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ABSTRACT. The Dirichlet problem for the steady-state Stokes system of partial differential equations for an 
incompressible viscous fluid with variable viscosity coefficient is considered in a two-dimensional bounded 
domain. Using an appropriate parametrix, this problem is reduced to two systems of direct segregated 
boundary-domain integral equations (BDIEs). The BDIEs in 2D have special properties in comparison with the 
three dimensional case, because of the logarithmic term in the parametrix for the associated partial differential 
equation. Consequently, we need to set conditions on the function spaces or on the domain to ensure the 
invertibility of the corresponding parametrix-based hydrodaynamic single layer potential and hence, 
guarantying the unique solvability of BDIEs. Equivalence of the obtained BDIE systems to the original Dirichlet 
BVP and unique solvability of BDIE systems is shown. Invertibility of the corresponding boundary-domain 
integral operators is proved in appropriate Sobolev-Slobodetski (Bessel potential) spaces. 
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INTRODUCTION 

 
The Stokes system of partial differential equations is 
derived from the linearised steady-state Navier-Stokes 
system. The study of the Stokes equations is useful in 
itself; it also gives us an opportunity to introduce 
several tools necessary for a treatment of the full 
Navier-Stokes equations, see e.g. Temam (1979), 
Chapter I. The Stokes system has applications on 
modelling the motion of a laminar viscous fluid which 
are useful in science and engineering. 
 Boundary integral equations and the 
hydrodynamic potential theory for the Stokes system 
with constant viscosity have been extensively studied 
nowadays, see e.g. Ladyzhenskaya (1969), Hsiao and 

Wendland (2008),  Rjasanow and Steinbach (2007),  
Steinbach (2007),  Kohr and Wendland (2006), Domínguez 

and Sayas (2006) and  Hsiao and Kress (1985). 
Boundary-domain integral equation systems for 

the incompressible Stokes system with variable 
viscosity in 3D have been investigated in Mikhailov and 

Portillo (2015) and BDIE systems for the compressible 
Stokes system with variable viscosity in 3D have been 
analysed in Mikhailov and Portillo (2019). But this is not 
the case for BDIE systems for the Stokes system with 
variable viscosity in 2D. The BDIEs in the two-
dimensional case have special properties in 
comparison with the three dimension because of the 
logarithmic term in the parametrix for the associated 
partial differential equation. Consequently, we need to 
set conditions on the function spaces or on the domain 
for the invertibility of corresponding parametrix-

based hydrodaynamic single layer potential and hence 
the unique solvability of BDIEs. 

In this paper, using an appropriate parametrix 
the Dirichlet boundary value problem for the steady-
state Stokes system of partial differential equations for 
an incompressible viscous fluid with variable viscosity 
coefficient in two-dimensional bounded domain is 
reduced to systems of direct segregated boundary-
domain integral equations (BDIEs). Following similar 
approach used in Tamirat and Mikhailov (2015) to 
analyze BDIE systems for BVPS associated with 
variable-coefficient scalar elliptic PDEs, equivalence of 
the obtained BDIE systems to the original Dirichlet BVP 
and unique solvability of BDIE systems is shown. 
Invertibility of the corresponding boundary-domain 
integral operators is proved in appropriate Sobolev-
Slobodetski (Bessel potential) spaces. 
 

Formulation of the Boundary Value Problem 

Let  be an open bounded two-

dimensional region of  and let  The 

boundary  be a simply connected, closed and 

infinitely smooth curve. 

Let  be the velocity vector field,  the pressure 

scalar field and  be the variable kinematic 

viscosity of the fluid such that . For an 

arbitrary couple  the stress tensor operator,  

and the Stokes operator,  for incompressible fluid 

are defined as:  
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where  is Kronecker symbol. Here and henceforth 

we assume the Einstein summation in repeated 
indices from 1 to 2. We also denote the Stokes operator 

as . We will also use the following 

notation for derivative operators:  

with ; . 

 In what follows  are 

the Bessel potential spaces, where  is a real number 

(see, e.g., (Lions and Magenes, 1973; McLean, 2000)). We 

recall that  coincide with the Sobolev-Slobodetski 

spaces  for any non-negative s. We denote by 

 the subspace of 

, ; 

similarly,  

is the Sobolev space of functions having support in 

. We will also use the notations 

, , 

, 

 for 2-dimensional vector space. 

 Let  be the 

divergence-free Sobolev space. 
 We will also make use of the following space 
(see, e.g., (Costabel, 1988; Chkadua et al, 2009;  Mikhailov 

and Portillo, 2019 )).  

 
endowed with the norm  

 

 Let us define a space  

 

endowed with the same norm  

  

The operator  acting on  is well defined in the 

weak sense provided  as  

  

where the form  and the 

function  are defined as  

                         (2.1) 

 For sufficiently smooth functions 

 with , we 

can define the classical traction operators, 

 on the boundary  as  

           (2.2) 

where  denote components of the unit outward 

normal vector  to the boundary  of the 

domain and  is the trace operator from inside and 

outside . 

 Traction operator (2.2) can be continuously 
extended to the canonical traction operator 

 defined in the weak 

form similar to [10] as  

 

 

Here the operator  

denotes a continuous right inverse of the trace 

operator In addition, for 

 the traction operator  

are also defined. 

 Furthermore, if  and 

, the following first Green identity holds 

(see, e.g. Costabel (1988), Chkadua et al. (2009), 
Mikhailov and Portillo (2015), Mikhailov and Portillo 
(2019)  

  (2.3) 

 Equation (2.3) is also defined for 

 and . Applying 

the identity (2.3) to the pairs  

and  with exchanged roles and 

subtracting the one from the other, we arrive at the 
second Green identity (see, e.g. McLean (2000), 
Mikhailov (2011), Mikhailov and Portillo (2015), Mikhailov 

and Portillo (2019)) as follow:  

 (2.4) 

 Equation (2.4) is also defined for 

 and . 

 We shall derive and investigate the BDIE systems 
for the following Dirichlet boundary value problem. 

Given the functions,  and , find a 

couple of functions  

satisfying,   

                             (2.5) 

                            (2.6) 

From the divergence theorem it follows that  must 

satisfy the compatibility condition,  

  (2.7) 
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 where  is the outer normal vector defined for 

almost all  (Rjasanow and Steinbach (2007), equ. 

1.87).  
 Theorem 2.1  The Dirichlet BVP (2.5)-(2.6) has a 

unique solution in the space  satisfying (2.7).  

 Proof. Let  and  are in 

 that satisfy the BVP (2.5)-(2.6). Then 

 also belongs to 

 and satisfy the following homogeneous 

Dirichlet BVP   

                              (2.8) 

                              (2.9) 

 The first Green identity (2.3) holds for any 

 and for any pair . 

Then due to (2.8)-(2.9) we have, 

, that is 

Now if we choose , then we get,  

As , the only possibility is that 

, i.e,  is a rigid movement (see [4, 

Eq.(2.2.11)]). Nevertheless, taking into account the 

Dirichlet condition (2.9), we deduce that  and 

hence . 

 Considering now  and keeping in mind 

equation (2.8), we have  and then we 

get . Since , we have that .  
 

Parametrix and parametrix-based hydrodynamic 
potentials 

Parametrix and remainder 

The Stokes operator  becomes its counterpart 

with constant-coefficient,  when . Its 

fundamental solution is defined by the pair of 

distributions  where  represent 

components of the incompressible velocity 

fundamental solution and  represent the 

components of the pressure fundamental solution 
(see, e.g. Ladyzhenskaya (1969),  Hsiao and Wendland ( 

2008),  Rjasanow and Steinbach (2007), Steinbach (2007)). 
Let us consider the following system  

  

 

 Applying Fourier transforms to the above system we 
get,  

 [  

   for  

 Therefore the pair  satisfies  

 (3.1) 

 (3.2) 

 Let us denote . For 

the case  and with fundamental solution of the 

operator , the stress tensor 

  reads  

Indeed,  

[  

[  

 which shows that  

The boundary traction  is then 

Let us define a pair of functions as 

 (3.3) 

( ) (3.4) 

Then  

 Thus,  

and  

(3.5) 

 Substituting (3.3)-(3.4) into Stokes system we have, 
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Thus, 

  (3.6) 

where 

 

is a weakly singular remainder. This implies that the 

pair  is a parametrix for the Stokes operator 

.  

 
Parametrix-based volume and surface potentials 

Let  and  be sufficiently smooth scalar and vector 

functions on , e.g.,  For 

 similar to (Mikhailov and Portillo, 2015; 

Mikhailov and Portillo, 2019), let us define the 
parametrix-based Newton-type and remainder vector 
potentials operators for the velocity,  

 

and the scalar Newton-type and remainder potentials 
for the pressure,  

 (3.7) 

  (3.8) 

  (3.9) 

The integral in (3.9) is understood as a 2D 
strongly singular integral in the Cauchy sense. The 
equality (3.9) hold by the using the same procedure as 
in 3D case, Mikhailov and Portillo (2019). 

For the velocity, the parametrix-based single 
layer and double layer potentials are defined for 

 as:  

 and for pressure in the variable coefficient Stokes 
system, the single layer and double layer potentials 

are defined for  as:  

The corresponding boundary integral (pseudo-
differential) operators of direct surface values of the 
single layer potential and the double layer potential, 
the traction of the single layer potential and the 
double layer potential are  

 

 where  are the traction operators (see, e.g. 
Mikhailov and Portillo (2015), Mikhailov and Portillo 

(2019)). 
The parametrix-based integral operators 

depending on the variable coefficient, , can be 

expressed in terms of the corresponding integral 

operators for the constant coefficient case, , 

marked by  as in, Mikhailov and Portillo (2015)  and 

(Mikhailov and Portillo, 2019, Eq.(4.6)-(4.11)). The proof 
of the relations (3.10)-(3.17) is given in the Appendix.  

                   (3.10) 

 (3.11) 

 (3.12) 

     (3.13) 

      (3.14) 

      (3.15) 

 (3.16) 

          (3.17)  

 
Note that the constant-coefficient velocity potentials 

,  and  are divergence-free in  , the 

corresponding potentials ,  and  are not 

divergence-free for the variable coefficient  see, 

e.g. Mikhailov and Portillo (2019). For the constant-
coefficient potentials we have the following well-
known relations:  

 (3.18)  



 
 

50  Mulugeta A. Dagnaw and Tsegaye G. Ayele 

 

       Theorem 3.1 Let , the following operators are 
continuous:  

 (3.19) 

 (3.20) 

 (3.21) 

 (3.22) 

 (3.23) 

Moreover, the following operators are compact,  

     (3.24) 

    (3.25) 

     (3.26)  

  
Proof. The continuity of the operators for the 

constant coefficient case is proved in [4]. 
Consequently, from the relations (3.10)-(3.16) follows 
the continuity of variable coefficient operators (3.19) - 
(3.21) as well and the continuity of the operators (3.22) 
and (3.23) can be proved similar to (Mikhailov and 

Portillo (2019), Theorem 4.3). The compactness of 
operators (3.24) - (3.26) is implied by the Rellich 
compactness embedding theorem.  

Theorem 3.2 Let  be a bounded open region  

with closed, infinitely smooth boundary . The following 
operators are continuous:  

   (3.27) 

   (3.28) 

  (3.29) 

  (3.30) 

  (3.31) 

  (3.32) 

  (3.33) 

  (3.34) 

  (3.35) 

  (3.36) 

 (3.37) 

 (3.38) 

 Proof. We use similar procedure as in (Mikhailov and 

Portillo (2019), Theorem 4.1). Since the surface  is 

infinitely differentiable, the operators  and  are 

respectively pseudodifferential operators of order -2 
and -1, (see, e.g.,( Hsiao and Wendland (2008), Lemma 
5.6.6. and Section 9.1.3]). Then, the continuity of the 

operators  and  from the ‘tilde spaces’ 

immediately follows by virtue of the mapping 
properties of the pseudodifferential operators. 

Alternatively, these mapping properties are well 
studied for the constant coefficient case, i.e. operators 

and , see, e.g. Hsiao and Wendland (2008), 

Lemma 5.6.6). Consequently, the respective mapping 
properties for the remainder operators (3.29) and 
(3.35) immediately follow by considering the relation 
(3.11). 

For the remaining part of the proof, we shall that 

. In this case, . Hence, 

the continuity of the operator (3.28) immediately 
follows from the continuity of (3.27). 

Let us consider now that . Then, let 

 , . It is well known that 

 and that  due to 

the continuity of the  operator and the trace 

theorem. Consequently, it is possible to use the 
representation obtained by integrating by parts, (see, 
e.g. Chkadua et al. (2009), Theorem 3.8)),  

 (3.39) 

 where  denotes the components of the normal 

vector to the surface  directed outwards the 

domain. 

Due to the mapping properties of  and  in 

Theorems 3.1 and 3.2, we deduce that 

 is continuous for . 

Consequently, from relations (3.10) and (3.13), for 

, immediately follows the continuity of the 

operator (3.28). Furthermore, by induction on , 

using the representation in identity (3.39) and the fact 
that the operator (3.28) is continuous for 

, follows that the operator (3.28) is 

also continuous for . The 

continuity of the operator (3.28) for the cases 

 is proved by applying the theory of 

interpolation of Bessel potential spaces, see, e.g. Triebel 

(1978), Chapter 4. 
Continuity of the operator (3.32) and hence 

(3.34) can be proved following a similar argument. 
Continuity of the remainder operators (3.30) and 
(3.36)) immediately follows from the continuity of 
operators (3.28) and (3.32) by relations (3.11) and 
(3.12). 

Also the Continuity of the operator (3.37), (3.38) 
can be proved similar as in Mikhailov and Portillo (2019), 
Theorem 4.1.  
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Theorem 3.3  Let . The following operators  

 

 

 

 

are continuous. 

Proof. For constant coefficient case, , the 

corresponding operators are proved in (Hsiao and 

Wendland (2008), Lemma 5.6.6). Due to relations (3.15), 
the theorem holds true.  

Theorem 3.4 Let  and . 
Then, the following jump relations hold  

 (3.40) 

  (3.41) 

Proof. For constant coefficient case, , the jump 

properties for the corresponding operators are proved 
in Hsiao and Wendland (2008), Lemma 5.6.5). Due to 
relations (3.13) and (3.16), the theorem holds for (3.40) 
and (3.41) as well.   
Proposition 3.5 The following operators are compact,  

 

 

 

Proof. The proof of the compactness for the operators 

,  and  immediately follows from Theorem 

3.2 and the trace theorem along with the Rellich 
compact embedding theorem. To prove the 

compactness of the operator  we consider a 

function . Then,  

and hence, . 

The traction operator  is the composite of a 

differential operator, with respect to the first variable 
and with respect to the second variable, and the trace 

operator  which reduces the regularity by  

according to the Trace Theorem. Therefore, 

. Then, the compactness 

follows from the Rellich compact embedding 

.   
 

Invertibility of the hydrodynamic single layer 
potential operator in 2D  

Suppose that  where 

 The single layer potential operator 

is a Fredholm of index zero.In 3D case, for 

 if ,  , then . 

But this is not generally true for 2D case. It is well 
known (Domínguez and Sayas (2006), 696, p.707] for 
some 2D domains the kernel of the operator 

 is non-zero, which is by 

the first relation in (3.14) implies that the kernel of the 

operator  is nontrivial as well. The following 

example is from Cialdea et al (2013) and Lemma 1) and 
illustrates this fact.  

Theorem 4.1 Take the density function  

and  to be a disc of radius  centered at the 

origin and  be the circular boundary of 
the disc. We want to show that  

 

 Indeed,  

  

 

 

 First consider the integral  and 

let . Let us fix 

. For any  

 

Since  is harmonic in , constant 

on  and continuous in .Then it is 

constant in .  

 

 Second consider the integral 

 for each  

and . Before calculate the above integral let us 

show first  

 

To show this let 

 and fix 

. For any  we have 

 and then  is constant on . Moreover  

 

 and then also  is constant on . Since  is 

harmonic in  and continuous on  , it is 

constant in  and then  
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 The function  is 

continuous on , harmonic in  and 

constant on . Then it is constant in  

and  

so that,  

  

for  

Since, 

,  

, 

 It implies that,  

 
Therefore,  

In similar way,  

 

and  

 

 

 

 Hence, 

 

 

Corollary 4.2 If we set  in Example 1, 

with  we get,  in .  

In order to have invertibility for the single layer 
potential operator in 2D, we define the subspace 

 of the space , see e.g., (Domínguez 

and Sayas (2006), Appendix A, in particular  

and ),  

for   (4.1) 

 where the norm in  is induced norm of 

. 

The boundary integral operator,  is a 

Fredholm operator of index zero on  as 

indicated in Domínguez and Sayas (2006), Lemma A.2) 

and also  by the relation 

(3.14).  

Theorem 4.3 If  satisfies  on 

 then .  

Proof. Let us proof by using similar procedure as 
in [8, Corollary 8.11]. The single layer potential 

 satisfies  

 in     (4.2) 

  in     (4.3) 

  on     (4.4) 

 For the exterior problem, we use the following 
growth conditions at infinity,  

  

 as  

where , (see, e.g.,( Hsiao and Wendland 

(2008), Eq.(2.3.18), Eq.(2.3.19) and Eq.(2.3.22))). Since 

, i.e., , it follows that 

 and  in . 

For the interior problem, using first Green 

identity, we get,  and using interior part of 

(4.2), we have that  in  Since 

, then . Consequently,  

. 

Thus, . That is, from  follows that 

 and relation (3.14) implies for the operator  as 

well.   

Theorem 4.4 Let  be a bounded domain. Then 

the single layer potential  is 

invertible.  
Proof. Due to Domínguez and Sayas (2006), Lemma A.2) 

the operator  is Fredholm of index zero and the 

first relation in (3.14) implies that so is operator . 

Theorem 4.3 implies the injectivity of operetor  and 

hence the invertibility of operator .  

To prove the - ellipticity of the single-

layer potential operator for the Stokes system we first 

introduce the fundamental solution for  

[  

[  
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In Kohr et al. (2013), Appendix], the single layer 

potential operator  is positive and so is  , that 

is,  

 (4.5) 

 for a non zero  that satisfy  and 

follows the theorem. 
Consider the following basis of the space of rigid 

body translations in plane: , 

 

Theorem 4.5 Let  be a bounded domain with 

smooth boundary  Let  is contained in the interior of 

a circular disk with a radius . If , then  is 

- elliptic.  

 Proof. First we show the positivity of  and we use 

a similar procedure as in Vodi ka and  Manti (2004), 

Proposition 2]. Let  denote the boundary of the 

disk with radius  containing  The operator  is 

positive by (4.5). So that  

      (4.6) 

for nonzero  satisfying 

 ,  and 

 for a chosen . 

Decomposing the integral in (4.6) yields  

 
 (4.7) 

The in equation (4.7), the second, third and fourth 
integrals becomes respectively  

 

 

and  

 

Hence, equation (4.7) becomes  

(4.8) 

Also equation (4.8) can be written as  

(4.9) 

The second member in (4.9) vanishes for 

, therefore (4.9) must be positive for any 

nonzero . From the positivity and G rding 

inequality which is indicated from [19, Eq.(A.15)] for 

the scaled one, so it is also . We find that  is 

- elliptic due to Lemma 5.2.5 in [4].   

Theorem 4.6 Let  have 

, then the operator  has a 

bounded inverse on  

Proof. By Theorem 4.5 the operator  is - 

elliptic and due to Theorem 3.1 it is also continuous, 

that is, bounded. Hence, by Lax-Milgram Lemma  

has a bounded inverse.  
 
The third Green identities  

Theorem 5.1 For any  

the following third Green identities hold  

 in  (5.1) 

 in  (5.2) 

 Proof. We use similar procedures as in Mikhailov and 

Portillo (2015), Mikhailov and Portillo (2019) to prove. For 

an arbitrary fixed , let  be a ball 

with a small enough radius  and centre , and 

let . Let first 

 (or ). 

Let us start from the velocity identity (5.1). For 
the parametrix, evidently, we have the inclusion 

. 

Therefore, we can apply the second Green identity 

(2.4) in the domain  to  and to  

to obtain  

 

 

 (5.3) 

  Since all the functions in (5.3) are smooth, the 
canonical conormal derivatives coincide with the 

classical ones and it is easy to show that when , 

the first integral in (5.3) tends to 0, the second tends to 

, while integrands in the remaining domain 

integrals are weakly singular and these integrals tend 
to the corresponding improper integrals, which leads 
us to (5.1) for  

or . 

Let us now prove the pressure identity (5.2) for 

. One can do this using the 

second Green identity similar to (5.3) but we will 
employ a slightly different approach. Multiplying 
equation the Stokes operator by the fundamental 

pressure vector , integrating over the 
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domain  and writing it as the bilinear form, which 

will be then treated in the sense of distributions, we 
obtain  

 (5.4) 

Applying the first Green identity to the first term, we 
have,  

 

 (5.5) 

 and also in the second term  

(5.6) 

 Substituting (5.5) and (5.6) into (5.4) and rearranging 
terms we get  

 

 

 (5.7) 

 By (2.2) we obtain  

(5.8) 

 Let us now simplify the first term in the right hand 
side of (5.7) using the symmetry 

 and (3.1) . Then,  

 (5.9) 

Applying again the first Green identity to the first 
term in the right hand side of (5.9), we obtain  

 
 (5.10) 

Now, substitute (5.10) in to (5.9),  

 
 (5.11) 

Now, substitute (5.11) and (5.8) into (5.7). As a result, 
we obtain  

 

(5.12) 

Rearranging the terms, taking into account that 

, and using the potential 

operator notations, we obtain (5.2) for 

.   

If the couple  is a 

solution of the Stokes PDE (2.5) with variable 
coefficient, then (5.1) and (5.2) give  

 (5.13) 

 (5.14) 

We will also need the trace and traction of the third 

Green identities (5.13) and (5.14) on .  

 (5.15) 

 (5.16) 

One can prove the following two assertions that 
are instrumental for proof of equivalence of the BDIEs 
and the Dirichlet PDE.  

Lemma 5.2  Let  
satisfy equations.  

 (5.17) 

 (5.18) 

Then  and 

solve the equations  

      (5.19) 

 Moreover, the following relations hold true:  

,  (5.20) 

 (5.21) 

Proof. First of all, let us prove 

. Since  

 

 
We need only to show that . 

Further, from (5.17) due to (3.10) and (3.13) we have,  

 

And from (5.18) due to (3.12) and (3.15) we have,  

 

Then by (3.18)  

 

 

 

Also  for  

by using the mapping properties of and . 

Therefore  and hence 

. Therefore, . 

Secondly, let us prove that  solve 

. Subtracting (5.17) from identity (5.1), 

we obtain  

( )  in   (5.22) 

 Subtracting (5.18) from identity (5.2), we obtain  

 in  (5.23) 

 where  and  . 

After Multiplying equality (5.22) by  and 

applying relations (3.10) and (3.14), we get  

 (5.24) 
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Applying the stokes operator with  to these 

two previous equations, by (3.18) we obtain 

 and hence the first equation in (5.19). 

Finally, the relations (5.20) and (5.21) follow from 
the substitution of (5.19) in to (5.22) and (5.23).  

Lemma 5.3  

(i) Let either  and  

or . If  (5.25) 

then  

(ii) Let . If  (5.26) 

then .  

 Proof. We will use similar procedures as in [3].  

(i) Taking the trace of (5.25) on  and using jump 

relation (3.40). Then we have  

on  

If  and , then 

the result follows from the invertability of the single 
layer potential given by Theorem 4.5. On the other 

hand, if , then the result is implied by 

Theorem 4.4. 
(i) Taking the trace of (5.26) and then by (3.40) gives 

on  due to (3.14), 

on , where . Due 

to the contraction property of the operator  , 

then  is uniquely solvable and , 

implies  

 
BDIE systems for Dirichlet BVP  

We aim to obtain a segregated boundary-domain 
integral equation systems for Dirichlet BVP (2.5)-(2.6). 
We will use similar procedures as in, Tamirat and 
Mikhailov (2015). 

Let us denote the unknown traction as 

 and will further consider 

 as formally independent on  and . Assuming 

that the function  satisfies system of PDE (2.5), 

by substituting the Dirichlet condition in to the third 
Green identities (5.1),(5.2) and either into its trace 

(5.15) or into its traction (5.16) on , we can reduce 

the BVP (2.5)- (2.6) to two different systems of 
Boundary-Domain Integral Equations for the 

unknowns  

 
BDIE System (D1) 

 From the equations (5.13), (5.14) and(5.15) we obtain 

in  (6.1) 

in  (6.2) 

on  (6.3) 

 where  

 (6.4) 

Using theorems 3.1, 3.2 and 3.3 we have, 

. 

We denote the right hand side of BDIE system 
(6.1) -(6.3) as  

 (6.5) 

 which implies  

Note that BDIE system (6.1)-(6.3) can be split into 
the BDIE system (D1), of 2 vector equations (6.2), (6.3)) 

for 2 vector unknowns,  and ,and the scalar 

equation (6.1) that can be used after solving the 

system to obtain the pressure, . The system (D1) 

given by equations (6.1) – (6.3) can be written using 
matrix notation as  

 (6.6) 

 where  represents the vector containing the 

unknowns of the system  

 

The matrix operator  is defined by  

 

 Remark 6.1  The term  if and only if 

.  

Suppose , then . Now multiplying the 

second equation of (6.4) by  and applying Stokes 

operator with  to these two equations (6.4), by 

(3.18) we obtain  

In addition, as  , we get that  

 implies  

Therefore, we obtain that  on . And by first 

equation of (6.4) we obtain . 

On the other hand assume that . 

Then immediately we have . 
 

BDIE System (D2) 

From the equations (5.13),(5.14) and its traction 
(5.16) we obtain   

 in  (6.7) 

 in  (6.8) 

 

on  (6.9) 
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  where  and  are given by (6.4). In matrix form it 

can be written as  , where  

,    

Note that BDIE system (6.7)-(6.9) can be split in to the 
BDIE system (D2), of 2 vector equations (6.8), (6.9)) for 

2 vector unknowns,  and ,and the scalar equation 

(6.7) that can be used, after solving the system, to 

obtain the pressure, .  

Remark 6.2  The term  if and only if 

.  

Indeed, it is evident that  implies 

. Let now . Lemma 5.2 with  

for  and  for  applying to equation (6.4) 

implies that  and  in  

Therefore, by Lemma 5.3(ii)  on . 

In the following theorem we shall see the 
equivalence of the original Dirichlet boundary value 
problem to the boundary domain integral equation 
systems  

 
Equivalence and invertibility theorems  

Theorem 7.1 (EquivalenceTheorem)  Let 

and satisfy the 
compatibility condition (2.7)  ; 

(i) If some  solve the Dirichlet 

BVP (2.5)-(2.6), then 

, where  

 (7.1) 

 solves the BDIE systems (D1) and (D2).  

(ii) If  solves 

the BDIE system (D1) and  , then 

 solves the BDIE system (D2)and BVP (2.5) -(2.6), 

this solution is unique, and  satisfies (7.1).  

(iii) If  solves 

the BDIE system (D2) , then  solves the BDIE 

system (D1) and BVP (2.5) -(2.6), this solution is 

unique, and  satisfies (7.1).  

Proof (i) Let  be a solution of 

the BVP. Let us define the function  by (7.1). Taking 

into account the Green identities (5.13)- (5.15), we 

immediately obtain that  solves BDIE 

systems (D1)and (D2). 

We note that if  

solves BDIE systems (D1) and (D2). Due to the first two 
equations in the BDIE systems, the hypotheses of 
Lemma 5.2 are satisfied implying that 

 and solves PDE (2.5) in  and 

also satisfying  

 (7.2) 

(ii) let  

solve BDIE system (D1). If we take the trace of the 
second equation in (D1)and subtracting the third 

equation from it, we arrive at  on . 

Therefore, the Dirichlet boundary is satisfied. 

Now using Dirichlet condition in (7.2), we have  

, Lemma 5.3(i) then implies  

(iii) let  

solve BDIE system (D2). If we take the traction of the 
first and second equations in (D2) and subtracting the 

third equation from it, we arrive at  on 

. Therefore  satisfies (7.1) . 

Now inserting  in (7.2),we have , 

Lemma 5.3 (ii) then implies . therefore, 

satisfy the Dirichlet Condition. 
The uniqueness of the BDIE system solutions 

follows form Theorem 2.1.  

Theorem 7.2  If , then the following 

operators are invertible  

 (7.3) 

 (7.4) 

Proof. Theorem 7.1(ii) implies that operators 7.3 

and 7.4 are injective. To see this, let , then 

, or  by Remark 6.1, which implies 

. This means , 

, hence by Theorem 7.1(ii), 

. Therefore,  

Let us denote  

 

Then 

 

is continuous which is bounded. It is invertible due to 
its triangular structure and invertibility of its diagonal 

operators ,  

and  (see theorem (4.5)). 

Due to proposition 3.5 the operator 
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which is  

 

is compact, implying that operator (7.3) is Fredholm 
operator with zero index (cf. McLean (2000), Theorem 
2.27) and then the injectivity of operator (7.3) implies 
its invertibility. 

To prove the invertibility of the operator (7.4), 

consider the solution  of the system 

(6.6). Here  is an 

arbitrary right hand side and is the inverse of the 
operator (7.3) which exists. Applying Lemma 5.2 to 
the first two equations of the system (6.1)- (6.3), we get 

that . Consequently, 

the operator is also the continuous inverse of the 
operator (7.4).  

The following similar assertion for the operator 

 holds without the needs of setting condition on the 

space of functions.  
Theorem 7.3 The operators  

 (7.5) 

 (7.6) 

 are invertible.  
Proof. Theorem 7.1(iii) implies that operators 7.5 

and 7.6 are injective. To see this, let , then 

, or by Remark 6.2, which implies 

. This means , , 

hence by Theorem 7.1(iii), . 

Therefore, . 

Let us denote  

 

Then  is continuous which is bounded. It is 

invertible due to its triangular structure and 
invertibility of its diagonal operators 

 and . 

Due to Theorem 3.1 proposition 3.5, the operator  

 

is compact, implying that operator (7.5) is Fredholm 
operator with zero index (see, McLean (2000), Theorem 
2.27) and then the injectivity of operator (7.5) implies 
its invertibility. 

To prove the invertibility of the operator (7.6), 

consider the solution  . Here 

 is an arbitrary right 

hand side and  is the inverse of the operator (7.5) 
which exists. Applying Lemma 5.2 to the first two 
equations of the system (6.7) - (6.9), we get that 

. Consequently, the 

operator is also the continuous inverse of the operator 
(7.6).  

 
Appendix: Proof of the relations 

The parametrix-based integral operators depending 

on the variable coefficient, , can be expressed in 

terms of the corresponding integral operators for the 

constant coefficient case, . 

Here we prove relations (3.10) -(3.17).  

 

=   which is relation (3.10).  

For  

 

 

 

 

=  

 

 

 

 that is,  
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