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ABSTRACT: This paper presents a fitted non-polynomial cubic spline method for solving
singularly perturbed delay differential equations with left and right end layers for which a small
delay parameter is in the convection term. The stability and convergence of the method have been
established. To validate the applicability of the proposed method two model examples without
exact solution have been considered and solved for different values of the perturbation parameter
and mesh sizes. Both theoretical error bounds and numerical rate of convergences have been
investigated for the proposed method and observed to be in agreement. The numerical results have
been tabulated and further to examine the effect of delay parameter on the boundary layer solution,
graphs have been given for different values of delay parameter.
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INTRODUCTION

A differential equation in which the highest
order derivative is multiplied by a small positive
parameter & is called perturbed problem and the
parameter & is known as the perturbation

parameter (Roos et al, 2008). Any system
involving a feedback control will almost involve
time delays. This is because a finite time is
required to sense information and then to react
on it. If we restrict the class of delay differential
equations to a class in which the highest
derivative is multiplied by a small positive
parameter and involving at least one delay term,
then it is said to be a singularly perturbed delay
differential equations. In this problem typically
there are thin transition layers where the solution
varies rapidly or jumps abruptly, while away
from the layers the solution behaves regularly
and varies slowly. Thus, there has been a
growing interest in the numerical treatment of
such differential equations. This is due to the
usefulness of such type of differential equations
in the mathematical modeling of various physical
and biological phenomena. For example,
population ecology, control theory, viscous
elasticity, and materials with thermal memory
(Elsgolt's, 1973).

*Author to whom all correspondence should be addressed

Recently, many researchers have been trying to
develop different numerical methods for solving
singularly perturbed delay differential equations.
For example, Awoke Andargie and Reddy (2013),
presented parameter fitted scheme to solve
singularly perturbed delay differential equations.
Gemecchis File et al., (2017) and Gashu Gadisa et
al., (2018) presented different fourth order finite
difference methods for solving singularly
perturbed delay reaction-diffusion equations
with layer or oscillatory behaviour. Erdogan,
(2009) presented an exponentially fitted method
to solve singular perturbed delay differential
equations. Cubic spline in compression
approximations for singularly perturbed delay
differential equation with large delay has been
presented by (Chakravarthy et al., 2015). The use
of cubic splines for the solution of linear two
point boundary value problems was suggested
by (Bickley, 1968). A fitted finite difference
method using polynomial cubic on uniform mesh
for solving singularly perturbed two-point
boundary value problems is also presented by
(Phaneendra and Prasad, 2015). But, still
numerical treatment of singularly perturbed
boundary value problems needs improvement.
Thus, in this paper we present a fitted non-
polynomial cubic spline method for solving
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singularly perturbed delay convection-diffusion
equations.

DESCRIPTION OF THE METHOD

Consider singularly perturbed delay convection-
diffusion equations with variable coefficients of
the form:

ey"(x)+a(X)y'(x—8) +b(x)y(x) = f(x), 0<x<1 (1)
with interval and boundary conditions,
y()=¢(x), —6<x<0, y(1)=¢ )
where ¢ is small perturbation parameter,
O<ée<<1land ¢ is delay parameter satisfying

0<(e-da(x))<<1 for all x €[0,1];
a(x), b(x), f (x) and ¢(x)are bounded
functions in [0,1] and ¢ is known constant.
Further, when a(x) >0, Egs. (1) - (2) has
boundary layer on left end of the interval and
when a(x) <0 it has boundary layer on right

end of the interval.

By using Taylor series expansion on the delay
term, we have:
y' (x=6) = y'(x)=3y"(x) +0(5?) &)
Substituting Eq. (3) into Eq. (1), we obtain an
asymptotically equivalent singularly perturbed
boundary value problem of the form:

7y"(x) +a(x)y+b(x)y(x)=f(x), for xe[0,1], (4)
where, y=¢- 5a(x) under the boundary
conditions,

y(O) =¢, and y(l) =9

Consider a uniform mesh with nodal points X; on

[0, 1] such that:

0=X, <X <X, <..<Xyy <Xy =1 X =x+ih, i=01.., N, where h:%

For each segment[xi,xm],i=0,l,...,N—1 the
non-polynomial cubic spline S(X) has the
following form:

S(x)=a+(x—x )b+ (e(x_xi)w—e_(x_x')w)c. +

(el e t)g (5)

where, ai,bi,ci and diare unknown coefficients

and W is a free parameter.
To determine the unknown coefficients in Eq.
(5), we denote:

S(Xi):yi' S( |+1) Yia, S,(Xi):mi'
S”(Xi): Mi' S’(Xm):mmf S”(Xm): Mi+1

The coefficients in Eq. (5) are determined as:

a—y M oM M, (e’ +e)

i—YiT e GEeMy mo—
? boow(ef e )

b_:yi+1_yi+Mi_Mi+l and d|= Miz (6)

! h wé 'o2w
where, Wh=6.
Using the continuity condition of the first

derivative at X, S} , (Xi ) =S, (Xi ) , we have:
b, +we,, (e’ +e’)+wd,, (e”—e”)=b +2wc, (7)

Reducing indices of Eq. (6)
substituting into Eq. (7), we obtain:

by one and

YimYia

M —-M 2M, —(e +e )M, B M .
gt (L

_YiaTYi +Mi’M.+1+2W 2Mi+17(eﬁ+eiy)Mi
h wo 2w’ (e’ -e”’)

:%—aM,ﬁZﬂM +aM,, ®)
where, a—l[l— 2 ] and ﬂzl{g(iue:)_l].
6? (eg—e ") 0| e"-e
As @ — 0 in Eq. (8), we get a-l—ﬂ—%
Using S" () = y/'= M, into Eq. (4), we get:
M, = fi-ay-by,
Mg =f—a, Y —bayiy and
}/Mi+l |+1 a'|+1y|+1 |+1y|+1 (9)
Using  Taylor's series  expansions  of
Yoo Yiar Yia. Yi, and simplifying, we
have:
4 y|+1 yl—l
; +T,,
y| 2h 1
y|+ +4y| 3yi—
Vi, = L oh L+T, and
3Yia —4Yi +Yiu
S (AR ) 10
y|+1 2h 2 ( )
h? h?
where, T, == y"(¢) and T, = y"(¢),
for é‘e(xI 1 I)
Using Eq. (10) into Eq. (9), we get:
(11)

Mizl{fi (ywl yll j_blyi},
1% 2h
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1 T4y, —3Y,_ 12
Mi—lzf{fi—l_aifl( Yia y Yoo |1yll} ( )
y 2h
1 3V —4Yi - Vi
Mi+1 = 7{ fi+1 - ai+1 [ : 2h 1 |+1y|+1}

Substituting Eqs. (11) - (13) mto Eq. (8) and
rearranging, we get

2pa,
n

0{( f=byi,+ fi+1_bi+1yi+l)+2ﬁ( fi _biyi)+T

hz(y.l 2y, +y,)+ 2 h (=Y, +4Y, —3Yi) + Vi = Vis)

Zh = (SYH _4yi + yifl) =

(14)

where, "(&) is a local

h2
T=(4pa a8, -aa.)y

truncation error.

From the theory of singular perturbations
described in O’ Malley, (1974) and the Taylor’s
series expansion of a(X) about the point ‘0" in the
asymptotic solution of the problem in Eq. (4), we

have:
_a(o)[mj
Y

y(xi) ~ yo(xi)+(¢o - yo(o))e

and letting p = —, we get:

lim y(ih) = yo(0) +(dh — Yo (©)e *®”,  since
X, =X, +ih=ih.

Introducing a fitting factor G( p) into Eq. (14),
we get:

U(P)

23a
L (ya-2y, +y.0)+ & ( Vi +4Y, — 3y.,1)+%(y.+ry.,1)

aam
2h

(3y|+1 4y, +Yi,)= ( fa—byia+ fiy _bmym)* Zﬁ( f; _bu)’i)

(15)
Multiplying Eq. (15) by h and taking a limit as
h—0, we get:
aa(0) .

Ihlgg (_ym +4y, _3yi—1)

;Ihmg(y. R

aa(0)
2

Y+ yi—l)zo

(16)
Thus, we consider two cases of the boundary
layers.

Case I: For a(x) > 0 (Left-end boundary layer),

we have:

M (Yis =2, + Vi) = (6 — ¥ (0))e O (% +e707 —2)
(17)

~Y,(0))e*° "’( —3e%0r _g=2 "+4)
(18)

+pa(0)lim (¥, —Yiy ) +——1lim(3y,., —4

lim (=3Yia+4Yi —Yin) = (%

a(0,

Li_rf(}(yu -4y, +3yi+l) = (¢o Yo (0)) e O)Ip( " 430 _4)

(19)

Liﬂg(ym ~Yia) = (%~ o (0))e (efa(o)” —e* )
(20)
Using Egs. (17) - (20) into Eq. (16) and

simplifying, we get:
a(0

R
o, = pa(O)(Ot +ﬂ) ea(O)p +e*a(0)t’ )

= pa(0)(a+ B)coth [@]
Case II: For a(x) < 0 (Right-end boundary

layer), we have:
Ligt}(ym -2y, + y.+1) (¢ Yo ( )) e (ea(l)ﬂ +e - 2)

(21)

lim(=3Y, 5 +4Y, — Viur) = (0= Yo (1) )& *¥" (-36™ — ¥ +4)
(22)

Ligl;l(—yl_l — 4y, +3y,,) = ((P_ Yo (1))efa(l)m( 07 ge _4)

(23)

_ -a(1)i -a(1 a(1)
LII)Tg(yHl yl_l)_(q)_yo(l))e ()p(e ()p_e( P)
(24)
Using Egs. (21) - (24) into Eq. (16) and
simplifying, we get:

) el gt a(1)p

o, =pa(l)(a +ﬂ)ﬁ = pa(1)(a + pB)coth {2

In general, we can take a variable fitting factor
as:

a(pi):pia(xi)(a+ﬁ)coth(@J (25)
where, P = E
4
Thus, Eq. (15) can be rewritten as:
o e AT T

1 i 3 i+l
‘*’{%_%‘*’ﬂ%*’ 0;] +ab|+1}y”1:a(f + 1)+ 2B,
(26)
Further, Eq. (26) can be rewritten as a three

term recurrence relation of the form:

Eiyi—l_lziyi+Giyi+l:Hi’f0r i=12.,N-1. (27)
where,

= ﬂ_—Baaj‘l +ab _ﬁ_i__aai*l ’

on? 2h > h  2h

2y,0, 208, 20{&11

=1 2 b +

=TT

= 7/'2-' _O.’a &_Fﬂ_}_abwl and

h 2h h 2h

Hi=a(f+f..)+281
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The tri-diagonal system in Eq. (26) can be easily
solved by the method of Discrete Invariant
Imbedding Algorithm.

Stability and Convergence Analysis

Theorem 1: (Stability)

Let B be a coefficient matrix of the tri-diagonal
system, Eq. (26). Then, for all &£>0 and
sufficiently small h, the matrix Bis an
irreducible and diagonally dominant matrix and
hence the scheme is stable.

Proof: Substituting Eq. (25) in Eq. (26) and
multiplying both sides of the equation by h, we
get the equivalent tri-diagonal scheme:

({5

L+ hab, , —

3“1 » {a‘ cuth(%j—ZaaH —2hh, +2aam}y,

{2 coth[Tp]—az‘ B | pa 30t oy }y L =h(a(fy+ fa)+261)
(28)
This can be rewritten as
Ei Yini— F| Yi +Gi Yin= H (29)
where,

£ = & ooth[ 22| 3%ty oy | o, + 2
2 2 ) 2

F =a coth( 5 j 2aa, , —2hpb +2aa, ,

G, =—coth[a'p' GG —1 4 pa +—2 hab,
2 2 2 2

and Hl*zh(a(f 1+ f|+l)+2ﬁfi)

Rewriting Eq. (29) in a matrix vector form, we

3aa

obtain:

BY =C where, B is a coefficient matrix,
T

Y =(y11 Yorro yN—l) and

(H —Edy H;or, H;—l_G:hlgD)T'
The matrix B is tri-diagonal matrix and its off-
diagonal elements are E; and G, .
Now,

- -]

a, coth [%)ﬂx(am —a,)| <

a,coth[a‘ j+2a( =)

This implies that for each row of B, the sum of
the two off-diagonal elements is less than the
modulus of the diagonal element. Therefore, Bis
diagonally dominant.

Further, for sufficiently small (i.e, h— O) , we
Ei* # OandGi* #0, Vi=12,..,N-1.

have:

Hence, B is irreducible (Varga, 2000). Therefore,
from these two conditions, the scheme in Eq. (27)
is stable (Kadalbajoo and Reddy, 1989).

Theorem 2: (Convergence)
Let Y(X) be the analytical solution of the

problem in Eq. (4) and (5), and y" be the
numerical solution of the discretized problem of
Eq. (27). Then, ‘y— yNH <ch?® for sufficiently

small h and C is positive constant.
2

Proof: Multiplying both sides of Eq. (26) by
i0i

and simplifying, we obtain:

(1+u) Yia +(2+V,) Y, +(-1+W,) Y, +9; +T, =0

(30)
where,
ui = i(% _ahzt)Fl +ﬁa|h _%J’
7i0; 2 2
v, =2 (aha,, —aha, , - i,
ViOi
L= i(ahai—l —,Bhai _ 36Xhai+1 _athmj
ViO; 2 2
R
’ gi = }/iO'i { (f| 1+ f|+1)+2ﬂfi} and
a(aif +al+l)_4ﬂal 4. ,m
T (h)= ! h i
1 ( ) 127/io_i y (g) 15 a
local truncation error for i =1,2,---, N -1.
Incorporating the boundary

condition Y, = ¢(XO) =@, Yn= y(l) =@ in
Eq. (30), we get the system of equation of the
form:

(D+P)y+M+T (h)=0 (31)
2 -1 0 0
where, 12 -1-0 ,
D=0 - -
-1
o - - -1 2
vv w 0 0
U V2 W 0 are tri-diagonal
P=[0 - -
WN—Z
0 - Uva Vo
matrices of order N -1,
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M= [(gl+ 1+u ¢o gzlgs,___,(gN71+(—1+WN71)(/7):|T Let d1= min i(_ab Z,Bb ab|+l)
T(h)=o(h") and y=[y,,¥,1y I Li=N-1 yi 0
g 11 Y20 N;l " and
T(h):[Tl’TZ""’TN—l] ,0=[0,0,0....,0] are d, = max i(—oxb \—2b —ab 1)then,
associated vectors of Eq. (31). <isN-1 ». o ' "
Let y" =[le VAR ]T ~y be the 0<d; <d,.

solution which satisfies the Eq. (31), we have:

(D+P)y" +M =0 (32)
Lete =Y, —yiN, for i=1 2,..,N-1 be the
discretization error then,
N T
=[e.&,,....ey,] -
Subtracting Eq. (31) from Eq. (32), we get:
(D+P)(y" —y)=T(h) (33)

Let

laa<c. |a|<c,, |a.]<c, |by|<k. |b]<k,and b

i+1

<k

. \th
Let ti’ jbe the (I, j) element of the matrix P,
then:

h (3ac,
t <—
‘||+l | | ylai( 2 3]
,i=1 2,.....,N=-2
3 C;
‘,,l‘—|u|_ .a,( 0;:1+ahk1+,6’c +a7j
i=23..,N-1

Thus, for sufficiently small i, we have:

=1+t .. [#0, i=1 2...,N=-2,
~L+[ta[#0, 1= 2,3 N-1.

Hence, the matrix (D+P) is irreducible, (Varga,
2000).

Let A be the sum of the elements of the i"
of the matrix ( D+ P) , then:

i,i+l

pa_3aa,

2 4

A=1+v,+w, = 1+2—h(oza,l—oza1 +aall
ViGi

] o(h?), fori=1

2

A=U+V,+W =——(-ab_-2pb —ab,,), fori=23,..,N-2

7i0i

A =1+u+v, =1+

2h [30:ai+1 _aa

+@j+0(h2),f0r i=N-1
7i0; 4 4 2

For sufficiently small h, (D+P) is monotone,
(Varga, 2000) and (Young, 1971).

Hence, (D + P)il exists and (D + P)fl >0.
From the error Eq. (33) we have:
[y=y"[[<|(©+P)7]T (h)] 4

For sufficiently small /i, we have:
A > h2d1 fori=12,....N—-1.

where,

(1
d, = 1<in1!\1n_1(m(_abil —2/30,~ abiﬂ)j .
(i,k)"

(D+P), " be

Let element of

(D + P)71 and we define,

[D+P)[= max S (D+P).  ana
N1 ’
[T (0] = max [T (35)

Since (D+ P) >0 , from the theory of

matrices, we have:
N-1

Y(D+P) A =1, fori=12...,N-1

k=L

Hence, N 1 1 (36)
kZ:;(D—i_l:)) ik Slq”l'anAk h

Now, from Eqgs. (34) - (36), we get:

1 | a(a +a,+ -4Ba 1 ., .
-y 2 J—z g
S ym(é:)(4ﬁa +6¥ a'|1+a'|+l —Ch2

12d,y;0,

(4pa +a(a_,+ay,))
12d17| |

which is independent of mesh size h .
This establishes that the method is of second
order convergent.

where, C =
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Numerical Examples

To demonstrate the applicability of the
method, two model examples one each for right
and left layers have been considered. The

numerical results are presented for ¢ = %2 and

p= %2. Since both examples (Examples 1 and

2) have no exact solution, the numerical solutions
are computed using double mesh principle. The
maximum absolute errors are computed using
double-mesh principle given by:

[E]|=maxy - y/2|,i=12,...N -1 37)

where yih is the numerical solution on the

mesh { X } " at the nodal

o . h
point X, and X, =X, +ih, i=12,..,N -1, yé
the numerical solution on a mesh, obtained
by bisecting the original mesh with N number of
mesh intervals, Doolan et al (1980).

Example 1: Consider the following singularly
perturbed delay convection-diffusion problem,
gy"(x) —€"y'(x=6) —xy(x) =0

subject to the interval and boundary conditions,
y(x)=1 —-6<x<0, y@®)=1.

The maximum absolute errors are presented
for the present method in Tables 1 and 2 for
& =0.1and different values of ¢, in Table 5 for
different values of € and & =0.5¢, and the rate
of convergence is presented in Table 6 for

& =0.1and 6 =0.03.

Example 2: Consider the following singularly
perturbed delay convection-diffusion problem,
gy"(X)+e 7y (x=8) —y(x) =0

subject to the interval and boundary conditions,
y(x)=1, —6<x<0, y@)=1.

The maximum absolute errors are presented
for the present method in Tables 3 and 4 for
& =0.1and different values of 6 ,in Table 5 for
different values of &, and 8 =0.5¢, and the rate
of convergence is presented in Table 6 for

£=0.1 and 6 =0.03.

Numerical Results

Table 1: Maximum Absolute errors of Example 1, for
different values of 8 and £=0.1.

si N 10° 10° 10*

Our Method

0.01 2.6064e-05 2.5938e-07 2.6486e-09

0.03 2.1154e-05 2.1130e-07 2.1233e-09

0.06 1.6255e-05 1.6241e-07 1.6528e-09

0.08 1.4022e-05 1.4019e-07 1.4440e-09
Reddy et al., 2012

0.01 5.75975e-03  5.0842e-04 5.02478e-05

0.03 3.93277e-03  3.6132e-04 3.58384e-05

0.06 2.70257e-03  2.5507e-04 2.53643e-05

0.08 2.24689%-03  2.1413e-04 2.13134e-05

Table 2: Maximum Absolute errors of Example 1, for
different values of 6 and N =100.

=01 ¢=0.01
Awoke and

o \L Awoke and Our o \L Redd Our

Reddy, 2013 Method So13 Method
0.04 1.05e-03  1.9248e-05|0.002 1.05e-02 3.0712e-04
0.06 8.43e-04  1.6255e-05(0.005 8.79e-03 2.0784e-04
0.07 6.93e-04  1.5062e-05|0.007 7.52e-03 1.6509e-04
0.08 4.75e-04  1.4022e-05(0.008 6.95e-03 1.5229e-04
0.09 3.35e-04  1.3114e-05|0.009 6.42e-03 1.4383e-04

Table 3: Maximum Absolute errors of Example 2, for
different values of 6 and € = 0.1.

5V N> 10° 10° 10°
Our Method
0.01 2.0717e-05 2.0725e-07 2.0660e-09
0.03 2.7350e-05 2.7363e-07 2.7496e-09
0.06 4.4987e-05 4.5034e-07 4.5055e-09
0.08 9.9507e-05 1.0389e-06 1.0389e-08
Reddy et al., 2012
0.01 6.32996e-03 6.74268e-04  6.78713e-05
0.03 8.15917e-03 8.82563e-04  9.89869e-05
0.06 1.38476e-02 1.57973e-03  1.60200e-04
0.08 2.47716e-02 3.17323e-03  3.26028e-04

Table 4: Maximum Absolute errors of Example 2, for
different values of 8 and N =100.

=01 £=0.01

Awoke and Our

o J Awoke and Our {
O ¥ Reddy, 2013 Method

Reddy, 2013  Method

0.04 6.29e-04 3.1822e-05(0.002 2.69e-04  8.6399e-05
0.05 1.26e-03  3.7493e-05(0.004 2.00e-04 1.1103e-04
0.06  1.55e-03  4.4987e-05|0.006 5.41e-04 1.5349e-04
0.07  2.00e-03 5.5771e-05|0.007 7.48e¢-04  1.8883e-04
0.08 2.77e-03  9.9507e-05|0.008 1.17e-03  2.4367e-04
Table 5: Maximum absolute errors for different
values of €and 6 = 0.5¢.

ed 200 400 800 1600 3200

N —
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Example 1

278 14113e-04 31324e-05 7.6013e-06 1.8967e-06
2710 41860e-04 1.3923e-04 3.5373e-05 7.8568e-06
2712 50318e-04 2.4577e-04 1.0479e-04 3.4837e-05
2714 50346e-04 2.5201e-04 1.2601le-04 6.1491e-05
2716 50346e-04 2.5201e-04 1.2608e-04 6.3056e-05
270 50346e-04 2.5201e-04 1.2608e-04 6.3057e-05
2730 5.0346e-04 2.5201e-04 1.2608e-04 6.3057e-05
2% 50346e-04 2.5201e-04 1.2608e-04 6.3057e-05

4.7324e-07
1.9068e-06
8.8490e-06
2.6207e-05
3.1515e-05
3.1533e-05
3.1533e-05
3.1533e-05

Example 2
278 43004e-04 21557e-04 1.9983e-05 5.0105e-06

2710 7.6794e-04 2.6726e-04 7.6210e-05 1.9874e-05
2712 87303e-04 4.3400e-04 1.9306e-04 6.7004e-05
2714 87309e-04 4.3827e-04 2.1955e-04 1.0882e-04
2—16
920
9-30
2—36

1.2535e-06
5.0266e-06
1.9087e-05
4.8331e-05
8.7309e-04 4.3827e-04 2.1957e-04 1.0989e-04 5.4970e-05
8.7309e-04 4.3827e-04 2.1957e-04 1.0989e-04 5.4974e-05
8.7309e-04 4.3827e-04 2.1957e-04 1.0989%e-04 5.4974e-05

8.7309e-04 4.3827e-04 2.1957e-04 1.0989%e-04 5.4974e-05

Table 6: Rate of convergence for Examples 1 and 2

wheng =0.1and 6 = 0.03.

h 1/100 1,200 1/300 1,400 1/500

2.0023 2.0006 2.0003 2.0001 2.0001
1.9995 1.9999 1.9999 2.0000 2.0000

Example 1
Example 2

The Effect of Delay Term on the Solution Profile

To analyze the effect of the delay term on the
solution profile of the problem, the numerical
solution of the problem for different values of the
delay parameters have been given by the
following graphs.

y-numerical solution

c c c c c c : c :
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Fig. 1: The numerical solution of Example 1 with e = 2—5

and N = 400.
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Fig. 2: The numerical solution of Example 2 with £ = 278
and N = 400.

DISCUSSION AND CONCLUSION

Fitted non-polynomial cubic spline method for
solving singularly perturbed delay convection
diffusion equations has been presented. The
stability and convergence of the method have
been investigated. The study is implemented on
two examples without exact solutions by taking
different values for the perturbation parameter
€ and delay parameter ¢ . The numerical results
have been presented in Tables (1 - 5) for different
values of the perturbation parameter &, delay

parameter & and number of mesh points N. The
results obtained by the present method are
compared with results of (Reddy et al, (2012 and
Awoke Andargie and Reddy, (2013)) and
observed that the present method improved the
results. Further, it can also be observed from the
tables that the accuracy of the method increases
as the resolution of the grid increases which is in
agreement with the findings of (Kadalbajoo and
Ramesh, 2007), i.e., it is the maximum absolute
error decreases rapidly as N increases. As
perturbation parameter &£ is sufficiently small
(i.e. for& << h), some researchers Doolan et al.,
(1980), Kadalbajoo and Sharma, (2004) and Roos
et al., (2008) state that there is a challenge to get
more accurate solutions for singularly perturbed
boundary value problems. However, in the
present method gives good result for & is
sufficiently small an& <h (Table 5). The results
presented confirmed that computational rate of
convergence (Table 6) as well as theoretical
estimates indicates that the proposed non-
polynomial cubic spline method is a second
order convergent.

To demonstrate the effect of delay on the left
and right boundary layers solution, graphs for



8

Dula Ayele Gurmessa et. al.

different values of delay parameter & , mesh size
h and perturbation parameter & are plotted in
Figs. 1 and 2; Accordingly, depending on the sign
of coefficient of delay term one can see that, from
Fig. 2 as O increases the width of the left
boundary layer decreases while the width of the
right boundary layer increases Fig. 1.
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