The effects of the predictors have also been 

fitted so that elevation (  = 0.002, t= 1.67, p = 

0.0.0958), temperature ( = 0.036, t= 3.0, p = 
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0.0026), and precipitation ( = -0.002, t= -4.2, 
p = 2.7×10−05) found to have statistically 
significant effects on wind speed. However, 

sunshine fraction (  = -0.02, t= -1.15, p = 

0.2498) and relative humidity (  = -0.003, t= -
0.76, p = 0.4484) have no statistically 
significant effects on wind speed distribution. 

For the specified spatial panel 
dependence model, wind distribution 
estimates depict that elevation and 
temperature have positive effects whereas 
precipitation, sunshine fraction, and relative 
humidity affect the wind speed variations 
negatively. That means, wind speed is more 
for a rise in elevation and temperature. 
However, more precipitation reduces the 
wind speed. It is also found that there is no 
significant influence of sunshine fraction and 
relative humidity on wind speed variation, 
which can be due to the fact that, the study 
region has closer values of sunshine fraction 
and relative humidity (Table 3). 

In general, it can be concluded that 
the result of this study supports a previous 
study by Breslow & Sailor (2002) in the United 
States using GCM that wind power resources 
are vulnerable to climate change effects. The 
spatial and topographic variations strongly 
influence the wind power potential as also 
indicated by Yao et al. (2012). Climate 
covariates like precipitation (or rainfall), 
sunshine fraction and relative humidity 
generally reduces the wind speed in the long 
run whereas an increase in elevation and 

temperature increases the wind speed 
potential. 

The study aims to base its prediction 
on the Bayesian estimates than the maximum 
likelihood estimates, since it provides an 
estimated parameter that converges to the 
truer value as the number of samples get large. 

 
Bayesian Inference 

A Kronecker product has been 
utilized to keep the conformity of the 
dimension of the inverse quartile spatial 
weight with the dataset to run MCMC 
hierarchical Bayesian estimates for the 
dynamic spatial panel autoregressive model. 
The dynamic aspect is where the spacetime 
recursive model in which the dependence 
relates to both the location itself as well as its 
neighbours in the previous period in time and 
the time-lag of the wind speed included in the 
model. Sampling from the joint posterior 
distribution of β and σ is performed using 
MCMC Gibbs sampler method. The algorithm 
is based on the decomposition of the joint 
posterior as the product of the conditional 
posterior distribution of β and marginal 
posterior density of σ. An MCMCsamp 
function was employed from LearnBayes R 
package to make MCMC samples of 10,000 
iterations (burn-in period is 5000) from the 
fitted maximum likelihood estimates (Albert J., 
2018). Parameter estimates of the simulated 
posterior draws of the spatial autoregressive, 
autocorrelation error parameter, and the 
regression coefficients of the model outputs 
are presented with its maximum likelihood 
estimates in Table 4. 

 
Table 4. Maximum Likelihood and Bayesian Parameter Estimate. 
 

Parameter Maximum likelihood estimate Bayesian estimate Credible set at 95% 
conf. level 

Λ -0.999 -0.945 (-1.436, -0.362) 

Ρ 0.761 0.795 (0.655, 0.883) 

θ1 0.279 -0.006 (-0.068, 0.069) 

θ2 0.561 0.874 (0.063, 1.72) 

β0 1.78 3.1 (1.846, 4.175) 

β1 0.002 0.0001 (0.000007, 0.0002) 

β2 0.036 0.014 (0.0014, 0.0266) 

β3 -0.002 -0.0023 (-0.0031, -0.0014) 

β4 -0.02 -0.015 (-0.055, 0.022) 

β5 -0.003 -0.005 (-0.012, 0.003) 

AIC 1722.1; (AIC for lm: 1756.7) - - 
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It can be seen from the result that 

AIC=1722.1 of the maximum likelihood 

estimation of the combined dynamic spatial 

panel autoregressive model is less than the 

AIC=1756.7 of the ordinary least square 

estimation methods which implies that the 

maximum likelihood method is more efficient 

to predict the wind speed method than the 

ordinary least square method. Consequently, 

the Bayesian estimates based on the maximum 

likelihood method improves the efficiency of 

the prediction of wind speed. The credible set 

of each effect from the Bayesian estimate is 

also given in Table 5. The interval estimates of 

spatial parameters λ and ρ are (-1.436, -0.362) 

and (0.655, 0.883) at 95% level of confidence, 

respectively. 

 
 

Table 5. Quantiles of Parameters. 
 

Parameter 2.5% 25% 50% 75% 97.5% 

Λ -1.436 -1.13 -0.955 -0.734 -0.362 

Ρ 0.655 0.764 0.804 0.835 0.883 

β0 1.846 2.736 3.11 3.5 4.175 

θ1 -0.0686 -0.03 -0.0063 0.013 0.069 

θ2 0.0639 0.576 0.85 1.18 1.72 

β1 0.00000072 0.0000068 0.000096 0.00012 0.00017 

β2 0.0015 0.0099 0.0143 0.018 0.0266 

β3 -0.0032 -0.0027 -0.0026 -0.0019 -0.0013 

β4 -0.055 -0.028 -0.016 -0.0017 0.022 

β5 -0.012 -0.0074 -0.0051 -0.02 0.002 

 
 
 
 

Bayesian estimates indicate that the 
posterior medians of the estimates of the 
parameters are more or less similar with the 
mean estimates (Table 4). Besides, the traces 
and density plots guarantee the convergence 
of the estimates of the spatial parameters as 
well as coefficients of covariates, and the 
spacetime and time lags components. 

The posterior (Bayesian) mean is more 

or less similar to the dynamic spatial panel 

autoregressive model of maximum likelihood 

estimates (Table 5). Any small differences 

between the posterior mean and the 

maximum likelihood estimates are due to 

small errors inherent in the simulation. The 

quantile values also provide the lower and 

upper limits of the parameter estimates at 95% 

level of confidence in Table 5. Therefore, the 

estimates are sufficient to produce predictive 

values of wind speed potential for some 

unobserved sites in the study region. 

 

Wind Speed Prediction 

To predict a wind speed for any 
unmeasured location, we used the measured 
values surrounding the prediction location 
estimated with appropriate model and the 
best measure of spatial connection. The 
prediction of the wind speed is performed for 
four distinct covariate sets. Each covariate set 
represents four unobserved sites (sites where 
we have no observations in the dataset) but 
found in the wind potential region. These are; 
Addis Ababa, Bishoftu, Harar, and 
Kombolcha. Addis Ababa is found at 9019’N 
and 4207’E, Bishoftu at 8045’N and 38059’E, 
Harar at 9019’N and 4207’E, and Kombolcha at 
1105’12’’N and 39044’12’’E coordinate points. 
The average values of their respective climate 
and spatial variables in the year of 2017 are 
used for the prediction. These are temperature 
(max), precipitation (rainfall), relative 
humidity, and sunshine fraction. Thus, the 
predicted values of wind speed at unobserved 
sites are presented in Table 6. 
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Table 6. Predicted Value of Wind Speed. 
 

Predictors Addis Ababa Bishoftu Harar Kombolcha 

Constant 3.5 3.5 3.5 3.5 

Time-lag (m/s) 1.2 1 2 3.1 

Spatial-time-lag (m/s) 5 2.5 3.9 4.3 

Elevation (m) 2355 1920 1885 1842 

Temp(max) (0C) 20 24 26 19 

Rainfall (mm) 57 21 44.7 29 

Sunshine (hs) 60.4 54.8 52 64 

Relative humidity (%) 275 302.2 304 294.5 

Predicted mean of wind speed (m/s) 4.7036 4.6735 4.6816 4.4695 

 
 
The results in Table 6 show that better 

wind resources are observed at different 
climate and spatial effects. Thus, it can be 
concluded that, according to the climate 
conditions of the selected sites, Addis Ababa 
is found to have higher mean wind speed 
followed by Harar whereas Kombolcha has 
lower wind speed measure relative to the 
other sites. 

Therefore, using Bayesian estimates 
and proper selection of model reduces the 
statistical estimation problems and facilitates 
the effective assessment of wind resources 
which solves the problem of large uncertainty 
in statistical data of wind resource estimates in 
terms of quantity or price as indicated by 
Belward et al. (2011). 

 
 

CONCLUSIONS AND 

RECOMMENDATIONS 

 

An alternative spatial dependence measure 
with appropriate spatial panel model is 
specified to capture efficiently, the 
neighborhood relationship at different 
temporal points for the prediction of wind 
potential in Ethiopia. The study applied a 
combined dynamic spatial panel 
autoregressive model with inverse quartile 
spatial weight to predict wind speed potential 
spots. Climate covariates and topographic 
variables are used as predictors in the model 
fitting. The dataset was obtained from 
meteorological agency of Ethiopia recorded at 
60 spatial points (or stations) over 18 years 
(2000-2007). The results depict that wind 
distribution is high in the beginning of 
summer (kiremt) season followed by spring 
(tsedey) season. There is also sufficient wind 

speed distribution during winter (bega) 
season. However, there is relatively mild wind 
distribution in the fall (belg) season. This 
reveals that Ethiopia is suitable for in-land 
wind resources for at least eight months a year. 
Topographically, the locations within the 
longitude range of 38.2 0E to 39.7 0E and 
latitude span of 7.2 0N to 8.9 0N are considered 
to be the best potential spots of wind 
resources alongside the Rift Valley and 
eastern parts of Ethiopia. The wind speed is 
also stronger in the elevation range of 1151 to 
1634 meter. To examine the effects of spatial 
and spacetime interaction on wind speed 
distribution, it is advisable to apply a 
stochastic model. Thus, a combined dynamic 
spatial panel autoregressive model with 
inverse quartile separation distances spatial 
weight is employed to generate maximum 
likelihood and Bayesian estimates. The 
maximum likelihood estimates reveal that 
elevation, temperature and precipitation (or 
rainfall) have significant effects on wind speed 
distribution. Besides, Temperature induces 
more wind speed and a rise in elevation 
increases wind speed significantly. However, 
high precipitation reduces wind speed 
distribution significantly. Furthermore, Time-
lag and spacetime-lag components have also 
highly significant effects on wind speed 
distribution. This implies that, there is spatial, 
temporal, and spacetime dependence on wind 
speed distribution in the study area. From the 
results obtained, we conclude that the effect of 
climate and spatial covariates on wind speed 
distribution is statistically significant. Thus, 
the potential spots of wind speed resources 
are highly influenced by climate and spatial 
predictors. 
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The measures of spatial dependence 
and spatial error autocorrelation are found to 
be significant different from zero. This implies 
that the spatial weight of inverse quartile 
separation distances between locations 
captures the spatial dependence in the 
neighboring stations and the error 
autocorrelations efficiently. Taking in to 
account the spatial, topographic and climate 
covariates in the stochastic model, the wind 
speed potential (variations) is recorded mainly 
after the rainy season ends and before it starts. 

A combined dynamic spatial panel 
autoregressive model was applied in 
hierarchical Bayesian method using MCMC 
Gibbs sampler for 10,000 iterations as the 
extension of the prediction of wind speed at 
unobserved sites. The maximum likelihood 
and Bayesian estimates of the effect of the 
climate and spatial variables suggests a better 
precision of the specified model over the 
ordinary least square estimation method for 
wind speed predictions. To undertake wind 
resource assessment (or survey), we suggest 
that a combined dynamic spatial panel 
autoregressive model with inverse quartile 
separation distance efficiently captures the 
spatial dependence and provides a precise 
prediction across spatial spots and over 
temporal points. This approach reduces the 
large uncertainty in statistical data of wind 
resource assessment. The result also supports 
that spatial and temporal heterogeneity 
together with climate and spatial effects 
influence the estimates of wind resources. 
Finally, it is essential that the stochastic model 
and appropriate measure of spatial 
dependence based on separation distance 
should be applied for the assessment of highly 
stochastic processes like wind speed over 
large spatial scales. The study recommends 
the use of inverse quartile separation distances 
along with a dynamic spatial panel 
autoregressive model with random effects 
specification to refine the wind resource 
estimates, and to accurately locate the best 
harvest spatial spots and time points. 

In our future works, we will explore 
for alternative spatial weights integrated with 
topographic variable (e.g. altitude differences) 
and continue the research of dynamic spatial 

weights to capture spatial dependence of 
larger spatial scales. 
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