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ABSTRACT

Degenerated cyclic codes constitute a fascinating area of study within Coding Theory,
offering profound insights into the realm of algebraic structures and their applications in
error detection and correction. In this work, we delve into various aspects of degenerated
cyclic codes, aiming to provide a comprehensive understanding of their properties
and significance. We begin by elucidating the fundamental concepts underlying cyclic
codes and their degeneration, establishing mathematical framework for analysis. Subsequently,
we explore the algebraic structure of degener-ated cyclic codes, investigating their
generator and parity-check matrices, as well as their relation-ships with conventional
cyclic codes. Moreover, we investigate the decoding algorithms tailored for degenerated
cyclic codes, evaluating their efficiency and performance under different error conditions.
Furthermore, we examine the applications of degenerated cyclic codes in practical
scenarios, highlighting their utility in diverse domains such as telecommunications,
storage systems, and cryptography. Through theoretical analysis and numerical simulations,
we demonstrate the efficacy and versatility of degenerated cyclic codes, thereby emphasizing
their significance in modern information theory. Overall, this study contributes to the
advancement of coding theory by shedding light on the intricacies of degenerated cyclic
codes and paving the way for future research endeavors in this burgeoning field.
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1 Introduction
Degenerate cyclic codes are subset of cyclic codes,[1, 4, 8, 12, 13, 16, 18, 20, 22] which are linear block
codes defined by shifts of their codeswwords. Mathematically, a cyclic code of length n is generated by
a polynomial g(y) of degree r, where r is the dimension of the code. The codewords are obtained by
polynomial multiplication of the message polynomial by g(y) modulo < yn − 1 > .
In the case of degenerate cyclic codes[22] , we intentionally introduce irregularities into the code by
modifying certain coefficients of the generator polynomial g(y). This modification results in a generator
polynomial that may not conform to the standard form of a cyclic code. One common way to achieve
degeneracy is by setting specific co-efficients of g(y) to zero or adjusting them from their typical values.
Mathematically, let g(y) = g0 ⊕ gy ⊕ ... ⊕ gry

r be the generator polynomial as defined in [2] of the
cyclic code where g0, g1, ..., gr are coefficients in some finite field. To introduce degeneracy, we may set
certain coefficients to zero, such as g0 or gr or modify them from their usual values. For instance, we
could intentionally make g(y) not monic, that is, (gr ̸= 1), which leads to departure from the standard
cyclic code.
Despite those modifications, degenerate cyclic codes still retain some crucial properties. For example,
they remain cyclic, meaning that cyclic shifts of code words are still code words. This property facilitates
efficient encoding and decoding algorithms, levaraging the structure inherent in cyclic codes thus contributing
to coding theory [2, 5, 6, 7, 14, 19, 23].
Understanding Mathematical intricacies of degenerate cyclic codes is crucial for analyzing their properties,
designing specific applications including specific applications and unique characteristics. Researchers
often explore various methods for constructing and analyzing degenerate cyclic codes to unlock their
potential advantages in error control, cryptography and their areas of information theory.

Departure of degenerated cyclic codes:
Degenerate cyclic codes, a subset of cyclic codes, have been studied for their structural properties and

practical applications in error correction. Here are some works that delve into these codes and highlight
the point of departure from degenerate cyclic codes to more general or different types of codes.

Firstly, the research in [9] provides a comprehensive overview of various error-correcting codes, including
cyclic codes and discusses the properties of degenerate cyclic codes and transitions into the study of
more general cyclic codes, BCH codes, and Reed-Solomon codes. Secondly, San and Chaoping [11]
discuss cyclic codes and then explores the limitations of degenerate cyclic codes, moving on to more
robust coding schemes such as BCH codes and Goppa codes. In [15], Mattson provides a detailed
examination of error control coding techniques including cyclic codes. The research highlights the
characteristics of degenerate cyclic codes, and then transitions to more powerful error-correcting codes
like LDPC codes and turbo codes. Also, Ron [17], explains the concept of degenerate cyclic codes
and their limitations, before introducing more advanced topics such as algebraic geometry codes and
convolutional codes. In [3], Blahut provides a thorough understanding of algebraic codes, including
cyclic codes. The research discusses the departure from degenerate cyclic codes to more efficient
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codes like Reed-Solomon codes, focusing on their application in data transmission.

These works collectively illustrate the evolution of coding theory from the study of degenerate cyclic
codes to the development and application of more advanced and efficient error-correcting codes. They
highlight the limitations of degenerate cyclic codes and the need for more powerful coding schemes in
practical applications.

2 Preliminaries
Degenerate cyclic codes are a subset of cyclic codes characterized by repeated or linearly dependent

code words due to the generator polynomial having repeated roots, resulting in reduced error-correcting
capabilities and lower minimum distances. They illustrate the importance of polynomial selection in the
design of cyclic codes. By studying these degenerate cases, we gain insights into the properties that
make certain cyclic codes more effective for error correction, guiding the development of more powerful
and reliable coding schemes.
Cyclic codes A cyclic code of length [1, 4, 8, 12, 18, 20, 22] n over a finite field Fq is a linear code such
that if c = (c0, c1, . . . , cn−1) is a code word, then the cyclic shift (cn−1, c0, c1, . . . , cn−2) is also a code
word. Mathematically, this can be expressed as follows:

Theorem 2.1. Let C be a linear code of length n over Fq. Then C is a cyclic code if and only if for every
code word c = (c0, c1, . . . , cn−1) ∈ C, the code word (cn−1, c0, c1, . . . , cn−2) also belongs to C.

Generator polynomial: Given a cyclic code of length n over a finite field Fq, the generator polynomial
g(x) is a polynomial of degree k that divides xn − 1 in Fq[x]. The code consists of all multiples of g(x)
modulo xn − 1, and can be expressed as:

C = {c(x) = g(x)q(x)(xn − 1) | q(x) ∈ Fq[x],deg(q(x)) < n− k}

Parity Check Matrix: The parity check matrix H of a cyclic code can be constructed using the
generator polynomial g(y). It has dimensions (n− r)× n and it is derived from coefficients of g(y) using
certain algebraic structure.

Degenerated Cyclic Codes: A degenerate cyclic code of length n over a finite field Fq is a linear
code characterized by the following properties:

i. It is a subset of the cyclic code, where the code words exhibit redundancy or linear dependence.

ii. The generator polynomial g(x) of the code has at least one repeated root over Fq, causing the
code to contain repeated or linearly dependent code words.

iii. Formally, if g(x) is the generator polynomial of degree k, then the code can be described as:

C = {c(x) = g(x)q(x)(xn − 1) | q(x) ∈ Fq[x],deg(q(x)) < n− k}

where C denotes the set of all code words of the degenerate cyclic code.
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Relaxed ConStraints: Degenerated cyclic codes involve relaxing some of the constraints imposed
on standard cyclic codes, such as the requirement for the generator polynomial to divide < yn − 1 >
exactly. This relaxation allows for a border range of polynomial structures, potentially leading to improves
code properties or easier encoding-decoding procedures.

Algebraic Operations: Analysis of cyclic and degenerated cyclic codes involves algebraic operations
in polynomial rings and quotient rings. Addition and scalar multiplication of polynomials modulo <
yn − 1 > are fundamental operations used in code construction and manipulation.

Ring Theory: The study of quotient rings and ideals provide rigorous mathematical foundation for
understanding the structure and properties of cyclic and degenerated cyclic codes. Concepts from Ring
Theory, such as factorization and prime ideals, play a crucial role in code analysis.

Code distance and error correction: Analysing the distance properties both standard and degenerated
cyclic codes involving examining the algebraic relationships between code elements and their implications
for error detection and correction algorithms [10, 21].
Magma Algorithms for constructing the degenerated cyclic codes:

Example in Magma
n := 7;
F := GF(2);
R<x> := PolynomialRing(F);
g := (x - 1)ˆ2 * (xˆ3 + x + 1);

C := CyclicCode(n, g);
Codewords := { c : c in C };
"Minimum Distance:", MinimumDistance(C);
"Weight Distribution:", WeightDistribution(C);

Cyclic Code: [7, 4, 3] Cyclic Linear Code over GF(2)
Generator matrix:
[1 0 0 0 1 1 0]
[0 1 0 0 0 1 1]
[0 0 1 0 1 1 1]
[0 0 0 1 1 0 1]
Minimum Distance: 3
Weight Distribution: [ <0, 1>, <3, 7>, <4, 7>, <7, 1> ]

3 Main Results
In the research work of the paper we assume HCF (n, q) = 1, hence give some aspects of degenerated
cyclic codes of length n over Fq.
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Theorem 3.1. Let HCF (n, q) = 1. These statements are equivalent. [20, 22]

i. The generator polynomial g(y) has no repeated roots modulo yn − 1: This asserts that the
generator polynomial of the cyclic code, g(y), does not have any repeated roots when considered
modulo yn − 1, meaning that every root has multiplicity 1.

ii. The code has no repeated code words: This implies that the cyclic code does not contain any
repeated code words. Each distinct message corresponds to unique code word in the code word.
Now, lets establish the equivalence between these statements in the context where gcd(n, q) = 1.
Firstly, for cyclic codes [1, 4, 8, 12, 13, 16, 18, 20, 22] over GF (q), where q is the size of the
finite field. If the gcd(n, q) = 1, then the order of any non-zero element in GF (q) is co-prime to
n. This implies that the polynomial yn − 1 has distinct roots in the field GF (q), as every non-zero
element generates a distinct root. Consequently, any polynomial g(y) with distinct roots will also
have distinct roots modulo yn−1. Since the roots of g(x) are distinct modulo yn−1, it follows that
the corresponding code words will also be distinct, ensuring that gcd(n, q) = 1.
Thus, under the condition gcd(n, q) = 1, the statements, ”the generator polynomial g(y) has no
repeated roots modulo < yn − 1 >,” and, ”the code has no repeated code words,” are equivalent
in the context of degenerated cyclic codes.

Proof. A cyclic code C of length n over Fq is degenerate:

i Degeneracy of cyclic code: Degeneracy of cyclic codes arises when certain coefficients of its
generator polynomial manipulated to deviate from the typical form. This manipulation introduces
irregulatories into the into the code’s structure, leading to the departure from the standard cyclic
geometry.

ii Mathematical elaboration: Let g(y) be the generator polynomial of the cyclic code C. It is
typically of the form g(y) = g0 + g1y + ...+ gry

r where g0, g1, ..., gr are coefficients in Fq.
In the case of a degenerate cyclic code, certain coefficients of g(y) are modified from their
standard values. This modification could involve setting specific coefficients to zero, adjusting
them arbitrarily, or making the polynomial non-monic, that is, leading coefficients gr is not necessarily
1.

Mathematically, the manipulation of coefficients might be represented as g(x) = g′0 + g′1y + ... + g′ry
r

where g(x) = g′0 + g′1 + ...+ g′r are the altered coefficients.

Implication of degeneracy: The introduction of irregularities into the generator polynomial alters
the algebraic structure of the code. This deviation from the standard cyclic symmetry can affect the
properties such as minimum distance, error-correction, and decoding complexity.
Degenerate cyclic codes may exhibit unique characteristics that make them suitable for specific applications,
for example, intentional degeneracy might enhance the code’s ability to correct certain types of errors to
improve performance under particular channel conditions.

In summary, the degeneracy of cyclic codes over Fq is manifested through intentional modifications
to its generator polynomial, leading to deviations from the standard cyclic structures. Understanding the
mathematical implications of degeneracy is essential for analyzing the properties and applications of
such codes in various communication and storage systems.
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Theorem 3.2. There exist integers r, 1 < r < n, and s, 1 < s < n, such that n = rs and 1 + ys + ... +
y(r−2)s + y(r−1)s divides gc(y).

Proof. Given n = rs, where 1 < r < n and 1 < s < n, we can express gC(y) as gC(y) = (1 +
ys + ... + y(r−2)s + y(r−1)s)Q(y) mod rs since n = rs, we can rewrite the expression as: gC(y) mod n
= (1 + ys + ...+ y(r−2)s + y(r−1)s)Q(y) mod n.

Now, we can see that each term of the (1+ys+ ...+y(r−2)s+y(r−1)s)polynomial will be congruent to
zero modulo n because each term is divisible by s, (which divides n), modulo n, implying that n divides
g(y). So, n = rs divides gC(y), content...

Theorem 3.3. There exists integer r, 1 < r < n, and s, 1 < s < n, such that n = rs and g⊥C (y) divides
ys − 1.

Proof. Given n = rs, where 1 < r < n and 1 < s < n, we show that g⊥C (y) divides ys − 1. First, lets
express ys − 1 in terms of its factors.
By using the difference of squares formula, we have ys − 1 = (y

s
2 − 1)(y

s
2 + 1).

Now, we want to show that g⊥C divides ys − 1, or equivalently, that, ys − 1 is congruent to zero modulo
g⊥C (y).

Lets express this mathemayically:
ys − 1 ≡ 0modg⊥C (y)
This means that there exists some P (y) such that ys − 1 = p(y).g⊥C (y)
Now we need to show that such a polynomial P (y) exists:
Given that n = rs divides gC(y) according to the definition of gC(y) it follows that g⊥C (y) must divide
ys − 1 because ys − 1 is a factor of yr − 1 (by setting r = s

2 ).
Therefore, we have shown that there exist integer r and s, such that n = rs and g⊥C (y) divides yr−1.

Theorem 3.4. Let m > 1. Let C ′ be a cyclic code of length n′. Let C = Rm(C ′) be a degenerate cyclic
code. Then given:

i) m > 1

ii) C1 is a cyclic code of length n1

iii) C = Rm(C1) is a degenerate cyclic code, where Rm denotes the mth repeated concatenation
operation.

Proof. The repeated concatenation operation Rm takes cyclic code C1 and replicates m times.
Now, we want to understand the properties of the degenerate cyclic code C obtained by m−fold repetition
of C1

Lets denote the generator polynomial of C1 as g1(y). Since C1 is cyclic, g1(y) generates C1 and divide
(yn1 − 1).

Now, to understand C mathematically, we need to analyze its properties:

i) Linearity: C is still a linear code because repetition does not affect linearity of the code, [19].
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ii) Cyclic property: C inherits the property from C1 because the cyclic shifts of codewords in C1 will
result in cyclic shifts of codewords in C, [1, 4, 8, 12, 18, 20] .

iii) Generator polynomial: The generator polynomial of C is g(y) = [g1(y)]
m,[2].

iv) Minimum distance: The minimum distance of C may change depending on the property of C1

and m. If C1 has a minimum distance d1, then C will have a minimum distance atleast d1 (but it
could be higher depending on specific codewords resulting from the repetition), [20].

v) Encoding and decoding:Encoding and decoding for C can be derived from these of C1, possibly
with some modifications due to repetition, [6, 10, 21] .
In summary, a degenerate cyclic code obtained by repeating a cyclic code with modified parameters,
while retaining many of the properties of the original code

From gC(y) = gC′(y)(1 + yn
′
+ y2n

′
+ ...+ yn−n′

), then:

i) gC(y) is the generator polynomial of a cyclic code C of length n.

ii) gC1(y) is the generator polynomial of a cyclic code C1 of length n1.

iii) The expression (1 + yn
′
+ y2n

′
+ ...+ yn−n′

) represents the polynomial factor.

Thus the equation gC(y) = gC′(y)(1 + yn
′
+ y2n

′
+ ...+ yn−n′

) states that the generator polynomial of C
can be obtained by multiplying the generator polynomial of C1 with a polynomial factor that accounts for
certain cyclic shifts.
Hence elaborating Mathematically:

i. Generator polynomial of C: The generator polynomial gC(y) of code C represent all the code
words of C which generates the cyclic code C that has a length of n.

ii. Generator polynomial of C1: The generator polynomial gC1(y) of code C1 represent all the code
words of C1 which generates the cyclic code C1 that has a length of n1.

iii. Polynomial factor: The polynomial factor (1 + yn
′
+ y2n

′
+ ... + yn−n′

) represents a polynomial
that includes terms corresponding to the cyclic shifts of the code words of C1 to form code words
of C. The terms account for the cyclic nature of the code.

iv. Multiplication: Multiplying gC1(y) by the polynomial factor results to a new polynomial, gC(y),
which includes all the terms needed to generate the codewords of C based on the codewords of
C1, and their cyclic shifts.

In summary, the equation gC(y) = gC′(y)(1+ yn
′
+ y2n

′
+ ...+ yn−n′

) mathematically expresses how the
generator polynomial of a cyclic code C can be constructed from the generator polynomial of a cyclic
code C1 by inco-orperating a polynomial factor that accounts for the cyclic shifts. Generally, see [2].
Given gC

⊥(y) = gC
⊥(y) suggests that the dual generator polynomial of a cyclic code C is equal to the

dual generator polynomial of another cyclic code C1, that is:

i. gC⊥(y) is the dual generator polynomial of a cyclic code C.

ii. gC1
⊥(y) is the dual generator polynomial of another cyclic code C1.
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The dual generator polynomial represents the polynomial whose roots correspond to the non-zero
elements of the dual code. The dual code of a cyclic code is also cyclic on gC⊥(y) = gC1

⊥(y)
mathematically, thus we can consider the properties of the dual codes:

i. Generator polynomial of the dual code: The dual generator polynomial gC⊥(y) of a code C
generates a dual code, whose codewords are orthogonal to the codewords of C.

ii. Generator polynomial of the dual code C1:
Similarly, gC1

⊥(y) generates the dual cyclic code gC1
⊥ which is orthogonal to the codewords of

C1.

iii. Equivalence of the dual codes: The equation gC⊥(y) = gC1
⊥(y) implies the dual cyclic code

C⊥ and C1
⊥ polynomial. This means that the structure of the orthogonal codewords of C and C1

is the same.

iv. Orthogonal preservation: Since the dual generator polynomial determines the structure of
the orthogonal codewords, the equation suggests that orthogonality properties are preserved
between C⊥ and C1

⊥.

In summary, the equation gC⊥(y) = gC1
⊥(y) mathematically expresses that the dual generator polynomial

of a cyclic code is equal to the dual generator polynomial of another cyclic code C1, indicating that their
dual codes have same structure and orthogonal properties.

Theorem 3.5. Let gcd(n, g) = 1. Let n = pe11 , ..., pett be the prime decomposition of n, let N(d) be the
number of the divisors of Xd − 1 over Fq. Then the number of the degenerate cyclic codes of length n

over Fq is
∑t

l=1(−1)l+1
∑

{i1,...,il}∈{1,...,t} N( n
pi1

,...,pil
)

Proof. The proof can be found in [20]

This theorem addresses the enumeration of degenerate cyclic codes over a finite field Fq of the
length n, under the condition that the gcd of n and q is 1. Lets break down the theorem and its
mathematical implications:

3.0.1 Degenerate cyclic codes

Cyclic codes are subclass with additional properties.

Definition 3.1. N(d)is the number of divisors of yd − 1 over Fq, In other words, it presents the number
of elements in Fq that are roots of the polynomial yd − 1.

Cyclic codes are subclass with additional properties
Implications:
The theorem suggests a connection between the structure of cyclic codes and the roots of certain
polynomials over the finite field Fq.
The prime factorization of n plays a crucial role in determining the number of degenerate cyclic codes of
length n over Fq.
It involves the summation over subsets {i1, ..., il} of the subset {1, ..., t}, where t is the number of the
distinct primr factors in the prime factorization of n.
For each subset, the product n = pe11 , ..., pett is calculated, representing a divisor of n obtained by
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selecting certain prime factors and their correspondiiing exponents.
The function N comes into play to count the number of roots of yd − 1 over Fq where d is the divisor
obtained from the current subset Mathematical Elaboration:
The theorem involves iterating over all possibilities subsets of prime factors of n, each time calculating a
divisor d of n and finding the number of roots of yd − 1 over Fq

These counts are then combined using a summation formula with alternating signs (−1)l+1 where l is
the size of the current subset being considered.
The result of this computation gives the number of degenerate cyclic codes lengthn n over Fq. In
summary, the above Theorem provides a Mathematical relationship between the structure of cyclic
codes and properties of certain polynomials over finite finite fields, specifically in terms of their roots
and the prime factorization of the code length.

Theorem 3.6. Let m > 1, let C = Rm(C ′) degenerate cyclic code. Then H(C) = Rm(H(C ′)).

Proof. The proof can be found in [20].

Definition 3.2. Let C be a degenerate cyclic code over Fq, where C = Rm(C). Here, Rm denotes the
ring formed by polynomials of degree less than m over Fq.
Let H(C) be the parity-check matrix.
Let C⊥ denote the dual code of C.

Theorem 3.7. H(C) = Rm(H⊥
C⊥).

Proof. Let {g1, g2, ..., gk} be the basis for C, then, H(C) is formed by taking two row vectors corresponding
to the orthogonal complements of g1, g2, ..., gk.

The dual code C⊥ consist of all vectors v such that < v, c >= 0 for all c ∈ C, where < ., . > denote
the dot product.
Let {h1, h2, ..., hk} be a basis for C⊥.
Then, H⊥

C⊥ is formed by taking the row vectors corresponding to {h1, h2, ..., hk}.
Since C is degenerate cyclic code, its generator polynomial can be represented as g(y) = yhy, where
h(x) is a polynomial degree k −m
H(C) be represented as H⊥

C⊥ due to specific structure induced by degenerate by cyclic code of C.
Thus, theorem establishes a specific relationship between the parity-check matrix of a degenerate cyclic
code and the parity-check matrix of its dual code.

Corollary 1. Let m > 1, let C = Rm(C ′) degenerate cyclic code. Then H(C) = Rm(H(C ′)), See [20].

In this corollary, C ′ represents the generator polynomial of the cyclic code C. The statement
suggests the Hamming Weight of a code C is euivalent to the hamming weight of its generator polynomial
C ′.
Elaborating mathematically, we can explain it as follows:

a Degenerate cyclic codes: A cyclic code C is called degenerate if its generator polynomial has
roots in common, ym − 1 for m > 1.
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b Generator polynomial: Let C ′ be the generator polynomial of C. Since C is a cyclic code, C ′ is
a divisor of ym − 1, that is, ym − 1 = g(y).C ′(y) for a polynomial g(y), [22].

c Hamming Weight of C: The Hamming Weight of code C is the minimum weight among all non-
zero codewords in C denoted by dimH(C). This represents the number of non-zero elements in
the smallest non-zero codeword.

d Hamming Weight of C ′: Similarly, the Hamming Weight of C ′, denoted by dimH(C ′), represents
the number of non-zero co-efficients in C ′.

Given the degeneracy property, the number of non-zero co-efficients in C ′ is the same as the
minimum weight of C, which is the number of non-zero elements in the smallest non-zero codeword
in C. Thus dimH(C) = dimH(C ′).

Definition 3.3. Degenerated cyclic codes, also known as degenerate cyclic codes, are a type of a linear
code where some codewords are repeated or redundant, leading to reduced effective capability

Here is a perfect example to illustrate this concept:
Consider a binary cyclic code with a generator polynomial g(y). In degenerated cyclic codes, the
generator polynomial g(y) is such that the contains repeated codewords. This can occur when g(y)
is not irreducible or when the code length is not relatively to the field size.
Example of a degenerated cyclic code:

i Field: Lets work over the binary field GF (2).

ii Code length: Consider a code of length 4.

iii Generator polynomial: Let g(y) = y2 + 1

Step-by-step construction:

i Generating the code:
The generator polynomial g(y) = y2 + 1 is used to generate codewords. The codewords are
obtained by multiplying g(y) by all polynomials of degree less than n − k, where n is the code
length and k is the degree of the generator polynomial.

ii Codewords:
-Multiply g(y) by 1: g(y)× 1 = y2 + 1 → 1100
-Multiply g(y) by y: g(y)× y = y3 + y → 0110
-Multiply g(y) by y2: g(y) × y2 = y4 + y2 = y4 + y2 ≡ y2 (Since y4 in a binary field of length 4
cycles back to x0 → 0011
-Multiplying g(y) by y3 : g(y)× y = y5 + y3 =⇒ y5 + y ≡ 0 (Since y5 in the binary field of length 4
cycles back to y1 and adding y in binary results in o) → 0000

Thus, here the codewords are:

• 1100

• 0110

• 0011

• 0000
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Notice that 0000 is the repeated codeword that reduces the effective error-correcting capability of the
code. This repetition makes the code degenerate or degenerated.

The above example shows a degenerated cyclic code where the presence of all-zero codeword 0000
(resulting from the polynomial multiplication) indicates redundancy and a reduction in the effective error-
correcting power of the code. This is a typical characteristic of degenerated cyclic codes.

4 Conclusion
Let C be a cyclic code over Fq of length n and dimension k. The cyclic code C is defined by a generator
polynomial g(y) and its elements are multiples of this polynomial in Fq[y]/< yn − 1 >.
For m > 1, the code Rm(C) is formed by taking all multiples of g(ym) in Fq [y]

yn−1 .
These multiples form a cyclic code. Thus, researchers can further explore on circulant bases for
degenerated cyclic codes. The condition likely effects the properties and behaviour of cyclic codes,
but its specific implications need to be explored further. It may influence the structure of the code,
the existence of certain types of codewords, or other properties to their relevant study. To elaborate
further mathematically, one could delve into specific algebraic structures and properties of cyclic codes.
Additionally, exploring the impact of the condition gcd ̸= 1 on algebraic properties of cyclic codes would
be crucial for comprehensive understanding.
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