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ABSTRACT

This study is an extension of our study on matrices of zero divisor graphs of classes of
3-radical zero completely primary finite rings. It focusses on Matrices of a class of finite
rings R whose subset of the zero divisors Z(R) satisfies the condition (Z(R))4 = (0)
and (Z(R))3 ̸= (0) for all characteristics of R that is; p, p2, p3 and p4. We have
formulated the zero divisor graphs Γ(R) of R and associated them with three classes of
matrices, namely, the Adjacency matrix [A], the Laplacian matrix [L] and the Distance
matrix [dij]. The study has further characterized the properties of the graphs Γ(R) and
the matrices mentioned.
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1 Introduction

The study of various classes of the zero divisor graphs obtained from finite rings has
been very active since its inception by Beck [2] in an investigation of graph colourings of
commutative finite rings. Perhaps, further and simpler developments in this endeavour
can be attributed to Anderson and Livingston and Mulay in [1] and [8] respectively
who investigated various properties other than colouring. In particular, Mulay in [8]
characterized the cycles and symmetries associated with a class of zero divisor graph
obtained from finite rings. The mentioned studies in [1, 2, 8] were all aimed at determining
the classification of classes of finite rings using the properties of their graphs. The
structures of unit groups, zero divisor graphs and the associated adjacency matrices
of Galois rings, square radical and classes of cube radical zero completely primary
finite rings are well understood (see for example [5, 6, 7, 9, 10]). In particular, Lao et al
in [5, 6, 7], considered the automorphism groups of the zero divisor graphs of Galois
rings, 2-radical zero and 3-radical radical zero completely primary finite rings, while
Ndago et al in [9] obtained the properties of the Adjacency and Incidence Matrices
from the zero divisor graphs of the 2-radical zero finite rings. Most recently, the authors
in [10] extended the study of 3-radical zero finite rings covering the algebraic properties
of the Ajacency, Laplacian and Distance Matrices associated with the graphs Γ(R) of
the 3-radical zero finite completely primary rings. Closely related works can be found
in [14, 15] where R = Zp × Zp for p = 2, 3 and 5, Zp[i]× Zp[i] for p = 2, 3 and 5. In each
case, an analysis of the determinant, trace, rank and the symmetry of the matrices was
done. Further, a research on the adjacency universal spectrum of Γ(R) on the ring Zn

with its compliment was done in [16]. In the study, an investigation on the loopless
graph G with matrices [A] and [D] was performed by choosing a universal matrix U(G)
whose computation algorithm was βD + γl + ηj + αA with α( ̸= 0), γ, β, η ∈ R, l being
the matrix identity and j having entries of 1.

The Adjacency matrix [A], the Laplacian matrix [L] and Distance matrix [dij] have
inherent structural algebraic relationships which give the matrix representation of the
zero divisor graphs Γ(R) for ease of their algebraic and geometric analyses. Consider
the Adjacency matrix [A] and the degree matrix [D] of Γ(R), the Laplacian matrix is a
square matrix computed through the relation, [L] = [D]−[A]. Bilal in [3] investigated the
eigenvalues of Laplacian matrix of Γ(R) associated with Zn. The research showed that
the Euler’s totient function Φ satisfies the relation Φ(qp) = Φ(q)Φ(p) for relatively prime
integers p and q in the ring Zp × Zq. Also, in [13] and [17], signless Laplacian spectrum
and Laplacian Eigenvalues of zero divisor graphs of the ring Zn were investigated.
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Let R be a completely primary finite ring whose subset of zero divisors Z(R) satisfy the
condition (Z(R))4 = (0) and (Z(R))3 ̸= (0). Then it is well known that the characteristic
of R is p, p2, p3 or p4. For certain classes of R, the unit groups R∗, the automorphism
group aut(R∗), the zero divisor graphs Γ(R) as well as the aut(Γ(R)) are well known.
This paper focusses on the adjacency, Laplacian and distance Matrices of the zero
divisor graphs of the classes of R.
Throughout the paper, R,Γ(R), deg(v), V (Γ(R)), [A]ij, [L]ij and [dij] are used to denote
the completely primary finite ring, the zero divisor graph of R, the degree of a vertex
in Γ(R), a vertex set of the zero divisor graph and adjacency, Laplacian and distance
matrices respectively.

2 4-Radical Zero Completely Primary finite Rings of
Characteristic p

The following construction can be obtained from [11].

2.1 Construction I

Let R′ = GR(pr, p) be a Galois ring of order pr and characteristic p. Consider finitely
generated R′-modules U, V, and W such that dimR′U = s, dimR′V = t and dimR′W =
λ and s+ t+λ = h. Let the R′ modules be generated by {u1, u2 · · · , us}, {v1, v2, · · · , vt}
and {w1, w2, · · · , wλ} respectively so that R = R′ ⊕ U ⊕ V ⊕ W is an additive abelian
group. Suppose s = 1, t = 1 and λ = h−2, then R = R′⊕R′u⊕R′v⊕

∑h−2
k=1 R

′wk where
pu = 0, pv = 0, pwk = 0 such that 1 ≤ k ≤ h − 2 for any prime integer p. We define
multiplication on R as follows;

(a◦, a1, a2, · · · , ah)(b◦, b1, b2, · · · , bh) =

(a◦b◦, a◦b1+a1b◦, a◦b2+a2b◦+a1b1, a◦b3+a3b◦+a1b2+a2b1, · · · , a◦bh+ahb◦+a1b2+a2b1).

As established in [11], R is turned by this multiplication into a commutative ring with
identity (1, 0, 0, · · · , 0) and further, the set Z(R) of zero divisors of R satisfy the following
properties:
Z(R) = R′u⊕R′v⊕

∑λ
k=1R

′wk, (Z(R))2 = R′v⊕
∑λ

k=1R
′wk, (Z(R))3 =

∑λ
k=1R

′wk, (Z(R))4 =
(0).
As a consequence, the next result in the sequel holds for Γ(R).

Licensed Under Creative Commons Attribution (CC BY-NC)

63



Vol.4 (Iss.2),pp.61-80, 2024, ISSN:2788-5844 http://sciencemundi.net

Proposition 2.1. Let R be a ring of Construction I. Then the zero divisor graph Γ(R)
satisfy the following properties:

(i) The cardinality of the vertices, | V (Γ(R)) |= phr − 1.

(ii) Minimum degree, δ(Γ(R)) = pr − 1.

(iii) Maximum degree, ∆(Γ(R)) = phr − 2.

(iv) Γ(R) is incomplete.

Proof. (i) Since char(R) = char(R′) = p and pui = pvj = pwk = 0,
| R′ui |= psr, | R′vj |= ptr, | R′wk |= pλr =⇒| Z(R) |= psr.ptr.pλr = p(s+t+λ)r = phr

but | Z(R)∗ |=| V (Γ(R)) |= phr − 1.
(ii) With the multiplication described, Ann(Z(R)) = (Z(R))3. Suppose the vertex set
V1 = Ann(Z(R)) \ {0}, we thus have that | V1 |= pr − 1. Since there are only pr − 1
vertices adjacent to every vertex then the minimum degree of a vertex is pr − 1.
(iii) Since the number of vertices in Γ(R) is phr−1, there exist x ∈ V1 connected to every
vertex in the graph. Therefore, the degree of x, deg(x) = (phr − 1) − 1 = phr − 2 =⇒
∆(Γ(R)) for the avoidance of self loop.
(iv) Clearly, δ(Γ(R)) is not equal to ∆(Γ(R)) illustrating that the vertices in Γ(R) do not
have the same degree of connectedness. That is, not every pair of vertices in Γ(R)
are connected. Further, due to the fact that (Z(R))2 ̸= (0), the incompleteness of Γ(R)
follows.

2.2 Matrices of Zero Divisor Graphs of a Ring in Construction I

Proposition 2.2. Let R be a ring of Construction I. The Adjacency and Laplacian
matrices satisfy the following properties:

(i) [A]phr−1 and [L]phr−1 are singular.

(ii) rank([A]phr−1) = phr − p(h−1)r.

(iii) rank([L]phr−1) = p(h−1)r + 2.

(iv) Tr([L]phr−1) = 2p(h+1)r − 3phr + p2(h−1)r + 2pr + 1.
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(v) For [A]phr−1, the number of real and complex eigenvalues

are p(h−1)r and phr − p(h−1)r − 1 respectively.

Indeed, the real eigenvalues λ[A]phr−1 =

{
0, of multiplicity p(h−1)r − 1;
−1,

and the complex eigenvalues λ[A]phr−1 =

{
(p(h−1)r − 2)i, of multiplicity phr − pr − 2;
(p(h−1)r − 1)i, of multiplicity pr − p(h−1)r + 1.

(vi) The eigenvalues λ[L]phr−1 =


0,
phr − 1,
p(h−1)r − 1,
1, of multiplicity phr − 4.

Proof. (i) Given the adjacency matrix



0 1 · · · · · · · · · 1
1 0 1 · · · · · · 1

1 1 0 1 · · · ...
1 1 1 0 · · · 1phr−p(h−1)r

0 0 · · · · · · · · · 0phr−pr

...
... 0 · · · 0

...
0 · · · · · · · · · · · · 0phr−1


, suppose

we take row 1 as the pivot row in obtaining the determinant, let a11, a12, · · · , a1phr−1

be the elements of the first row of [A]phr−1. Expanding the minor determinants along
the first row, we notice that the matrix minors of a1j, j = 1, 2, · · · , phr − 1 have zero
determinants. That is,
a11(−1)1+j | minor (a11) |= · · · = a1phr−1(−1)1+(phr−1) | minor (a1phr−1) |= 0.

Therefore
∑phr−1

j=1 ((−1)1+ja1j | minor (a1j) |) = 0, hence the determinant of [A]phr−1. A
similar argument can be extended for the Laplacian matrices [L]phr−1. This proves the
singularity for the matrices.
ii) Reducing the adjacency matrix to its echelon form by conducting a row operation on
it, we obtain the matrix
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

1 0 · · · · · · · · · 0
0 1 0 · · · · · · 0

0 0 1 0 · · · ...
0 0 0 1 · · · 1phr−p(h−1)r

0 0 · · · · · · · · · 0phr−pr

...
... 0 · · · 0

...
0 · · · · · · · · · · · · 0phr−1


.

Clearly, from this reduced echelon form, we obtain phr−p(h−1)r non zero rows spanning
the matrix space. This leads to a rank of phr − p(h−1)r for the adjacency matrix [A]phr−1.

(iii) Similar to (ii), the Laplacian matrix obtained can be reduced to an echelon form

1 0 0 · · · · · · · · · · · · −1
0 1 0 0 · · · · · · · · · −1
0 0 1 0 0 · · · · · · −1
0 0 0 1 0 0 · · · −1
0 0 0 0 1 0 · · · −1
0 0 0 0 · · · 1 0 −1p(h−1)r+2
... 0 · · · 0

...
0 · · · · · · · · · · · · · · · · · · 0phr−1


which is of order (phr − 1) × (phr − 1). This results to p(h−1)r + 2 linearly independent
vectors which span the matrix row space for the Laplacian matrix [L]phr−1, hence its
rank.
(iv) Let γ1, · · · , γr ∈ R′ with γ1, · · · , γr ∈ R′ form a basis for R′ over its prime subfield
R′/pR′. From the multiplication defined on R, Ann(Z(R)) = (Z(R))3 = p3R′. Let V1, V2

and V3 be the vertex sets partitioning V (Γ(R)) such that V1 = Ann(Z(R)∗). This implies
that | V1 |= pr − 1. Therefore, for x ∈ V1, deg(x) = phr − 2.
Consider the vertex set V2 = {γiv +

∑h−2
k=1 bγiwk|b ∈ R′}. Then, | V2 |= p(h−1)r − pr

and each vertex y ∈ V2 is adjacent to a vertex of the form γiv +
∑h−2

k=1 γiwk. Therefore,
deg(y) = p(h−1)r − 1. Let the set V3 = {γiu + aγiv +

∑h−2
k=1 cγiwk|a, c ∈ R′}. This means

that | V3 |= phr − p(h−1)r and deg(z) ∈ V3 = pr − 1 since z is only adjacent to the vertices
in the annihilator set V1.
The trace of the Laplacian matrix is the sum of diagonal entries in the degree matrix
[D]phr−1. Thus,
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Tr([L]phr−1) = (phr − 2)(pr − 1)+ (p(h−1)r − 1)(p(h−1)r − pr)+ (phr − p(h−1)r)(pr − 1). Upon
expansion and simplification of this expression, we obtain Tr([L]phr−1) = 2p(h+1)r −
3phr + p2(h−1)r + 2pr + 1.
(v) Solving the equation | λI−A |= 0, we obtain the characteristic polynomial equation
λphr−1 − (phr − 1)λphr−pr−1 − prλp(h−1)r

+ p(h−1)rλp(h−1)r−1 = 0 which can be expressed in
factor form as λp(h−1)r−1(1+λ)(λp(h−1)r−1−λpr − (phr−p(h−1)r)λ+p(h−1)r) = 0. Finding λ,

we solve λp(h−1)r−1 = 0 =⇒ λ = 0 of multiplicity p(h−1)r − 1, (1 + λ) = 0 =⇒ λ = −1. The
order of the real eigenvalues is obtained by adding the multiplicities (p(h−1)r − 1) + 1 =
p(h−1)r.
The equation (λp(h−1)r−1−λpr−(phr−p(h−1)r)λ+phr) = 0 yields the complex eigenvalues
as (p(h−1)r−2)i of multiplicity phr−pr−2 and (p(h−1)r−1)i of multiplicity pr−p(h−1)r+1.
Therefore, the sum of multiplicities of complex eigenvalues are (phr − pr − 2) + pr −
p(h−1)r + 1 = phr − p(h−1)r − 1.
(vi) For the Laplacian matrix [L]phr−1, we evaluate | λI − [L]phr−1 |= 0 to obtain the
characteristic polynomial equation −λ((−(phr−1)+λ)(−(p(h−1)r−1)+λ)(−1+λ)p

hr−4) =
0. Finding the values of λ in each factor, we have −λ = 0 =⇒ λ = 0. Next, −(phr − 1) +
λ = 0 =⇒ λ = phr − 1 and further −(p(h−1)r − 1) + λ = 0 =⇒ λ = p(h−1)r − 1. Finally,
(−1 + λ)p

hr−4 = 0 =⇒ λ = 1 of multiplicity phr − 4.

Proposition 2.3. Let R be a ring of Construction I and [dij] be the distance matrix then:

(i) Tr([dij]) = 0.

(ii) rank([dij]) = phr − 1.

(iii) The eigenvalues λ[dij] =


−1, of multiplicity pr − 1;
−pr, of multiplicity phr − 2pr + 1;
−(pr − 1)i, of multiplicity pr − 1, where λ ∈ C.

(iv) Det([dij]) = p(2hr+1)r.

Proof. (i) Since the minimum distance between a vertex and its self d(vi, vi) = 0, it
means that every entry dii of [dij] is zero and thus

∑phr−1
i=1 dii = 0. Hence the trace,

Tr([dij]) = 0.
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(ii) We carry out an elementary row operation on [dij] to obtain a row reduced matrix of
the form 

1 0 · · · · · · 0

0 1 0 · · · ...
... 0

. . . 0
... . . . 0
0 · · · · · · 1phr−1

 .

Clearly there are phr−1 linearly independent vectors in the matrix span hence the rank.
(iii) To find the characteristic equation, we solve | λI − [dij] |= 0 to obtain the equation

−(1 + λ)p
r−1(pr + λ)(p

hr−2pr+1)(λpr−1 − (phr − 1)λpr−2 − (p(h+2)r − 1)λ− p(h+1)r) = 0.

From the equation, the real eigenvalues are −(1 + λ) = 0 =⇒ λ = −1 of multiplicity
pr − 1 and (pr + λ)(p

hr−2pr+1) = 0 =⇒ λ = −pr of multiplicity phr − 2pr + 1.
Solving the equation (λ(pr−1)− (−1+ phr)λ(pr−2)− (p(h+2)r − 1)λ− p(h+1)r) = 0 yields the
complex eigenvalues as −(pr − 1)i of multiplicity pr − 1.

(iv) In obtaining the determinant we evaluate
∑phr−1

i,j=1 (dij(−1)i+j | minor (dij) |) =
phr.p(h+1)r = p(hr+hr+r) = p(2hr+1)r.

3 4-Radical Zero Finite Completely Primary Rings of
Characteristic p2

3.1 Construction II

Let R′ = GR(p2r, p2) be a Galois ring of order p2r and characteristic p2. Consider R′

modules U, V and W which are generated finitely by {u1, · · · , us}, {v1, v2, · · · , vt} and
{w1, w2, · · · , wλ} respectively so that R = R′⊕U ⊕V ⊕W is additive abelian group and
s + t + λ = h. Assume s = h − 1, t = 1 and λ = 0 so that R = R′ ⊕

∑h−1
i=1 R′ui ⊕ R′v

where pui ̸= 0, p2ui = 0 and pv = 0 with 1 ≤ i ≤ s. The following defines multiplication
on R.

(a◦, a1, a2, , · · · , ah−1, āh)(b◦, b1, b2, , · · · , bh−1, b̄h) =

(a◦b◦ + p

h−1∑
i,j=1

aibj, a◦b1 + a1b◦, · · · , a◦bh−1 + ah−1b◦, a◦b̄h + āhb◦)
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where āh, b̄h ∈ R′/pR′. The multiplication so defined turns R into a commutative finite
ring of identity (1, 0, 0, · · · , 0̄) as verified in [4].
Z(R) satisfies the following properties;
Z(R) = pR′⊕

∑s
i=1R

′ui⊕R′v, (Z(R))2 = pR′⊕p
∑s

i=1R
′ui⊕R′v, (Z(R))3 = p

∑s
i=1R

′ui,
(Z(R))4 = (0).
The following result describes some properties of Γ(R) of the ring constructed in this
section.

Proposition 3.1. Let R be a ring of Construction II. Then:

(i) The cardinality, | V (Γ(R)) |= p2hr − 1.

(ii) The maximumn degree, ∆(Γ(R)) = p2hr − 2.

(iii) Γ(R) is an incomplete graph.

(iv) The minimum degree, δ(Γ(R)) = phr − 1.

Proof. (i) Given that the structure of zero divisors is given by Z(R) = pR′⊕
∑s

i=1R
′ui⊕

R′v and due to the fact that pui ̸= 0, p2ui = 0 and pv = 0 with 1 ≤ i ≤ s, | pR′ |=
pr, | R′ui |= p2r and | R′v |= pr. Therefore, | Z(R) |= pr(p2r(h−1))pr = p2hr. Since
| Z(R)∗ |=| Z(R) \ {0} |, | Z(R)∗ |= p2hr − 1 =| V (Γ(R)) | .
(ii) Let γ1, · · · , γr ∈ R′ with γ1 = 1 such that γ1, · · · , γr ∈ R′ is a basis for R′ over its
prime subfield R′/pR′. Let V1 = Ann(Z(R)) \ {0}. From the multiplication described,
Ann(Z(R)) = {pc1γiu1 + · · ·+ pch−1γiuh−1 + bγiv|c1, · · · , ch−1, b ∈ R′}. Vertices in V1 are
adjacent to every vertex in Γ(R). Therefore, every y ∈ V1 is of degree p2hr − 2 for an
avoidance of self loop. Hence the maximum degree ∆(Γ(R)) = p2hr − 2.
(iii) This is clear due to the fact that (Z(R))2 ̸= (0).
(iv) Let V1 be the set described in (ii), deg(y) ∈ V1 = p2hr − 2 and | V1 |= phr − 1.
Any vertex of minimum degree is not adjacent to any other vertex in V (Γ(R)) a part
from the vertices in the set V1. Since there are phr − 1 vertices in set V1, it implies that
δ(Γ(R)) = phr − 1.

The results below describe the properties of the matrices associated with Γ(R) of
the ring constructed in this Section.
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3.2 Matrices of the Zero Divisor Graph of the Ring in Construction
II

Proposition 3.2. Let R be a ring of Construction II. Suppose [A]p2hr−1 and [L]p2hr−1 are
the Adjacency and Laplacian matrices respectively;

(i) Both matrices are singular.

(ii) rank([A]p2hr−1) = p2hr − phr.

(iii) rank([L]p2hr−1) is phr + 2.

(iv) The number of real and complex eigenvalues λ for [A]p2hr−1

=

{
phr, λ ∈ R;
p2hr − phr − 1, λ ∈ C.

(v) The eigenvalues λ[L]p2hr−1 =


0,
p2hr − phr,
phr + pr,
1, of multiplicity phr.

(vi) Tr([L]p2hr−1) = p2hr + phr + pr.

Proof. The proofs for (i), (ii) and (iii) can easily be followed from proposition 2.2.
(iv). Solving the equation | λI − [A]p2hr−1 |= 0 results to a characteristic equation
of the form λp2hr−1 − (p2hr − 1)λp2hr−phr−1 − phrλphr + phr = 0 which factorizes as
λphr−1(1 + λ)(λphr−1 − λpr − (p2hr − phr)λ + phr) = 0. Finding the values of λ from the
equation, we obtain λphr−1 = 0 =⇒ λ = 0 of multiplicity phr−1 and λ+1 = 0 =⇒ λ = −1,
as the real eigenvalues. Therefore, by evaluating the sum of the multiplicities of real
eigenvalues, we obtain the number of real eigenvalues to be phr − 1 + 1 = phr.
The equation from the remaining factor, (λphr−1 − λpr − (p2hr − phr)λ + phr) = 0 yields
(p2hr − 1)− phr = p2hr − phr − 1 complex eigenvalues due to the fact that the adjacency
matrix [A]p2hr−1 is a square matrix with p2hr − 1 rows and columns.
(v). For the Laplacian matrix [L]p2hr−1, the equation | λI − [L]p2hr−1 |= 0 results to the
characteristic polynomial equation of the form −λ(−(p2hr−phr)+λ)(−(phr+pr)+λ)(−1+
λ)p

hr
= 0. Upon solving the equation, −λ = 0 =⇒ λ = 0, −(p2hr − phr) + λ = 0 =⇒ λ =

p2hr − phr and −(phr + pr) + λ = 0 =⇒ λ = phr + pr. Finally, (−1 + λ)p
hr

= 0 =⇒ λ = 1
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of multiplicity phr. Hence the eigenvalues for [L]p2hr−1.

(vi). Since trace can be computed as the sum of eigenvalues, Tr([L]p2hr−1) =
∑p2hr−1

i=1 λi =⇒
Tr([L]p2hr−1) = 0 + p2hr − phr + phr + pr + 1(phr) = p2hr + phr + pr as required.

Proposition 3.3. Let R be a ring of Construction II and [dij], the distance matrix then;

(i) Tr([dij]) = 0.

(ii) rank([dij]) = p2hr − 1.

(iii) The eigenvalues λ =


−1, of multiplicity p(h+2)r − 2;
−pr, of multiplicity p(h+2)r − 1;
1
2
(σ ±

√
σ2 − 4τ) .

(iv) Det([dij]) = p(2h+2)r.

Proof. (i) Follows from the fact that d(vi, vi) = 0, thus entries dii of the main diagonal
are all 0′s hence the trace.

(ii) Given the general distance matrix [dij]p2hr−1 =


0 1 1 · · · · · · 1
1 0 1 1 · · · 1
...

... . . . ...
0 0 · · · 0 · · · 0phr−1

 ,

consider the set V = {v1, · · · , vp2hr−1} consisting of vectors which are linearly independent

from a row reduced echelon form of matrix [dij]p2hr−1 such that v1 =


1
0
.
.
.
0

 , v2 =


0
1
0
.
.
0

 , · · · , vp2hr−1 =


0
.
.
.
0
1

 . Clearly, the set V is of dimension p2hr − 1 equivalent to

the dimension of the matrix thus the matrix space is spanned by vectors in V. Therefore
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the rank([dij]) = p2hr − 1.
(iii) We solve the equation | [dij]− λI |= 0 to obtain the characteristic polynomial
−(1+λ)p

(h+2)r−2(pr+λ)p
(h+2)r−1(λ2−(p(h−1)r(p(h+2)r−phr−1)λ+(2p(h+2)r+2phr−4)(phr+

3)). Finding λ in each factor, we solve (pr + λ)p
(h+2)r−1 = 0 =⇒ λ = −pr of multiplicity

p(h+2)r−1. Further, −(1+λ)p
(h+2)r−2 = 0 =⇒ λ = −1 with a multiplicity of p(h+2)r−2. For

the quadratic part, we solve λ2−(p(h−1)r(p(h+2)r−phr−1))λ+(2p(h+2)r+2phr−4)(phr+3) =
0. If we let (p(h−1)r(p(h+2)r − phr − 1)λ = σ and (2p(h+2)r + 2phr − 4)(phr + 3) = τ, we
obtain 1

2
(σ ±

√
σ2 − 4τ).

(iv) This follows form the proof of the determinant of distance matrix in proposition
2.3.

4 The 4-Radical Zero Finite Completely Primary Rings
of Characteristic p3

4.1 Construction III

Let R′ = GR(p3r, p3) be a Galois ring of characteristic p3 and of order p3r. Consider
finitely generated R′ modules U, V and W with dimensions s, t and λ respectively whose
generating sets are {u1, · · · , us}, {v1, · · · , vt} and {w1, · · · , wλ} where s + t + λ = h so
that R = R′ ⊕ U ⊕ V ⊕W is an additive abelian group. Consider s = h − 1, t = 1 and
λ = 0 so that R = R′ ⊕

∑h−1
i=1 R′ui ⊕ R′v where p2ui ̸= 0, p3ui = 0 where 1 ≤ i ≤ s and

pv = 0. The following multiplication is defined on R:
(a◦, a1, a2, · · · , ah−1, ãh)(b◦, b1, b2, · · · , bh−1, b̃h) = (a◦b◦, a◦b1+a1b◦, · · · , a◦bh−1+ah−1b◦, a◦b̃h+
ãhb◦ +

∑h−1
i,j=1 aibj) where ai, bj ∈ R′/p2R′ and ãh, b̃h ∈ R′/pR′. From [12], it is verifiable

that R is turned into a commutative ring with identity (1, 0, · · · , 0, 0̃) by the multiplication
The set of zero divisors Z(R) satisfy the properties below;
Z(R) = pR′ ⊕

∑s
i=1 R

′ui ⊕ R′v, (Z(R))2 = p2R′ ⊕ p
∑s

i=1R
′ui ⊕ R′v, (Z(R))3 =

pR′v, (Z(R))4 = (0).

The results in the sequel describe some properties of Γ(R) of the ring constructed
in this Section.

Proposition 4.1. Let R be a ring of Construction III. Then:

(i) The cardinality, | V (Γ(R)) |= p3hr − 1.
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(ii) The maximum degree, ∆(Γ(R)) = p3hr − 2.

(iii) The minimum degree, δ(Γ(R)) = phr − 1.

(iv) The graph Γ(R) is incomplete.

Proof. (i) Given that Z(R) = pR′ ⊕
∑s

i=1R
′ui ⊕ R′v and that p2ui ̸= 0, p3ui = 0 and

pv = 0, it is easy to see that | pR′ |= p2r, | R′ui |= p3r and | R′v |= pr. Therefore,
| Z(R) |= p2r(p3r(h−1))pr = p3hr. Since | Z(R) \ {0} |=| (Z(R))∗ |= p3r − 1,=⇒|
(Z(R))∗ |=| V (Γ(R)) |= p3r − 1.

The Proofs for (ii) and (iii) are described in the next Proposition. For (iv), the fact
that (Z(R))2 ̸= (0) explains the incompleteness of Γ(R).

Proposition 4.2. Let R be a ring of Construction III. Suppose V1, V2, V3, V4 and V5 are
the partitions of V (Γ(R)). Then the degrees of vertices v ∈ V (Γ(R))

=


p3hr − 2, v ∈ V1 and | V1 |= phr − 1;
p2hr − 2, v ∈ V2 and | V2 |= p2hr − phr;
deg(v) ∈ (X ∪ Y ) = V3, v ∈ V3 and | V3 |= p(h+1)r − p(h−1)r ;
deg(v) ∈ (W ∪ Z) = V4, v ∈ V4 and | V4 |= 2p(h+2)r;
p(h+1)r − phr + p(h−1)r − 1, v ∈ V5 and | V5 |= p3hr − 2p(h+2)r + p(h+1)r.

Proof. We describe the connectedness of Γ(R) for the ring in this section as follows:
Let γ1, · · · , γr ∈ R′ with γ1 = 1 such that γ1, · · · , γr ∈ R′ is the basis of R′ over its prime
subfield R′/pR′. From the defined multiplication, Ann(Z(R)) = {p2γiu1+ · · ·+p2γiuh−1+
bγiv | b ∈ R′}. Let V1 = Ann(Z(R))∗, therefore the order of V1, | V1 |= phr−1. Every v ∈
V1 is adjacent to each vertex in Γ(R) and therefore the degree, deg(v) ∈ V1 = p3hr − 2.
Similarly, consider set V2 = {p2r◦ + p2γiu1 + · · · + p2γiuh−1 + bγiv | p2r◦ ̸= 0, b ∈ R′}.
Each vertex v ∈ V2 is connected to other vertices in Γ(R) apart from the vertices of
the form pr◦ + γiu1 + · · · + γiuh−1 + bγiv, b ∈ R′ where r◦ is not a multiple of p. Thus,
| V2 |= p2hr − phr and deg(v) ∈ V2 = p2hr − 2.
Next, suppose X = {p2r◦ + pγiu1 + · · · + pγiuh−1 + bγiv} \ V1 ∪ V2. It means that the
order of X, | X |= p(h+1)r − phr. Each vertex in set X is connected to a vertex in either
set V1, V2, X or Y where Y = {pγiu1 + · · · + pγiuh−1 + bγiv | b ∈ R′} \ V1. This implies
that | Y |= phr − p(h−1)r hence, deg(v) ∈ X = p(h−1)r − 1 + phr − p(h−1)r + phr − p(h−1)r +
p(h+1)r − phr − 1 = p(h+1)r + phr − 2p(h−1)r − 2 and each v ∈ Y is adjacent to either a
vertex in V1, V2, X or Y. Thus deg(v) ∈ Y = p(h+1)r + phr − 2p(h−1)r − 2.
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Further, let V3 = X ∪ Y. and consider set W = {pr◦ + pγiu1 + · · · + pγiuh−1 + bγiv | b ∈
R′} \ V1 ∪ V2 ∪ V3. Therefore, the order of W, | W |= p(h+2)r − (p(h−1)r + p(h+1)r − phr +
phr − p(h−1)r) = p(h+2)r − p(h+1)r. Each v ∈ W is either adjacent to a vertex in V1 or V2

therefore, deg(v) ∈ W = p(h−1)r − 1 + phr − p(h−1)r = phr − 1.
Similarly, let Z = {p2r◦ + γiu1 + · · · + γiuh−1 + bγiv | b ∈ R′}. It means that the order of
Z, | Z |= pr(phr − p(h−1)r)pr = p(h+2)r − p(h+1)r. Each vertex, v ∈ Z is either connected
to a vertex in V1 or Y. So, deg(v) ∈ Z = p(h−1)r − 1 + phr − p(h−1)r = phr − 1. We finally
consider the set V4 = W ∪Z. and let set V5 = {pr◦+γiu1+· · ·+γiuh−1+bγiv | b ∈ R′}\Z.
Then, | V5 |= p(h−1)r(p(h−1)r)pr − (p(h+2)r − p(h+1)r = p(h−1)r(p(h+1)r − phr) − (p(h+2)r −
p(h+1)r) = p(h+3)r − 2p(h+2)r + p(h+1)r. Therefore the degree of every vertex in V5 is
p(h−1)r − 1 + (p(h+1)r − phr) = p(h+1)r − phr + p(h−1)r − 1.

4.2 Matrices of the Zero Divisor Graph of a Ring in Construction
III

The following results describe some properties of the Adjacency, Laplacian and distance
matrices associated with Γ(R) of the ring described in this section.

Proposition 4.3. Let R be a ring of Construction III. The adjacency and Laplacian
matrices have the following properties;

(i) [A]p3hr−1 and [L]p3hr−1 are both singular and symmetric.

(ii) rank([A]p3hr−1) = p3hr − p2hr + pr + 1.

(iii) rank([L]p3hr−1) = p3hr − p(h−1)r.

(iv) The number of real and complex eigenvalues λ =

{
p2hr − phr + 1, λ ∈ R;
p3hr − p2hr − phr, λ ∈ C.

for both the adjacency and Laplacian matrices.

Proof. The steps for the proof of (i),(ii) and (iii) are similar to the ones in proposition
2.2. We provide the proof for (iv) as follows.
Upon solving the equation | λI − [A]p3hr−1 |= 0, we obtain the real eigenvalues by
evaluating −λ(p2hr−phr−pr)(1 + λ)p

r+1 = 0. This implies that λ = 0 of multiplicity p2hr −
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phr − pr and λ = −1 of multiplicity pr + 1. Therefore real eigenvalues are p2hr − phr −
pr + pr + 1 = p2hr − phr + 1 in number. The number of complex eigenvalues in [A]p3hr−1

is (p3hr − 1)− (p2hr − phr + 1) = p3hr − p2hr − phr.
For the Laplacian matrix, simplifying | λI − [L]p3hr−1 |= 0 results to the characteristic
equation of the form −(−1 + λ)(p

2hr−phr−pr)λpr+1 = 0. Solving the equation yields real
eigenvalues λ = 0 of multiplicity pr + 1 and (−1 + λ)(p

2hr−pr−1) = 0 implying that λ = 1
of multiplicity p2hr − phr − pr. Therefore, the number of real eigenvalues are p2hr − phr −
pr + pr + 1 = p2hr − phr + 1. From this and given that the matrix is of order p3hr − 1, the
complex eigenvalues are p3hr − p2hr − phr in number.

Proposition 4.4. Let R be a ring of Construction III and [dij], the distance matrix. Then;

(i) Tr([dij]) = 0.

(ii) rank([dij]) = p2hr − 2.

(iii) The eigenvalues λ =


−1, of multiplicity p2hr;
−p2r, of multiplicity p2hr − 1;
p2r + 1 .

(iv) Det([dij]) = phr.

Proof. The steps for the proof are similar to those in propositions 3.3.

5 4-Radical Zero Finite Completely Primary Rings of
Characteristic p4

5.1 Construction IV

Let R′ = GR(p4r, p4) be a Galois ring of order p4r and characteristic p4. Consider finitely
generated R′-modules U, V and W generated by {u1, u2, · · · , us}, {v1, v2, · · · , vt} and
{w1, w2, · · · , wλ} respectively. Let dimR′U = s, dimR′V = t and dimR′W = λ, so that
R = R′⊕U ⊕V ⊕W is an additive abelian group and s+ t+λ = h. Assume s = h, t = 0
and λ = 0 so that
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R = R′ ⊕
∑s

i=1R
′ui with pui = 0, 0 ≤ i ≤ s. The multiplication on R is defined by;

(a◦, a1, · · · , ah)(b◦, b1, · · · , bh) =

(a◦b◦, a◦b1 + a1b◦, · · · , a◦bh + ahb◦)

where ai, bj ∈ R′/pR′ and 1 ≤ i, j ≤ s. R is turned by this multiplication into a
commutative ring with identity (1, 0, · · · , 0). The set Z(R) satisfy the following properties;
Z(R) = pR′ ⊕

∑s
i=1 R

′ui, (Z(R))2 = p2R′, (Z(R))3 = p3R′, (Z(R))4 = (0).
The following result describes the zero divisor graph Γ(R) of the ring constructed in

this Section.

Proposition 5.1. Let R be a ring of Construction IV. Let V1, V2, V3 and V4 be the order
of partitions of vertices in V (Γ(R)). Then:

(i) The cardinality, | V (Γ(R)) |= p(h+3)r − 1.

(ii) deg(v) =


p(h+3)r − 2, v ∈ V1 and | V1 |= p(h+2)r − 1;
phr + p(h−1)r + pr, v ∈ V2 and | V2 |= phr;
p(h+1)r − pr, v ∈ V3 and | V3 |= phr + p(h−1)r;
phr − p(h−1)r + 1, v ∈ V4 and | V4 |= p(h+1)r − phr.

Proof. (i) Given Z(R) = pR′ ⊕
∑s

i=1 R
′ui and that pui = 0, then, | Z(R) |=| V (Γ(R)) | .

Further, | pR′ |= p3r and | R′u |= phr. Therefore, | Z(R) |= p3r(phr) = p(h+3)r and
| Z(R) \ {0} |= p(h+3)r − 1 =
| V (Γ(R)) | .
(ii) Let γ1, γ2, · · · , γr ∈ R′ with γ1 = 1 such that γ1, γ2, · · · γr ∈ R′ forms a basis for
R′ over its prime subfield R′/pR′. From the multiplication given, Ann(Z(R)) = {p3r◦ +
bγiu1+· · ·+bγiuh | b ∈ R′}. Let V1 = Ann(Z(R))\{0}. This implies that | V1 |= p(h−1)r−1.
Each vertex v ∈ V1 is connected to every other vertex in V (Γ(R)). Therefore, deg(v) in
the set V1 is p(h+3)r − 1− 1 = p(h+3)r − 2.
Let V2 = {p3r◦ + bγiu1 + · · · + bγiuh | b ∈ R′}. Clearly | V2 |= phr and every v ∈ V2 is
adjacent to a vertex of the form pr◦ + bγiu1 + · · · + bγiuh therefore, deg(v) in the set V2

is phr + p(h−1)r + pr.
Further, let V3 = {p2r◦ + bγiu1 + · · · + bγiuh | b ∈ R′} then | V3 |= phr + p(h−1)r. Each
v ∈ V3 is adjacent to the vertex of the form p2r◦ + bγiu1 + · · ·+ bγiuh therefore, deg(v) in
V3 is p(h+1)r − pr.
Finally, let V4 = {pr◦ + γiu1 + · · ·+ γiuh} \ V1 ∪ V3. Therefore, | V4 |= p(h+1)r − (p(h−1)r +
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phr − p(h−1)r) = p(h+1)r − phr. Each v ∈ V4 is either adjacent to a vertex in V1 or V2. So,
deg(v) in the set V4 is phr − (p(h−1)r − 1) = phr − p(h−1)r + 1.

5.2 Matrices of the Zero Divisor Graph of a Ring in Construction
IV

Proposition 5.2. Let R be a ring of Construction IV. The adjacency and Laplacian
matrices satisfy the following properties;

(i) [A]p(h+3)r−1 and [L]p(h+3)r−1 are both singular.

(ii) rank([A]p(h+3)r−1) = phr + p(h−2)r + 1.

(iii) rank([L]p(h+3)r−1) = p(h+1)r + phr + 2.

(iv) The number of real and complex eigenvalues λ =

{
p(h+1)r + 2p(h−1)r, λ ∈ R;
p(h+2)r − p(h+1)r − 2p(h−1)r − 1, λ ∈ C.

for both [A]p(h+3)r−1 and [L]p(h+3)r−1.

Proof. We provide a proof for (iv). The proof for (i),(ii) and (iii) are clear. Upon obtaining
the characteristic polynomial for the adjacency matrix, we find the real eigenvalues from
the equation
−λ(p(h+1)r+p(h−1)r−1)(1+λ)(p

(h−1)r+1) = 0. The solution to this results to λ = 0 of multiplicity
p(h+1)r+p(h−1)r−1 and (1+λ)(p

(h−1)r+1) = 0 implying that λ = −1 of multiplicity p(h−1)r+1.
Therefore, the number of real eigenvalues from the characteristic polynomial equation
of the adjacency matrix is p(h+1)r + p(h−1)r + p(h−1)r − 1 + 1 = p(h+1)r + 2p(h−1)r.
Given that the adjacency matrix [A]p(h+3)r−1 is a square matrix with p(h+2)r − 1 rows
and columns and its characteristic polynomial has both real and complex parts, we
have that the number of complex eigenvalues are (p(h+2)r − 1) − p(h+1)r + 2p(h−1)r =
p(h+2)r − p(h+1)r − 2p(h−1)r − 1.

For the Laplacian matrix, the characteristic polynomial equation is of the form
−(λp(h+2)r−1+λp(h+1)r−p(h−1)r)(−1+λ)(p

(h+1)r+p(h−1)r−1)λ(p(h−1)r+1) = 0. From the equation,
we obtain the real eigenvalues by solving the equation (−1+λ)(p

(h+1)r+p(h−1)r−1)λ(p(h−1)r+1) =
0. This implies that λ = 0 of multiplicity p(h−1)r + 1 and λ = 1 of multiplicity p(h+1)r +
p(h−1)r − 1. Similarly, we can find the values of λ in the remaining factor by solving the
equation −(λp(h+2)r−1 + λp(h+1)r − p(h−1)r) = 0 to obtain the complex eigenvalues.
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6 Conclusion

In this paper, we have established that the zero divisor graphs of classes of 4-Radical
Zero Completely Primary Finite Rings can be expressed in terms of matrices. Therefore,
this provides an illustration for better analysis of the graphs from the perspective of
matrix algebraic properties. The focus of this research was on the Adjacency, Laplacian
and Distance matrices associated with the zero divisor graphs of the classes of rings
in constructions I to IV. A further research on other types of matrices can be explored.
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