Copyright for articles published in this journal is retained by the journal publisher.
Author Biographies
SB Ghezehei
Department of Plant Production and Soil Science, University of Pretoria, Pretoria 0002, South Africa
JG Annandale
Department of Plant Production and Soil Science, University of Pretoria, Pretoria 0002, South Africa
CS Everson
Department of Plant Production and Soil Science, University of Pretoria, Pretoria 0002, South Africa; Council for Scientific and Industrial Research Natural Resources and the Environment, School of Applied and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa
Main Article Content
Shoot allometry of Jatropha curcas
SB Ghezehei
JG Annandale
CS Everson
Abstract
The South African government has banned planting of Jatropha curcas L. (Jatropha), potentially a multipurpose tree and biofuel source, owing to insufficient knowledge about the species. Use of allometry as a non-destructive method of monitoring growth and biomass attributes of Jatropha was investigated. The objectives were to examine: reliability of allometry between above-ground variables and basal diameter and crown depth of Jatropha; effects of below-ground interspecies competition and tree spacing on allometry; and validity of these relationships with independent data. The study site was Ukulinga Research Farm, South Africa. Destructive sampling was carried out in March 2008, and tree height and basal diameter were measured periodically during March 2005 to April 2007. Regression analysis and analyses of covariance were used to analyse the data. The height–diameter equation developed by destructive sampling was validated using independent data. Highly significant allometric regressions resulted from using basal diameter (r ≥ 0.89) and crown depth (r ≥ 0.94). Stem diameter had linear relationships with wood and foliage biomass percentages (r = 0.91). Height–diameter equations were equivalent across competition and tree spacing treatments. Predicted and measured tree heights were linearly related (r > 0.97). It could be concluded that above-ground allometry of Jatropha was very reliable and not significantly affected by either below-ground interspecies competition or tree spacing. The site-specific allometric equations are useful for accurate and non-destructive estimations of Jatropha growth under various growing and (non-pruning) tree management conditions. The equations presented here are, however, not universally applicable.
AJOL is a Non Profit Organisation that cannot function without donations.
AJOL and the millions of African and international researchers who rely on our free services are deeply grateful for your contribution.
AJOL is annually audited and was also independently assessed in 2019 by E&Y.
Your donation is guaranteed to directly contribute to Africans sharing their research output with a global readership.
Once off donations here:
For annual AJOL Supporter contributions, please view our Supporters page.
Tell us what you think and showcase the impact of your research!
Please take 5 minutes to contribute to our survey so that we can better understand the contribution that African research makes to global and African development challenges. Share your feedback to help us make sure that AJOL's services support and amplify the voices of researchers like you.