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ABSTRACT: A partition of a non-negative integer 𝑛 is a way of writing 𝑛 as a sum of a non-decreasing 
sequence of parts. The paper provides the study of some properties of integer partitions. In particular, 
we are interested to show the number of partitions of 𝑛 in which the summand 𝑘 appears at most 𝑘 
times is equal to the number of  partitions in which  the part1 appears any times and the other part𝑘 

appears at most 𝑘 − 2 times by using a generating function and algebraic construction. 
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BACKGROUND ON PARTITIONS 
 

Euler was the first in studying integer’s partition 

counting problem. After Euler, many 

mathematicians have been interested in integer 

partitions and their interesting properties. One 

may require that the parts to be distinct, odd or 

even, or that 𝑛 to be split into exactly 𝑘 parts, and 

soon. One of the most difficult questions about 

integer partitions was determining the asymptotic 

properties of the number of partitions of the 

integer 𝑛 when 𝑛 gets larger and larger.Even 

though the values of the number of partitions of 

the integer 𝑛 have been computed for large values 

of 𝑛, no pattern has been discovered to date this 

question was finally answered by(G. H. Hardy and 

S. Ramanujan,1918;Hans Rademacher, 1936; G. H. 

Hardy and E. M, 1956; Donald E. Knuth, 1973; 

Albert Nijenhuis and Herbert S. Wilf, 1978; and 

Kathleen M. O’Hara, 1988).  

What is an integer partition? An integer 

partition is finding the number of ways of writing 

the positive integer 𝑛 as a sum of positive integers, 

where the order of the summands does not matter. 

That is, 4 = 3 + 1 or 4 = 1 + 3 will count as only 

one way of writing 4 as a sum of the positive 

integers 1 and 3.As the order of the summands 

does not matter, we do not loss generality if we 

assume that they are in weakly decreasing order. 

 

 

Definition 1.1: 

 

If n is a positive integer, then a partition of n is a 

non-increasing sequence of positive integers 

𝜆1, 𝜆2, … , 𝜆𝑘 so that 𝜆1 + 𝜆2 + … +  𝜆𝑘 = 𝑛, G.E. 

Andrews (1984). In this case the 𝜆𝑖 are called the 

summands or the parts and the quantity 𝑛 is called 

the size. We let the𝑃(𝑛) to  denote the number of 

partitions of the integer 𝑛. The number of 

partitions of 𝑛 into exactly 𝑘 parts is denoted by 

𝑃𝑘(𝑛). For convenience, we define  𝑃(0) = 1 and 

we take 𝑃(𝑛) = 0 for all negative values of 𝑛.The 

number of ways of writing 𝑛 as the sum of 1 

integer, as the sum of 𝑛 − 1 integers, or as  the sum 

of 𝑛 integers is unique, so  𝑃1(𝑛) = 𝑃𝑛−1(𝑛) =

𝑃𝑛(𝑛) = 1. 

 

Example 1.2: 𝑃(5) = 7, and here are all 7 of the 

partitions of the integer 𝑛 = 5: 

5 = 5 

= 4 + 1 

= 3 + 2 

= 3 + 1 + 1 

= 2 + 2 + 1 

= 2 + 1 + 1 + 1 

= 1 + 1 + 1 + 1 + 1 

Thus,𝑃1(5) = 1, 𝑃2(5) = 2, 𝑃3(5) = 2, 𝑃4(5) = 1, 

and 𝑃5(5) = 1. 
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We use  ∅ to represent the empty, or zero, 

partition.Partitions of integer for 𝑛 = 0, 1, 2, 3 and 4 

are shown in the following table. 

 
Table 1.Values of 𝑷(𝒏) and partitions of 𝒏. 

 

𝑛 𝑃(𝑛) Partitions, 𝜆, of 𝑛 

0 1 ∅ 

1 1 1 

2 2 2, 1+1 

3 3 3, 2+1, 1+1+1 

4 5 4, 3+1, 2+2, 2+1+1, 1+1+1+1 

   

 
We can also use a recurrence relation to find the 
partition numbers. We will find a recurrence 
relation to compute the 𝑃𝑘(𝑛), and then  

𝑃(𝑛) =  ∑ 𝑃𝑘(𝑛).

𝑛

𝑘=1

 

For example,   

𝑃(5) =  ∑ 𝑃𝑘(5)

5

𝑘=1

= 𝑃1(5) + 𝑃2(5) + 𝑃3(5) + 𝑃4(5)
+ 𝑃5(5) = 1 + 2 + 2 + 1 + 1 = 7.  

Now consider the partitions of 𝑛 into 𝑘 parts. 
Some of these partitions contain no 1𝑠, like 
3 + 3 + 4 + 6, a partition of 16 into 4 parts. 
Subtracting 1 from each part, we get a partition of 
𝑛 − 𝑘 into 𝑘 parts; for example, this is 2 + 2 + 3 +

5.  The remaining partitions of 𝑛 into 𝑘 parts 
contain a 1. If we remove the 1, we are left with a 
partition of 𝑛 − 1 into 𝑘 − 1 parts. 

This gives us a 1 − 1 correspondence between 
the partitions of 𝑛 into 𝑘 parts, and the partitions 
of 𝑛 − 𝑘 into 𝑘  parts together with the partitions of 
𝑛 − 1 into 𝑘 − 1 parts. This leads us to the 
following theorem: 
 
Theorem1.3: 𝑃𝑘(𝑛) =  𝑃𝑘(𝑛 − 𝑘) + 𝑃𝑘−1(𝑛 − 1) 
Thus we can use Theorem 1.3 to find 
𝑃𝑘(𝑛)recursively. 
 

Example 1.4: Find𝑃3(8). 
Solution:                            𝑃3(8) =  𝑃3(8 − 3) + 𝑃2(7) 

=  𝑃3(5) + 𝑃2(7) 
 = 2 + 𝑃2(7) 

 = 2 + 𝑃2(7 − 2) + 𝑃1(6) 
= 2 + 𝑃2(5) + 𝑃1(6) 

= 2 + 2 + 1 = 5. 
Thus, the 5 partitions of 8 with 3 summands are  

8 = 6 + 1 + 1 

= 5 + 2 + 1 
= 4 + 3 + 1 
= 4 + 2 + 2 
= 3 + 3 + 2 

 Ferrers diagram 

Another useful way to think of a partition is 
with a Ferrers diagram. The Ferrers diagram of an 
integer partition gives us a very useful tool for 
visualizing partitions, and sometimes for proving 
identities. Each integer in the partitions is 
represented by a row of dots, and the rows are 
ordered from longest on the top to shortest at the 
bottom. The first row corresponds to the largest 
part; the second row corresponds to the second 
largest part, and so on. It is constructed by 
stacking left-justified rows of cells, where the 
number of cells in each row corresponds to the size 
of a part, (Albert Nijenhuis and Herbert S. Wilf, 
1978 and Kathleen M. O’Hara, 1988). 
 
Definition 2.1: The Ferrers diagram of a 
partition𝜆 =  𝜆1  ≥ 𝜆2 …  ≥  𝜆𝑘 of  𝑛 is the left –
justified array of dots(stars) obtained by having 𝜆1 
dots in the first (top) row,  𝜆2dots in the second 
row, and so on through 𝜆𝑘 dots in the final 
(bottom) row. 

For example, the partition 3 + 3 + 4 + 5 would 
be represented by  
 

∗     ∗     ∗     ∗     ∗ 
∗     ∗     ∗     ∗      

∗     ∗     ∗      
∗     ∗     ∗    

 
The conjugate of a partition is the one 

corresponding to the Ferrers diagram produced by 
flipping the diagram for the original partition a 
cross the main diagonal, thus turning rows into 
columns and vice versa. For the diagram above, 
the conjugate is   
 

∗     ∗     ∗     ∗      
∗     ∗     ∗    ∗      
∗     ∗     ∗    ∗     

∗     ∗         
∗ 

with the corresponding partition 1 + 2 + 4 + 4 + 4. 
A partition is self-conjugate if it is equal to its 

conjugate, or in other words, if its Ferrers diagram 
is symmetric about the diagonal. For example, the 
Ferrers diagram for the partition 

20 = 6 + 4 + 4 + 4 + 1 + 1 is self-conjugate. 
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As an example of the use of Ferrers diagram in 
partition theory, we prove the following: 
 

Theorem 2.2: The number of partitions of the 
integer n whose largest part is 𝑘is equal to the 
number of partitions of 𝑛 with 𝑘 parts. 
 

Proof: The number of partitions of 𝑛 into at most 𝑘 
parts is equal to the Ferrers diagram of size 𝑛 with 
at most 𝑘 rows and the partitions of 𝑛 into parts 
not larger than 𝑘 is equal to the Ferrers diagram 
with at most 𝑘 columns. Now if we interchange the 
rows and columns (taking conjugates) we have a 
one – to - one correspondence between the two 
kinds of partitions. 
 
Generating function 

A useful and important tool to study partitions 
is generating functions. A generating function for a 
sequence is a formal power series whose nth 
coefficient corresponds to the nth term of the 
sequence. 
 
Definition 3.1:𝑓(𝑥) is a generating function for the 
sequence 𝑎0, 𝑎1, 𝑎2, … if  

𝑓(𝑥) =  ∑ 𝑎𝑛𝑥𝑛 .

∞

𝑛=0

 

There is no simple formula for 𝑃(𝑛), but it is 
possible to find a generating function for them. We 
seek a product of factors so that when the factors 
are multiplied out, the coefficient of  𝑥𝑛 is 𝑃(𝑛). We 
will now derive Euler’s generating function𝜀(𝑥) for 
the sequence {𝑃(𝑛)}𝑛=0

∞ . In other words, we are 
looking a function which gives us 

𝜀(𝑥) = ∑ 𝑝(𝑛)𝑥𝑛

∞

𝑛=0

. 

Consider the expression 
(1 +  𝑥 +𝑥2  +  𝑥3 + ⋯ )(1 +𝑥2  +  𝑥4 + 𝑥6

+ ⋯ ) … (1 +𝑥𝑘  +  𝑥2𝑘 + 𝑥3𝑘

+ ⋯ ) … 

= ∏ ∑ 𝑥𝑖𝑘 .

∞

𝑖=0

∞

𝑘=1

 

When this product is expanded, we pick one term 
from each factor in all possible ways, with the 
further condition that we only pick a finite number 
of “non-1” terms. For example, if we pick 𝑥3 from 

the first factor, 𝑥3 from the third factor, 𝑥15 from 
the fifth factor, and 1𝑠 from all other factors, we 
get 𝑥21. In this context of the product, this 
represents to the partition 
 

1 + 1 + 1 + 3 + 5 + 5 + 5. That is, three 1𝑠, one 3,  
and three 5𝑠. 
Each factor is a geometric series; the 𝑘th factor is  
 

1 + 𝑥𝑘 + (𝑥𝑘)2 +  (𝑥𝑘)3 + ⋯ =  
1

1 − 𝑥𝑘
, 

So the generating function can be written   

∏
1

1−𝑥𝑘
∞
𝑘=1 . 

These observations lead to Euler’s Theorem. 
 
Theorem 3.2:  

𝜀(𝑥) = ∑ 𝑝(𝑛)𝑥𝑛

∞

𝑛=0

=
1

1 − 𝑥
 .

1

1 − 𝑥2
.

1

1 − 𝑥3
…

=  ∏
1

1 − 𝑥𝑘

∞

𝑘=1

 

 
Note that if we are interested in some particular 

𝑃(𝑛), we do not need the entire infinite product, or 

even any complete factor, since no partition of 𝑛 

can be use any integer greater than 𝑛, and also 

cannot use   more than 
𝑛

𝑘
 copies of 𝑘. 

Example 3.3: Find 𝑃(8). We expand 

 

(1 +  𝑥 +𝑥2  +  𝑥3  +𝑥4  +  𝑥5 +𝑥6  +

 𝑥7  +𝑥8 )(1 +𝑥2  +  𝑥4 + 𝑥6 + 𝑥8 )(1 +𝑥3  +

 𝑥6 )(1 +  𝑥4 +           𝑥8 ) (1 +𝑥5  )(1 +

𝑥6)(1 +𝑥7)(1 +𝑥8 ) 

               =  1 +  𝑥 +2𝑥2  +  3𝑥3  +5𝑥4  +

      7𝑥5 +11𝑥6  + 15 𝑥7  +28𝑥8 + ⋯ + 𝑥56, 

So 𝑃(8) = 22. 

We can use a generating function to find 𝑃𝑘(𝑛).   

Let 𝑃≤𝑘 be the class of integer partitions with at 

most 𝑘 summands. 

 𝑃≤𝑘(𝑥) =  ∏
1

1 − 𝑥𝑖

𝑘

𝑖=1

 

Hence, the generating function of partitions with 

exactly 𝑘 summands is 

𝑃𝑘(𝑥) = 𝑃≤𝑘(𝑥) −  𝑃≤𝑘−1(𝑥) 

                    =  ∏
1

1 − 𝑥𝑖

𝑘

𝑖=1

−  ∏
1

1 −  𝑥𝑖

𝑘−1

𝑖=1

 

𝑃𝑘(𝑥)           =  
𝑥𝑘

(1 − 𝑥)( 1 − 𝑥2) … (1 − 𝑥𝑘)
. 

For example, consider the partitions of 𝑛 with 
exactly 3 parts. A generating function for the 
number of partitions with exactly three parts is  
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1

(1 − 𝑥)( 1 − 𝑥2)(1 − 𝑥3)
−  

1

(1 − 𝑥)( 1 − 𝑥2)
 

       =
1

(1 − 𝑥)( 1 − 𝑥2)
(

1

1 − 𝑥3
− 1) 

=
𝑥3

(1 − 𝑥)( 1 − 𝑥2)(1 − 𝑥3)
 

                                            
=   𝑥3 + 𝑥4 +  2𝑥5 + 3𝑥6 + 4 𝑥7

+ 5𝑥8 + 7𝑥9 + ⋯ 
 
Thus, there are 5 partitions of 8 with exactly 3 
parts as we did it in example 1.4. 
We prove a partition identity through the use of 
generating functions. 
 

Example 3.4: Let 𝐹(𝑛)be the number of partitions 
of n that has no part equal to 1. 
Recall that the monomial chosen from the factor 
(1 +  𝑥 +𝑥2  +  𝑥3 + ⋯ ) indicates the number of 1’s 
in the partition. Since we can only choose 1 from 
this term, we obtain the following generating 
function: 
 

∑ 𝐹(𝑛)𝑥𝑛

∞

𝑛=0

=
1

1 − 𝑥2
.

1

1 − 𝑥3
… 

∑ 𝐹(𝑛)𝑥𝑛

∞

𝑛=0

=  
1 − 𝑥

1 − 𝑥
.

1

1 − 𝑥2
.

1

1 − 𝑥3
… 

= 𝜀(𝑥)(1 − 𝑥) 
 
This generating function yields the following 
lemma, by matching the coefficients of like powers 
of x on both sides. 
 

Lemma 3.5: The number of partitions of n with no 
parts equal to 1is𝑃(𝑛) − 𝑃(𝑛 − 1). 
Partitions of integers have some interesting 
properties, R.P. Stanley (1999). 
 
Theorem 3.6: The number of partitions of n into 
distinct parts equals the number of partitions of n 
into odd parts, R.P. Stanley (1999) 
Let 𝑃𝑑(𝑛) be the number of partitions of 𝑛 into 
distinct parts; let 𝑃𝑜(𝑛) be the number of partitions 
into odd parts. 
 
Example 3.7: For 𝑛 = 6, the partitions into distinct 
parts are  

6 = 6 
           =  5 + 1 
           =  4 + 2 

                    =  3 + 2 + 1, 
So 𝑃𝑑(6) = 4, and the partitions into odd parts are  

 6 = 5 + 1 
  6 =  3 + 3 

                 6 =  3 + 1 + 1 + 1 
                               6 = 1 + 1 + 1 + 1 + 1 + 1 

 So  𝑃𝑜(6) = 4. 
 
In fact, for every  𝑛 , 𝑃𝑑(𝑛) =  𝑃𝑜(𝑛),  and we can 
see this by manipulating generating functions. The 
generating function for 𝑃𝑑(𝑛) is  

𝑓𝑑(𝑥) = (1 + 𝑥)(1 + 𝑥2)(1 + 𝑥3) … =  ∏(1 +  𝑥𝑖).

∞

𝑖=1

 

The generating function for 𝑃𝑜(𝑛) is  
 

(1 +  𝑥 +𝑥2  +  𝑥3 + ⋯ )(1 +𝑥3  +  𝑥6 + 𝑥9 + ⋯ ) …

=  ∏
1

1 − 𝑥2𝑖+1
.

∞

𝑖=0

 

We can write   

𝑓𝑑(𝑥) =
1 − 𝑥2

1 − 𝑥
 .

1 − 𝑥4

1 − 𝑥2
.
1 − 𝑥6

1 − 𝑥3
 

and notice that every numerator is eventually 
canceled by a denominator, leaving only the 
denominators containing odd powers of 𝑥,  so  
 

𝑓𝑑(𝑥) =
1

1 − 𝑥
 .

1

1 − 𝑥3
.

1

1 − 𝑥5

= ∏
1

1 − 𝑥2𝑖+1
=  𝑓𝑜(𝑥)

∞

𝑖=0

.   

 
Proposition 3.8: The number of partitions of 𝑛 in 
which the even summands appear at most once is 
equal to the partitions of 𝑛 in which every 
summand appears at most three times. 
Proof: The generating function for the number of 
partitions of 𝑛 in which the even summands 
appear at most once is  
 

(1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ )(1 +  𝑥2)(1 +  𝑥3 +  𝑥6

+ 𝑥9 … )(1 +  𝑥4) 
 

=  
1

1 − 𝑥
. (1 +  𝑥2).

1

1 − 𝑥3
. (1 + 𝑥4).

1

1 − 𝑥5
.  (1

+  𝑥6) 

=
1

1 − 𝑥
.
1 − 𝑥4

1 − 𝑥2
.

1

1 − 𝑥3
.
1 − 𝑥8

1 − 𝑥4
.

1

1 − 𝑥5
.
1 − 𝑥12

1 − 𝑥6
… 

 

=  
1 − 𝑥4

1 − 𝑥
 .  

1 − 𝑥8

1 − 𝑥2
 .

1 − 𝑥12

1 − 𝑥3
 .

1 − 𝑥16

1 − 𝑥4
… 

=  (1 +  𝑥 +𝑥2  +  𝑥3)(1 +𝑥2  +  𝑥4 + 𝑥6)(1 + 𝑥3  
+  𝑥6 + 𝑥9) … 
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which is exactly the generating function that 
describes the number of partitions of 𝑛 such that 
each summand appears at most three times. 
 
Example 3.9: For 𝑛 = 6, the partitions into even 
parts appear at most once are 

6 = 6 
            =  5 + 1 

                   = 4 + 1 + 1 
            = 3 + 3 

                    =  3 + 2 + 1 
                                   = 2 + 1 + 1 + 1 + 1 

                                           = 1 + 1 + 1 + 1 + 1 + 1 
and the partitions into each part appears at most 
three times are 

6 = 6 
            =  5 + 1 

                   = 4 + 1 + 1 
            =  4 + 2 
           = 3 + 3 

                   = 3 + 2 + 1 
                   = 2 + 2 + 2 

In fact, they are equal in number. 
 
Proposition 3.10: The number of partitions of 𝑛 in 
which the summand 𝑘 appears at most 𝑘 times is 
equal to the partitions of 𝑛 in which the part 1 
appears any timesand the other part 𝑘 appears  at 
most 𝑘 − 2 times. 
Proof: The generating function for the number of 
partitions of 𝑛 in which the summand 𝑘 appears at 
most 𝑘 times is  

 
(1 + 𝑥)(1 + 𝑥2 + 𝑥4)(1 + 𝑥3 +  𝑥6 +  𝑥9)(1 + 𝑥4

+  𝑥8 + 𝑥12 + 𝑥16) … 

=  
1 − 𝑥2

1 − 𝑥
 .

1 − 𝑥6

1 − 𝑥2
 .

1 − 𝑥12

1 − 𝑥3
 .

1 − 𝑥20

1 −  𝑥4
… 

=  
1

1 − 𝑥
 .

1 −  𝑥2

1 − 𝑥2
 .

1 − 𝑥6

1 − 𝑥3
 .

1 − 𝑥12

1 − 𝑥4
 .

1 − 𝑥20

1 − 𝑥5
… 

                                 

=  
1

1 − 𝑥
 . 1. (1 +  𝑥3)(1 +  𝑥4

+  𝑥8)(1 + 𝑥5 +  𝑥10 +  𝑥15) … 
                                =  (1 +  𝑥 +𝑥2  +  𝑥3

+ ⋯ )(1 +𝑥3)(1 + 𝑥4  +  𝑥8)(1 + 𝑥5

+  𝑥10 + 𝑥15) … 
 
which is the generating function describing the 
number of partitions of 𝑛 in which the summand 1 
appears any times and the other summand  𝑘 
appears at most 𝑘 − 2 times. 
 

Example 3.11: For 𝑛 = 5, the partitions into 
summand 𝑘 appears at most 𝑘 times are 

5 = 5 
          = 4 + 1 
          = 3 + 2 

                  = 2 + 2 + 1 
and the partitions into summand 1 appears any 
times, 2 appears no times and other summand 𝑘 
appears at most𝑘 − 2 times are  

5 = 5 
          = 4 + 1 

                  = 3 + 1 + 1 
                                 = 1 + 1 + 1 + 1 + 1 

Thus the two partitions are equal in number. 
We can show this fact for 𝑛 = 6, 7 and 8. 
For 𝑛 = 6, the partitions into summand 𝑘 appears 
at most 𝑘 times are 
 

6 = 6 
          = 5 + 1 
          = 4 + 2 
          = 3 + 3 

                  = 3 + 2 + 1 
 
and the partitions into summand 1 appears any 
times, 2 appears no times and other summand 𝑘 
appears at most𝑘 − 2 times are  

6 = 6 
          = 5 + 1 

                  = 4 + 1 + 1 
                          = 3 + 1 + 1 + 1 

                                        = 1 + 1 + 1 + 1 + 1 + 1 
 
In fact, the two partitions are equal in number. 
For 𝑛 = 7, the partitions into summand 𝑘 appears 
at most 𝑘 times are 

7 = 7 
          = 6 + 1 
          = 5 + 2 
          = 4 + 3 

                  = 4 + 2 + 1 
                  = 3 + 3 + 1 
                 = 3 + 2 + 2 

 
and the partitions into summand 1 appears any 
times, 2 appears no times and other summand 𝑘 
appears at most𝑘 − 2 times are  

7 = 7 
           = 6 + 1 

                  = 5 + 1 + 1 
          = 4 + 3 

                         = 4 + 1 + 1 + 1 
                                 = 3 + 1 + 1 + 1 + 1 

                                                = 1 + 1 + 1 + 1 + 1 + 1 + 1 
 
In fact, the two partitions are equal in number. 
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For 𝑛 = 8, the partitions into summand 𝑘 appears 
at most 𝑘 times are 

8 = 8 
          = 7 + 1 
          = 6 + 2 
          = 5 + 3 

                  = 5 + 2 + 1 
          = 4 + 4 

                   = 4 + 3 + 1   
                  = 4 + 2 + 2 
                  = 3 + 3 + 2 

                         = 3 + 2 + 2 + 1 
 
and the partitions into summand 1 appears any 
times, 2 appears no times and other summand 𝑘 
appears at most𝑘 − 2 times are  

8 = 8 
          = 7 + 1 

                  = 6 + 1 + 1 
          = 5 + 3 

                         = 5 + 1 + 1 + 1 
          = 4 + 4 

                   = 4 + 3 + 1   
                                  = 4 + 1 + 1 + 1 + 1 

                                         = 3 + 1 + 1 + 1 + 1 + 1 
                                                        

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 
 
In fact, the two partitions are equal in number. 

 
 

CONCLUSION 

 
The main purpose of this study is not giving a 
general formula, a recurrence relation or a bijective 
proof for the integer partitions, rather studying 
some of their properties. We explained how 
generating functions are very useful describing the 
number of partitions of 𝑛 in which the summand 𝑘 
appears at most 𝑘 times. In the future we will work 
on studying more about finding a bijective proof or 
a recurrence relation for the integer partitions that 

we have discussed. We believe this will help for 
researchers attempting to enumerate and/or 
understand the structure of integer partitions. 
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