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ABSTRACT: Certain infinite subsets of the set of positive integers are investigated as

possible spectra of Regular Weighted Sturm-Liouville eigenvalue problem with separated ho-

mogeneous boundary conditions. With the (conditional) exception of the set of square integers,

it is shown that all the sets considered herein are not spectra of such a problem. Concepts

adopted from the area of study in Mathematical analysis known as Asymptotic analysis will

figure prominently in the proofs of the main results.
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INTRODUCTION

In a 2011 research article Mingarelli answered

a question posed in Zettl (2005). He showed

that there does not exist a regular Sturm-

Liouville problem whose spectrum consists of

infinitely many prime numbers (Mingarelli,

2011). Zettl pointed out that given any fi-

nite set of distinct real numbers, a Sturm-

Liouville Problem of Atkinson-type (Atkin-

son, 1964) can be found whose spectrum is

precisely that set (Zettl, 2005). In prov-

ing this result, Mingarelli used a tool from

Analytic Number Theory which provides an

asymptotic estimate for the nth prime num-

ber. Such an estimate is a consequence of the

celebrated Prime Number Theorem. Here, we

recall that the asymptotic estimate for the nth

prime is oftentimes expressed as:

pn ∼ nlog(n),

where pn denotes the nth prime number.

On top of this, Mingarelli (2011) also used

results on asymptotic estimates for the nth

eigenvalue of a regular Sturm-Liouville eigen-

value problem from his previous paper writ-

ten in collaboration with Atkinson concern-

ing spectral asymptotics (Atkinson and Min-

garelli, 1987). Namely:

λ+n ∼
n2π2

(
∫ b
a

√
( r(x)
p(x)

)±dx)2
.

Evidently,

lim
n→∞

pn
λ+n
∼ lim

n→∞

K2nlog(n)

n2π2

Nevertheless,

∗ Author to whom correspondence should be addressed.
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lim
n→∞

K2nlog(n)

n2π2
= lim

n→∞

K2log(n)

nπ2

=
K2

π2
lim
n→∞

log(n)

n

where K =
∫ b
a

√
( r(x)
p(x)

)±dx.

Observe that lim
n→∞

log(n)

n
= 0.

This leads to lim
n→∞

pn
λ+n

= 0.

By the definition of ”∼”,

pn ∼ λ+n ⇔ lim
n→∞

pn
λ+n

= 1.

Hence, pn � λ+n .

This proves that the set of primes is not

the spectrum of such a problem.

In fact, the above argument, adopted from

Mingarelli (2011); proves more than the

aforementioned assertion. Specifically, it

proves that any infinite subsequence of dis-

tinct prime numbers is not the spectrum of

(1).

In the subsequent discussions we consider

the regular weighted Sturm-Liouville problem

with separated homogeneous boundary con-

ditions given by the following system (Billing-

ham et al., 2003):

− d

dx
[p(x)

dy

dx
] + q(x)y = λr(x)y,

c1y(a) + d1y
′(a) = 0, c21 + d21 6= 0, (1)

c2y(b) + d2y
′(b) = 0, c22 + d22 6= 0

where p; p’; q and r are continuous functions

over the finite interval [a, b], λ is generally a

complex parameter, p and r are strictly posi-

tive on [a, b] and 1
p
∈ L [a, b].

Also conjectured in Mingarelli (2011) was

that there may exist a Sturm-Liouville prob-

lem with Dirichlet data whose Dirichlet spec-

trum agrees with the set of all rational primes

if the parameter dependence is nonlinear.

In a subsequent work Adalar and Amirov

(2017) showed that there is no function q(x)

∈ L2(0, 1) which is the potential of a Sturm-

Liouville problem with Dirichlet data whose

spectrum is the set of prime numbers. In their

proof they adopted the following estimate for

the eigenvalues N(λ) = λ;

πλn = nπ +

∫ 1

0
q(x)

2nπ
+O(n−

1
2 ).

Using this estimate, Adalar and Amirov

(2017) proved the following two theorems:

Given:

−y′′ + q(x)y = (πN(λ))2y

y(0) = y(1) = 0 (2)

1. if N(λ) = λ
lnλ

, then there is no function

q ∈ L2[0, 1] such that the spectrum of the

BVP (2) is the set of prime numbers.

2. if N(λ) = li(λ), then there is no func-

tion q ∈ L2[0, 1] such that the spectrum of

the BVP (2) is the set of prime numbers.

Although the consideration of regular

weighted Sturm-Liouville problems with sep-

arated homogeneous boundary conditions

whose parameter dependence is non-linear

is potentially a tempting endeavor, the gen-

eralization of the result in Mingarelli (2011)

to a wider class of infinite sets of integers has

been deemed by the authors a worthwhile un-

dertaking. Consequently, in what follows we

will focus on the BVPs defined in (1) whose
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parametric dependence is linear.

More on the important role the sign of the

weight (density) function r(x) plays in the

study of the nature of the spectrum of a gen-

eral weighted Sturm-Liouville problem can

be found in the joint work of Kikonko and

Mingarelli (2016).

PRELIMINARIES

Definition 1 (Regular Sturm-Liouville Prob-

lems). A Sturm-Liouville problem is said to

be regular on a finite interval [a, b] when-

ever p(x) and r(x) are strictly positive on [a,

b], p ∈ C1([a,b], R) and q, r ∈ C([a,b], R).

(Billingham et al., 2003)

Definition 2 (Small and Large Sets). A set

A = {an} is said to be, (Wadhwa, 1975)

(i). small if and only if
∞∑
n=1

1

an
converges,

(ii). large whenever
∞∑
n=1

1

an
=∞.

Definition 3 (Asymptotic Equality of Sets).

Set A is said to be asymptotically equal to set

B, written A ∼ B, whenever the symmetric

difference A 4 B is finite. (Sonnenschein,

1971)

Definition 4 (Asymptotic Equality of Func-

tions). Two functions f(x) and g(x) are said

to be asymptotically equal (as x → x0) if and

only if lim
x→x0

f(x)

g(x)
= 1. (Ribenboim, 2004)

Definition 5 (Counting Function). For A

∈ 2N, the Counting Function (denoted A(n))

is the number of elements in set A that are

less than or equal to n ∈ N and is given

by A(n) =
∑n

i=1 χA(i); where χA(i) is the

characteristic function of the set A. (Sonnen-

schein, 1971)

Definition 6 (Asymptotic Density). A func-

tion δ : 2N → R given by:

δ(A) = lim
n→∞

A(n)

n

is called Asymptotic (Natural) Density.

(Pekara, 1972)

Definition 7 (Relative Asymptotic Density).

The relative asymptotic density of a set A

with respect to a base set B, denoted δB(A)

is given by:

δB(A) = lim
n→∞

A(n)

B(n)

where A(n) and B(n) represent #(A) and

#(B) that are less or equal to n respectively,

with B(n) 6= 0. (Sonnenschein, 1971)

The lemmas we state and prove in this sec-

tion play a foundational role in the proofs of

the results stated in the subsequent section.

Lemma 1. The set S = {λ+n } of the positive

eigenvalues of (1) is a small set.

Proof. Let S = {λ+n } be the set of positive

eigenvalues of (1).

From Atkinson and Mingarelli (1987),

λ+n ∼
n2π2

(
∫ b
a

√
( r(x)
p(x)

)±dx)2
.
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By the definition of asymptotic equality (of

functions), this implies that;

∞∑
n=1

1

λ+n
and

∞∑
n=1

1
n2π2

(
∫ b
a

√
( r(x)
p(x)

)±dx)2

diverge

(or converge) at the same rate (Thomas Jr.,

1973).

Applying the solution of the Basel Problem

(Euler, 1737; Ribenboim, 2004) we have,

∞∑
n=1

1
n2π2

K2

=
∞∑
n=1

K2

n2π2

=
K2

π2

∞∑
n=1

1

n2

= (
K2

π2
) (
π2

6
)

=
K2

6

where K =

∫ b

a

√
(
r(x)

p(x)
)+dx.

Observe that,
K2

6
∈ R as K ∈ R. (K ∈ R

since 1
p
, r, ∈ L(a, b) by assumption.)

Hence,

∞∑
n=1

1
n2π2

(
∫ b
a

√
( r(x)
p(x)

)±dx)2

is a convergent series.

And hence,
∞∑
n=1

1

λ+n
also converges. (Thomas

Jr., 1973)

Therefore, S = {λ+n } of the positive eigenval-

ues of (1) is a small set.

Lemma 2. Let P denote the set of prime

numbers and π(n) denote the number of

primes that are no larger than n. Then the

asymptotic density of the primes is

δ(P ) = lim
n→∞

π(n)

n
= 0.

Proof. The reader is referred to (Pinsky,

2014).

Lemma 3. The asymptotic density of the set

of positive eigenvalues of (1) in the set of nat-

ural numbers is 0. That is, if S = {λ+n }
is the set of positive eigenvalues of (1), then

δ(S) = 0.

Proof. From Lemma 1, S is a small set. As

the set of Prime numbers is a large set in the

set of natural numbers (
∞∑
n=1

1

pn
= ∞. For a

proof refer to Ribenboim (2004).), this im-

plies that the set S is sparser than the set of

prime numbers in the set of natural numbers.

Thus, 0 ≤ δ(S) ≤ δ(P ) = 0 (by Lemma

2).

And hence, δ(S) = 0.

Lemma 4. If G and H are divergent se-

quences with G ∼ H, then δH(G) = 1.

Proof. By the definition of asymptotic equal-

ity (of sets),

G ∼ H ⇒ (∃ M ∈ N) such that

(∀ n ≥ M and ∃ k ∈ N)

|G(M)−H(M)| = k.

⇒ (∀ n ≥ M) (G(n) = H(n) ± k)
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Hence,

lim
n→∞

G(n)

H(n)
= lim

n→∞

H(n)± k
H(n)

= 1.

Thus, by the definition of relative density;

lim
n→∞

G(n)

H(n)
= 1 ⇔ δH(G) = 1.

Lemma 5. Let S = {λ+n } be the set of posi-

tive eigenvalues of (1). If

R = { n2π2

(

∫ b

a

√
(
r(x)

p(x)
)+dx)2

}

then, S(n) ∼ R(n) = bn
1
2K
π
c

where K =

∫ b

a

√
(
r(x)

p(x)
)+dx.

Proof. From Atkinson and Mingarelli (1987)

we have S ∼ R.

By Lemma 4, S ∼ R ⇒ δR(S) = 1.

Now, from the definition of relative density,

δR(S) = 1 ⇒ lim
n→∞

S(n)

R(n)
= 1.

By the definition of asymptotic equality (the

definition of asymptotic equality is applicable

here as S(n) and R(n) are both non-negative

integers for any n ∈ N.),

lim
n→∞

S(n)

R(n)
= 1 ⇒ S(n) ∼ R(n).

Thus, if R(m) = #{T : T ≤ m, m ∈ N},

where T =
n2π2

K2
,

then R(m) = n.

Where n is the largest positive integer for

which T ≤ m.

Now,
n2π2

K2
≤ m and

[
n2π2

K2
= m ⇔ n2π2

K2
∈ Z+]

⇒ n2 ≤ mK2

π2
⇒ n ≤ m

1
2K
π

Therefore, n = bm
1
2K
π
c

Hence, for a natural number n,

R(n) = bn
1
2K
π
c.

Consequently,

[S(n) ∼ R(n) and R(n) = bn
1
2K
π
c]

⇒ S(n) ∼ bn
1
2K
π
c

RESULTS

The following results are the main findings of

this paper.

Theorem 1. Any subset of the set of posi-

tive integers with asymptotic density strictly

greater than zero is not the spectrum of (1).

Theorem 2. The set of all the terms of an

arithmetic sequence

{am+b : a ∈ Z+, b ∈ Z+∪{0},m = 1, 2, 3, ...}

is not the spectrum of (1).

Corollary 2.1. None of the following three

sets is the spectrum of (1):
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2.1.1. The set of natural numbers.

2.1.2. The set of even natural numbers.

2.1.3. The set of odd natural numbers.

Theorem 3. Any subset {an} of the set of

positive integers which is a large set is not

the spectrum of (1).

Corollary 3.1. The set of prime numbers is

not the spectrum of (1).

Theorem 4. The set D = {m2: m = 1,2,3,

...} of square natural numbers is the spectrum

of (1) implies that K = π,

where K =

∫ b

a

√
(
r(x)

p(x)
)+dx.

Theorem 5. The set F = {mt: t ≥ 3, t ∈
N, m = 1,2,3, ...} is not the spectrum of (1).

Theorem 6. If a set A which is a subset of

the set of positive integers is a spectrum of

(1), then the following three conditions are

satisfied:

6.1. δ(A) = 0.

6.2. δS(A) = 1.

6.3. A is a small set.

Remark 6.1. It should be noted that Theo-

rem 6, provides a necessary condition in order

for a subset of the set of positive integers to

be a spectrum of (1).

Remark 6.2. Among the three statements

(necessary conditions), only the condition in

Theorem 6.2 is potentially a sufficient condi-

tion.

The condition in Theorem 6.1 fails to be

a sufficient condition because; although the

asymptotic density of the set of Prime num-

bers is 0, by Corollary 3.1 it is not a spectrum

of (1).

Furthermore, the condition in Theorem 6.3

fails to be a sufficient condition because; al-

though the set of square natural numbers is a

small set (Ribenboim, 2004), it is neverthe-

less not a spectrum of (1) whenever K 6= π.

(Refer to the proof of Theorem 4.)

As an aside, we now state (and prove) the fol-

lowing theorem involving the Erdos’s conjec-

ture (the Erdos - Turan conjecture) on arith-

metic progressions which states that; if the

sum of the reciprocals of the elements of a

set A of natural integers diverges, then A con-

tains arbitrarily long arithmetic progressions.

Theorem 7. Provided that the converse of

Erdos’s conjecture on arithmetic progressions

holds, the spectrum of (1) doesn’t contain ar-

bitrarily long arithmetic progressions.

Proof. Let S = {λ+n } be the spectrum of (1).

From Lemma 1, S is a small set.

Suppose the converse of Erdos’s conjecture

holds.

But then its contrapositive implies that the

spectrum of (1) doesn’t contain arbitrarily

long arithmetic progressions.
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PROOFS

Proof. (Theorem 1)

Let A ⊆ N with δ(A) > 0.

By Lemma 3, δ(S) = 0.

Hence, δ(A) > 0 ⇒ δ(A) > δ(S)

⇒ δ(A) 6= δ(S).

Now, δ(A) 6= δ(S) ⇒ A � S. (For sets

A and B; A ∼ B ⇒ δ(A) = δ(B). (Sonnen-

schein, 1971))

And, A � S ⇒ A 6= S. (For sets A

and B; A = B ⇒ A ∼ B.)

Therefore, set A is not the spectrum of (1)

whenever δ(A) > 0.

Proof. (Theorem 2)

Let A = {am + b: a ∈ Z+, b ∈ Z+ ∪ {0},
m = 1, 2, 3, ...}.

Since, lim
n→∞

n

an+ b
=

1

a
and a > 0 by as-

sumption,
1

a
is defined and

1

a
> 0.

Then, by a property of asymptotic density,

δ(A) exists and δ(A) = 1
a
. (Pekara, 1972)

(Let A = {an} be an infinite sequence of pos-

itive integers. If lim
n→∞

n

an
converges then so

does δ(A) = lim
n→∞

A(n)

n
and both converge to

the same value. (Sonnenschein, 1971))

Consequently, δ(A) > 0.

By Theorem 1, δ(A) > 0 implies that A

is not the spectrum of (1).

Proof. (Corollary 2.1.1.)

Consider the set of natural numbers, N. Then

N can be expressed as:

N = {n: [n = m] (m = 1, 2, 3, ...)}

Thus, N = {m} is an arithmetic sequence,

a special case of

A = {am + b} with a = 1 and b = 0.

Then, by Theorem 2, N is not the spectrum

of (1).

Proof. (Corollary 2.1.2.)

Let E be the set of even positive integers.

Then, the set E can be defined as:

E = {k: [k = 2m] (m = 1, 2, 3, ...)}

Thus, E = {2m} is an arithmetic sequence,

a special case of A = {am + b} with a = 2

and b = 0.

And hence, by Theorem 2, E is not the spec-

trum of (1).

Proof. (Corollary 2.1.3.)

Let O be the set of odd positive integers.

Then, the set O can be defined as:

O = {d: [d = 2m + 1] (m = 0, 1, 2, 3, ...)}

Thus, O = {2m + 1} is an arithmetic se-

quence, a special case of A = {am + b} with

a = 2 and b = 1.

Therefore, by Theorem 2, O is not the spec-

trum of (1).

Proof. (Theorem 3)

Let an denote the nth term of the sequence

{an} of positive integers which is a large set.

Then, by assumption,
∞∑
n=1

1

an
=∞.
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Thus, by Lemma 1, the set {λ+n } of the posi-

tive eigenvalues of (1) is a small set.

Therefore, any subset {an} of the set of pos-

itive integers; with
∑∞

n=1
1
an

= ∞, is not the

spectrum of (1).

Proof. (Corollary 3.1)

Based on the proof in (Euler, 1732), the sum

of the reciprocals of the primes is a divergent

series (i.e., the set of prime numbers is a large

set).

Therefore, by Theorem 3, the set of prime

numbers is not the spectrum of (1).

Proof. (Theorem 4)

Let the set of square natural numbers, de-

noted by D be the spectrum of (1). Suppose

S = {λ+n } is the set of positive eigenvalues of

(1)

and, let R = { n2π2

(

∫ b

a

√
(
r(x)

p(x)
)+dx)2

}.

Now, D = S ⇒ D ∼ S.

But then, [D ∼ S ∧ S ∼ R] ⇒ D ∼ R; since

asymptotic density is an equivalence relation.

Applying Lemma 4 yields δR(D) = 1.

And from Lemma 5, R(n) = bn
1
2K
π
c.

Consequently,

δR(D) = lim
n→∞

D(n)

R(n)

= lim
n→∞

bn 1
2 c

bn
1
2K
π
c

=
π

K

where K =

∫ b

a

√
(
r(x)

p(x)
)+dx.

In evaluating the resulting limit involving

the floor function, consider the inequality;

lim
n→∞

n
1
2 − 1

n
1
2K+1
π

≤ lim
n→∞

bn 1
2 c

bn
1
2K
π
c

≤ lim
n→∞

n
1
2 + 1

n
1
2K−1
π

And then apply squeezing theorem to evalu-

ate δR(D), as both the given lower and upper

bounds for δR(D) converge to
π

K
. ( π

K
∈ R

since K 6= 0 as the BVP in (1) is assumed

to be regular.)

Hence, δR(D) =
π

K
.

Now, δR(D) =
π

K
= 1 ⇔ K = π.

Based on Lemma 4, S(n) ∼ R(n).

And δR(D) = 1 ⇔ R(n) ∼ D(n). (The

equivalence follows from the definition of rel-

ative asymptotic density.)

Combining these we have,

[(S(n) ∼ R(n))

and

(R(n) ∼ D(n) ⇔ K = π)]

⇒ (S(n) ∼ D(n) ⇔ K = π)

Hence, based on the definition of relative

asymptotic density and Lemma 4,

(S ∼ D ⇔ K = π)

⇒ (S = D ⇒ K = π).

Therefore, D is the spectrum of (1) implies

that K = π.
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Proof. (Theorem 5)

Given S = {λ+n } is the set of positive eigen-

values of (1);

Let R = { n2π2

(

∫ b

a

√
(
r(x)

p(x)
)+dx)2

}.

and

F = {mt: t ≥ 3, t ∈ N, m = 1,2,3, ...}.

From the asymptotic estimate in Atkinson

and Mingarelli (1987),

λ+n ∼
n2π2

(

∫ b

a

√
(
r(x)

p(x)
)+dx)2

From Lemma 5, R(n) = bn
1
2K
π
c.

Consequently,

δR(F ) = lim
n→∞

F (n)

R(n)

= lim
n→∞

bn 1
t c

bn
1
2K
π
c

where K =

∫ b

a

√
(
r(x)

p(x)
)+dx.

In evaluating the above limit involving the

floor function, consider the inequality;

lim
n→∞

n
1
t − 1

n
1
2K+1
π

≤ lim
n→∞

bn 1
t c

bn
1
2K
π
c

≤ lim
n→∞

n
1
t + 1

n
1
2K−1
π

And then apply squeezing theorem to evalu-

ate δR(F), as both the given lower and upper

bounds for δR(F) converge to 0.

Hence, δR(F) = 0. Now, by the contraposi-

tive of Lemma 4,

δR(F) 6= 1 ⇒ F � R.

Thus, F � R ⇒ F � S ⇒ F 6= S.

Therefore, F is not the spectrum of (1).

Proof. (Theorem 6.1)

Let δ(A) 6= 0.

Then, based on the definition of asymptotic

density, we have,

δ(A) > 0. By Theorem 1, this implies that

A is not the spectrum of (1).

Therefore, set A is the spectrum of (1) im-

plies that δ(A) = 0.

Proof. (Theorem 6.2)

Let δS(A) 6= 1.

By the contrapositive of Lemma 4, this im-

plies that A � S.

And, A � S ⇒ A 6= S.

Therefore, set A is the spectrum of (1) im-

plies that δS(A) = 1.

Proof. (Theorem 6.3)

Let A be a large set. Then, by Theorem 3,

this implies that A is not the spectrum of (1).

Therefore, set A is the spectrum of (1) im-

plies that A is a small set.
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OPEN PROBLEMS

1. Whether the converse of Theorem 4 holds

(for the case K = π) is still (to the authors’

knowledge) an open problem.

2. Whether the condition in Theorem 6.2

is a sufficient condition in order for a set

of positive integers to be a spectrum of (1)

is (to the authors’ knowledge) still an open

question.
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