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ABSTRACT

Studies have shown several forms of non-linear dynamic filters. However, Extended Kalman filters have proved
to provide more accurate values of the state of dynamic systems over period of time. Though, the results of
estimation by use extended Kalman filters are accurate, there is involvement of computation of high dimension
covariance matrix that are very expensive. Although Bayesian methods offer a robust and accurate approach,
they are often hindered by the computational complexity involved in computing high-dimensional matrices.
This study introduces a new filter, the Second Order Extended Ensemble Filter with pertubed innovation
(SoEEFPI), designed to numerically address the inversion of high-dimensional covariance matrices and then
stochastically perturbing the innovation. The SoEEFPI is derived from the numerical expansion of the expected
values of non-linear terms in the stochastically perturbed Kushner-Stratonovich equation, utilizing a second-
order Taylor series expansion. Validation of the SoEEFPI is conducted on a three-dimensional stochastic
Lorenz 63 model, with simulations performed using MATLAB software. In the validation process , SoEEKFPII
is compared with First Order Extended Ensemble Filter (FoEEF), First Order Extended Kalman Bucy Filter
(FoEKBF), Second order Extended Ensemble Filter (SoEEF), Bootstrap Particle Filter, and Second Order
Extended Kalman Bucy Filter (SoEKBF). Results indicated that SoEEFPI outperformed the other filters (KBF,
FoEEF, SoEEF) across all three variables of the Lorenz 63 model: x1, x2 and x3. While SoEKBF exhibited
the lowest root mean square error (RMSE), its computational cost is significantly higher due to the integration
of high-dimensional covariance, making SoEEFPI a more desirable option since its covariance computation is
performed empirically.
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1 Introduction

The introduction of a First Order Extended Ensemble Filter (FoEEF) offers an alternative approach, calculating
covariance matrices empirically instead of relying on matrix multiplication, thus expediting the convergence
process [12]. However, the first-order term used in the Taylor series expansion of nonlinear terms may yield
less accurate results compared to filters developed using a second-order Taylor polynomial. Recently, Kevin
Midenyo developed a second Order Extended Ensemble Filter which proved more efficient in estimation than
the First Order Extended Ensemble Filter [9]. However there is a need for a new filter which incorporates the
noisy components of the dynamic system. Therefore, this study has developed a Second Order Extended
Ensemble Filter (SoEEF) with stochastic perturbed innovation, potentially more efficient for initializing neural
network weights. The SoEEFPI utilizes an empirical method to estimate the inverse of covariance matrices,
addressing the computational challenges and costs associated with previous Kalman filters. As a second-
order estimate, the SoEEFPI provides greater accuracy compared to first-order estimations. Its efficient
implementation will benefit various sectors, such as manufacturing, image recognition, healthcare, and transportation
in estimations.

2 Literature Review

[12] Proposed the first-order extended ensemble filter to solve the computationally intensive initialization of
weights in artificial neural networks. Unlike the Kalman filter-based approach, this method avoids the direct
computation of the matrix products and their inverses, thus improving the learning rate. The first-order extended
ensemble filter uses an empirical estimate of the matrix products and inverses through a weighted ensemble
of samples. The algorithm first generates a set of particles, each representing a possible value of the weight
parameters. The computation of the matrix products and inverses in the first-order extended ensemble filter is
replaced by the empirical estimates of the mean and covariance of the particles. The mean and covariance are
updated using the weighted samples, and the covariance is modified to account for the resampling process.
This modification ensures that the covariance of the new set of particles is equal to the covariance of the
previous set of particles, which is an essential property for maintaining the diversity of the particles [10].

2.1 Non-Linear Filters

Kalman filters have been applied in many areas and more significantly in the non-linear filtering methods that
are just but the extension of the Kalman filter. When working with the non linear models, it is prudent to make
an assumption that the probability densities and the conditional densities are Gaussian. In the non-linear filters,
the Extended Kalman Filters (EKF) has been utilized and it is just an extension of the Kalman filters. In EKF,
the evolution of the time state vector is well described by a dynamical model. In this case, we have different
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equations and the observation mode amd the noice part as shown below;

yk = f(yk−1) + wk−1 (2.1)

where; wk ∼ N(0, Q)

xk = h(xk) +Ak (2.2)

where; Ak ∼ N(0, R),
The initial state y0 is a random vector and the mean is;

µ0 = E[y0]

and the covariance is given by;
ρ0 =

[
(y0 − µ0)(y0 − µ0)

T
]

where;
yk is n× 1 state vector,
wk is n× 1 process noice vector,
xk is m× 1 measurement vector,
Ak is m× 1 measurement noice vector,
f(y − k) n× 1 process non-linear vector,
h(yk) m× 1 observation non-linear vector finction,
k is the index of time.
The EKF algorithm is shown in the following steps.
Step 1: Initializing estimated initial state vector

ŷn0 = µ (2.3)

The error covariance matrix ρ0

Step 2: Predicting the state vector.
ŷk+1 = f(ŷk, µk) (2.4)

then predict error covariance ahead;
Pk = VkPkV

T +Qk (2.5)

Step 3: Calculation of the observation matrix.

Hyk+1
=

∂h

∂y
(2.6)

which is the Jacobian of the non-linear measurement function h(yk).
Step 4: Acquiring new measurement vector.

x(k+1) (2.7)
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Step 5: Calculating the Kalman gain matrix.

Mk = PkH(HkPkH
T + T )−1 (2.8)

the correction of predicted results, that is, updated state vector with measurement Zk is given by,

yk = ŷk +Kk

(
Zk −H(ŷk)

)
the update, error covariance

Pk = (1−KkHk)Pk (2.9)

Step 5: Corrected ŷk (output) now becomes the previous state in the next iteration and the process is then
repeated.

The EKF does not perform well when noise is non-Gaussian and the dynamic system must be linear.
Though applied widely, the high computational cost makes it more expensive.

2.2 Kalman-Bucy Filter

The weak form of the Kushner-Stratonovich equation, when integrated over y, gives the estimate ŷ:

dŷ = F (t)ŷtdt+QtH
T (t)(dxt −H(t)ŷtdt) [3] (2.10)

The equation of covariance is described as:

dQt = F (t)Qtdt+QtF
T (t)dt+G(t)GT (t)dt−QtH

T (t)R−1(t)H(t)Qtdt (2.11)

The optimal estimate of y given x is provided by equations2.10 and 2.11 above equations. The prediction steps
involve the mean estimate:

dŷ = F (t)ŷtdt (2.12)

and the covariance:

dQt = F (t)Qtdt+QtF
T (t)dt+G(t)GT (t)dt

The new measurement is captured by the additive term in the predicted estimator:

QtH
T (t)

(
dxt −H(t)ŷtdt

)
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2.3 Bootstrap Particle Filter

In this approach, Monte Carlo methods are utilized to numerically approximate estimates of mean and covariance.
According to [15] [8] ,the posterior distribution is approximated as:

q(yt|x1:t)

The set of particles is denoted as:
Mt = (yit, w

i
t); i = 1, 2, ...,M.

Here yit represents the dynamic state, wi
t signifies the weight of the particle at time t, and x1:t denotes the

measurements. The filtering probability density is defined as:

Q
(
yt|x1:t

)
=

M∑
i=1

wi
tδ(yt − yit) (2.13)

2.4 Ensemble Kalman-Bucy Filter

The Ensemble Kalman-Bucy Filter (EKBF) is based on the particle filter and is designed for modeling continuous
dynamic processes. The covariance is estimated using Monte Carlo techniques [3]. The evolution of the state
is represented as:

dyit = F (t)yitdt+ Z(t)dBi
t +QM

t HT (t)R−1(t)
(
dxt +R

1
2 (t)ηti −H(t)yitdt

)
(2.14)

The mean of the ensemble is given by:

ŷt =
1

N

N∑
i=1

yit (2.15)

The covariance is estimated as:

Qt =
1

N − 1

N∑
i=1

(yit − ŷt)(y
i
t − ŷt)

T (2.16)

2.5 First Order Extended Kalman-Bucy Filter (FoEKBF)

In scalar forms, the first-order model equations are given as follows:

signal : dyt = f(yt)dt+ g(t)(t)dBt, xt0 , t0 < t

measurement : dxt = h(yt)dt+R
1
2 (t)dηt, t0 ≤ t

Substituting g(y, t) with g(t) in corresponding derivatives and using Taylor series expansion around the mean,
we arrive at:

dŷt = f(ŷt)dt+Qt∇[h](ŷt)R
−1(t)

(
dxt − h(x̂t)dt

)
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2.6 Second Order Extended Kalman-Bucy Filter (SoEKBF)

The Second Order Extended Kalman-Bucy Filter (SoEKBF) is derived from a second-order Taylor expansion
around the mean [5]. The equations are as follows:

dŷt = f(ŷt)dt+
1

2
∆[f ]

(
ŷtQtdt+Q∇[h]T (ŷt)R

−1(t)(dxt −
(
h(ŷt) +

1

2
∆[h](ŷtqt)dt

))
(2.17)

dQt =Qt∇[f ]T (ŷt)dt+∇[f ](ŷt)Qtdt+ g(t)gT (t)dt−Qt∇[h]T (ŷ)R−1∇[h](ŷt)Qtdt

+
1

2
Qt∆[h]T (ŷt)R

−1(t)
(
dxt − (h(ŷt)) +

1

2
∆[h](ŷtQt)dt

)
Qt

(2.18)

where δ[f ] and δ[h] are second-order derivatives.

2.7 First Order Extended Ensemble Filter (FoEEF)

The First Order Extended Ensemble Filter (FoEEF) is based on an ensemble of weights for a neural network
model [12]. The process involves:

1. Initializing ensemble weights w, filter object ŵ0, and covariance matrix P0.

2. Projecting state forward: f(wi
t)df + g(wi

t)q
1
2 (t)dw∗i

t .

3. Computing Kalman gain: phw(w
i
i)r

−1(t).

4. Updating state with measurement information and iterating over the ensemble to update weights ŵt and
covariance matrix Pt [11].

2.8 Second Order Extended Ensemble Filter (SoEEF)

The Second Order Extended Ensemble Filter (SoEEF), developed by Kevin Midenyo in 2023 [9], improves on
the First Order version by incorporating second-order Taylor expansions and Monte Carlo methods [5]. The
filter equation is:

dxi
t = f(xi

t, θ)dt+ g(xi
t)q

1
2 (t)Bt +Mhx(x

i
t)r

−1(t)(d(zt)− (
1

2
Mt(hxx(xx

i
t)− h(xi

t))dt; t0 ≤ t (2.19)

Empirical approximations of mean x̂t and covariance Mt are given by:

x̂t =
1

N

N∑
i=1

xi
t; Mt =

1

N − 1

N∑
i=1

(xi
t − x̂t)

2 (2.20)

This method was validated using the Lorenz 63 system, showing improved performance with increased ensemble
size. Numerous Filters have been discussed and it was established that Kalman Bucy filters were very
accurate in their applications in non-linear dynamic systems, however the cost of computing of the high
dimensional covariance is very high [11]. The first-order extended ensemble filter [12, 11] proved to be a
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better filter as it solved the computational costs by estimating the expected covariances empirically . However,
it applied Taylor series to the first order thus slightly less accurate as compared to filters where the estimation
of expected covariance id done to second order. KevIn Midenyo developed a new filter, second order extended
ensemble filter and in application it proved better than FoEEF as the expected values of the covariances
was approximated by Taylor series to the second order.This thesis is thus building on the past work by
expanding Kushner Stratonovich equation to the second order around the mean and stochastically perturbing
the innovation to take care of any other uncertainties by developing second order extended ensemble filter
with stochastically perturbed innovation. The new filter performs better than SoEEF and FoEEF and it is
computationally cheaper than SoEKBF and other filter.

3 Development of Filter

3.1 Stochastic calculus

There is a lot of underlying mathematics when developing filters. The method of derivation involves dynamic
state-space model hence a need for a deeper discussion on stochastic calculus. This section gives an
introduction , step by step derivation , explanation of stochastic calculus needed to derive Second Order
Extended Ensemble Kalman Filter with stochastically perturbed Innovation.

Assuming that a state of a system is according to

dyt = f(yt, t)dt+ g(yt, t)dBt; t0 ≤ t

and a noisy measurements of the system given by

dz = h(yt, t)dt+ θdv; t0 ≤ t

Where f is the drift function, g refers to the volatility , B and v are the independent Brownian motion at time
t. Then the conditional probability density p(y, t) of the state at time t is given by the Kushner-Stratonovich
equation;

dp(y, t) = M [p(y, t)]dt+ p(y, t)
(
h(y, t)− Et(y, t)

)
θ−T θ−T

(
dz − Eth(y, t)dt

)
(3.1)

where

M [p] = −
∑ ∂(fip)

∂yi
+

1

2

∑
(ggT )ij

∂2p

∂yi∂yj

is the foward Kolmogorv operation and dp(x, t) = p(x, t+dt)−p(x, t) gives the variation of conditional probability
and the innovation is given by dz−Eth(x, t), that is the difference between the measurement and the expected
value. Throughout this paper, because the derivation of Second Order Extended Ensemble Filter with
stochastically perturbed innovation involves dynamic processes, stochastic calculus will be utilized in solving
differential and integral equations to help come up with the filter [2].
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3.2 Itô formula

The Taylor expansion of the KS model is given by

h(Tt+δt, t+ δt) = h(yt, t) + ∂(yt, t)]δt + ∂xy[h(yt, t)]δyt

+
1

2
(∂tt[h(yt, t)]δt

2 + 2∂tt[h(yt, t)]δtδyt

+ ∂yy[h(yt, t)]δy
2
t ) + · · ·

In the above equation, values with powers greater than 2 are insignificant hence ignored;

δyt = f(yt, t)δt+ g(yt, t)δBt (3.2)

Then,

δh(yt, t) = ∂(yt, t)]δt+ ∂y[h(yt, t)]δyt +
1

2
∂yy[h(yt, t)]g

2(yt, t)δt + 0δt (3.3)

The derivation of equation 3.3 is borrowed from the work of [1, 6].
From the above equation, terms containing orders greater than 2 are assigned zero because they are

negligible. Substituting equation 3.2 and 3.3 and assuming the higher order terms are negligible, we will get:

δh(yt, t) = ∂t[h(yt, t)]δt + ∂y[h(yt, t)](f(yt, t)δt) + g(yt, t)δBt) +
1

2
∂yy[h(yt, t)]g

2(yt, t)δt.

= ∂t[h(yt, t)]δt + ∂y[h(yt, t)](f(yt, t)δt) +
1

2
∂yy[h(yt, t)]g

2(yt, t)δt

+ ∂y[h(yt, t)]g(yt, t)δtBt

(3.4)

when we extend the equation 3.4 to vector form through substituting n dimensional column vector, yt, in the
place of scalar yt and by use of differential operators we get;

∇ = (
∂

∂y1

∂

∂y2

...
∂

∂yn
)

and 
∂2

∂y12
∂2

∂y1∂y2
· · ·

∂2

∂y1∂yn
...

...
. . .

...
∂2

∂yn∂y1

∂2

∂yn∂y2
· · ·

∂2

∂yn2


Then equation 3.2 will yield

δh = ∂t[h]δt+∇[h]T f(yt, t)δt+
1

2
tr[g(yt, t)g

T (yt, t)]∆[h]δt+ (∇[h]T g(yt, t))δtBt (3.5)

Taking the limit in the mean of δh as δt and δt tending to zero, we get:

δh = ∂t[h]dt+∇[h]T dyt +
1

2
tr[g(yt, t)g

T (yt, t)]∆[h]dt (3.6)
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equation 3.4 is referred to as Itô formulae. This formula is significant in the calculation of derivatives of
stochastic calculus [7]. In fact,it is equivalent to chain rule in deterministic calculus [7].

3.3 Fokker-Plank equation

By considering the scalar of the Itô stochastic differential equation 3.4. It can be shown that the process for
{yt, t ∈ [to, I]} generates equation 1 is a molecular process.
The density function of the Marker process is given by

Φt(y) = Φ(y, t), ∀ t ∈ [to, T ] (3.7)

together with the transition probability density function we have;

Φt|T (y/z) = Φ(y, t)(Z, T ), ∀T < t ∈ [to, T ] (3.8)

Fokker plank is an equation of the evolution of the density function, Φt(y) and the conditional density, Φt|T (y/Z)∀ t >
T ∈ [to, T ]. The Process {yt, t > 0} that is generated by equation 3.4 is a Markov process, then we can say
that, given t1 < t2 < t3;

Φt3|t1,t2(y|z, x) = Φt3|t2(y/x) (3.9)

and the following equation satisfies;

Φt3|t1(y/z) =

∫
Φt3|t1(y/x)Φt2|t1(x/z)dx (3.10)

equation 3.10 above is the Chapman-Kolmogor equation and is applying to all Markov processes. We will then
use the equation 3.10 and Taylor expansion to obtain the equation of evolution of transition probability density
function, Φt|T (y/x) = Φ(y, t|x, T ), and is given by

∂Φt|T (y/x)

∂t
=

−∂(Φt|T (y/x)f(y, t))

∂y
+

1
2∂

2(Φt|T (y/x)g
2(yt, t))

∂y2
(3.11)

Equation 3.11 is the Fokker plank equation and also referred to as Kolmogorov’s forward equation.
Then we take expectations to equation 3.11 with respect to Φt(x);

ET [Φt|T (y/x)] =

∫
Φt|T (y/x)ΦT (x)dx = Φt(y) (3.12)

The equation of each the evolution of probability density function, Φt(y) is thus;

∂Φt(y)

∂t
=

−∂(Φt(y/x)f(y, t))

∂y
+

1
2∂

2(Φt(yt)g
2(y, t))

∂y2
(3.13)

By use of the vector equation 2, the corresponding Fokker plank is got by the evolution of every element in
equation 3.13.

∂Φt(y, t)

∂t
= −

n∑
k−1

∂Φt(y, t)fk(y, t)

∂yk
+

1

2

n∑
k,1=1

∂2(Φt(y, t)(g(y, t)g
T (y, t))k1)

∂yk∂yi
= ℓΦt(y, t) (3.14)
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we therefore have;

ℓ∂Φt(y, t) = −
n∑

k−1

∂Φt(y, t)fk(y, t)

∂yk
+

1

2

n∑
k,1=1

∂2(Φt(y, t)(g(y, t)g
T (y, t))k1)

∂yk∂xi
(3.15)

The solution of the equation 3.14 gives the probability density function Φt(y). It should be noted that most SDE
for nonlinear drafts are cumbersome to solve hence numerical solutions are preferred. We then derive a form
of Fokker- plank equation forming the basis of numerical methods.

3.4 Weak form of Fokker plank equation

Considering the scalar Fokker Plank equation 3.13. Let Θ(y) ∈∞
c (R,R) meaning Θ(y) is differentiable function

to infinity from R to R, and the compact support is set R. The value of

Φto(y) = Φo(y) (3.16)

Multiplying equation 3.13 by P (x) and intergrity over domain;∫
∂Φt(y)

∂t
= −

∫
∂Φt(y)f(y, t)

∂y
P (y)dy +

1

2

∫
∂2(Φt(y)g

2(y, t))

∂y2
P (y)dy (3.17)

when we intergrate 3.17 by parts we obtain∫
∂Φt(y)

∂t
P (y)dy = −

∫
∂Φt(y)f(y, t)

∂P (y)
∂y dy + 1

2

∫ ∂(Φt(y)g
2(y,t))

∂y2

∂P (y)
∂y dy (3.18)

=
∫ ∂P (y)

∂y (Φt(y)f(y, t)− 1
2
∂(Φt(y)g

2(y,t))
∂y )dy (3.19)

By intergrating the R.H.S of equation 3.19, we have;∫
∂Φt(y)

∂t
P (y)dy =

∫
∂P (y)

∂y
Φt(y)f(y, t)dy +

1

2

∫
∂2P (y)

∂y2
Φt(y)g

2(y, t)dy (3.20)

Getting expected values of 3.20,

∂/Et[P (y)]

∂t
= /Et[

∂P (y)

∂y
f(y, t)] +

1

2
/Et[

∂2P (y)

∂y2
g2(y, t)] (3.21)

Then defining /Et[P ] as

/Et[P ] = Φ[P ] (3.22)

=
∫
Φt(y)P (y)dy (3.23)

we have,
dΦt[P ] = Φt[ℓ

∗P ]dt but the operator

ℓ∗ = f
∂

∂y
+

1

2
g2

∂2

∂y2
(3.24)

The above eqaution 3.24 is the weck form Fokker plank equation. We can now obtain different numerical
methods based on choice of the test function P (y)
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3.5 Equation of Evolution of the Mean

Given the equation of the mean is
dΨt(x̂t) = f̂dt

Let;
x̂t = Ψt(x) =

∫
xΨt(x)dx and

f̂t = Ψt[f(x, t)] =
∫
f(x, t)Ψt(x)dx then

at = Ψt[x
2
t ]− (x̂t)

2 and dat = dΨt[x
2
t ]− d(x̂)2

using its formulae:
dΨt(x

2
t ) = 2Ψt[fxt]dx̂+Ψ[q2]

hence
dat = 2Ψt[fxt]dx̂+Ψ[q2] + 2x̂tf̂tdt (3.25)

3.6 Kushner stratonovich

We can describe Kushner-stratonovich equation as the purtabation of Fokker Plank equation through the
addition of the knowledge from measurement by use of Bayesian approach.
The equation therefore estimate ŷt at time t through combination of the noisy dynamic with the noisy measurement.

dP (y, t) = L[P (y, t)]dt+ P (y, t)[h()g, t− Eth(y, t)]
T (3.26)

ηη[d2− Eth(y, t)dt] (3.27)

where

ℓP = −
∑ σ∂(δi, P )

∂yi
+

1

2

∑
(δδT )ij

∂2P

∂yi∂y

which is Kolmogorov formed operation and the

dP (y, t) = P (y, t+ dt)− P (y, t)

By apply as
q(δt, δyr) = 1 + (h− h)TR−1(δyt − ĥiδt) + · · ·

3.7 Evolution of the Mean and Covariance

Mean refers to the first moment whereas covariance refers to the second moment.

dŷt = f̂dt+ (ŷthT − ŷtĥ
T )R−1

(t) (dzt − ĥd(t)); yt0 = y(0) (3.28)
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(dMt)ij = (ŷifi − ŷif̂i)dt+ (f̂iyj − f̂iŷj)dt+ (ĜQGT )ijdt−

(ŷih− ŷiĥ)
TR−1(ĥyj − ĥyj − ĥĵ)dt+ (ŷiyjh−

ŷiyj ĥ− ŷiŷjh− ŷj ŷih+ zŷiŷj ĥ)
TR−1(t)(dzt − ĥdt); Mt0 = M(0)

(3.29)

The estimate ŷ is solution to the equation 3.28 and Mt is the solution of equation 3.29. The two equations
give exact equation of the evolution of mean and covariance. To simplify the expressions, we can use scalar
and write as;

signal : dyt = f(yt, θ)dt+ g(yt)q
1
2 dBt; yt0 = y(0), t0 ≤ t (3.30)

measurement : dzt = h(yt)dt+ r
1
2 dηt; t0 ≤ t (3.31)

The equations for evolution of the conditional mean and variance for scalar are given by;

dŷt = f̂dt+ (ŷth− ŷtĥ)r
−1(t)(dzt − ĥdt); yt0 = y(0) (3.32)

dMt = 2(ŷf − ŷf̂)dt−
(
q̂g2dt− (ŷh− ŷĥ)2r−1

+ (ŷ2h− ŷ2ĥ− 2ŷyĥ+ 2ŷ2ŷh+ 2ŷ2ĥ)r−1(dzt − ĥdt)
)
;

dM0 = M(0)

(3.33)

where,

f̂ =

∫
f(y)M(y|Zt)dyt (3.34)

solving 3.30 and 3.31 will give exact filter. Here the solution involves the calculation of conditional expected
values which is difficult as they involve integration over non-linear functions. We then resort to approximating
the expected values. The second order approximation of exact filter is made by neglecting the third and higher
order

3.7.1 Second-Order Approximate Filter

3.7.2 Theorem 1: Second-Order Approximate Filter

Given continuous functions f(y) and h(y), with existing first and second derivatives fy, fyy, hy, hyy, the second-
order approximation of the exact filter neglecting higher-order terms is:

dŷt = f(ŷ)dt+
1

2
Mtfyy(ŷdt+Mhy(ŷ)r

−1(t)
(
dzt − (hŷ) +

1

2
Mthyy(ŷ)

)
(3.35)

dMt = 2Mfy(ŷ)dt+
(
q(t)g2(ŷ) +Md(t)g2y(ŷ)

)
dt−

(
Mthy(ŷ)

)2
r−1

+
1

2
M2

t hyy(ŷ)r
−1(t)

(
dzt − (h(ŷ) +

1

2
Mthyy(ŷ))dt

) (3.36)
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Proof: By applying a Taylor expansion for f(y) and h(y) around ŷ, and taking expectations up to the second
order, we have:

f(y) ≈ f(ŷ) + (y − ŷ)fy(ŷ) +
1

2
(y − ŷ)2fyy(ŷ) (3.37)

h(y) ≈ h(ŷ) + (y − ŷ)hy +
1

2
(y − ŷ)2hyy(ŷ) (3.38)

The approximations for the remaining terms can be similarly derived using Taylor expansions. Taking expectations
and using covariance terms leads to the final second-order equations.

3.8 First-Order Approximate Filter

3.8.1 Theorem 2: First-Order Approximate Filter

For continuous functions f(y) and h(y), with existing first derivatives fy and hy, the first-order approximation of
the exact filter is:

dyt = f(ŷ)dt+Mhy(ŷ)r
−1(t)(dzt)− h(ŷ)dt (3.39)

dMt = 2Mfy(ŷ)dt+
(
q(t)g2(ŷ) +Mq(t)g2y(ŷ)

)
dt−

(
Mthy(ŷ)

)2

r−1 (3.40)

Proof
This is derived from the second-order filter by setting the second-order derivatives fyy and hyy to zero,

leading to first-order terms only.

3.9 Second-Order Extended Ensemble Filter (soEEF)

The second-order extended ensemble filter (soEEF) is developed based on the nonlinear model with second-
order approximation:

dyit = f(yit, θ)dt+ g(yit)q
1
2 (t)Bt +Mthy(y

i
t)r

−1(t)(d(zt)− (
1

2
Mt(hyy(y

i
t)− h(yit))dt; t0 ≤ t (3.41)

the empirical mean ŷt and covariance Mt are estimated as:

ŷt =
1

N

N∑
i=1

yit; to ≤ t (3.42)

Mt =
1

N − 1

N∑
i=1

(yit − ŷt)
2; t0 ≤ t (3.43)
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3.10 SoEEF with Stochastically Perturbed Innovation, S0EEFPI

In this section, you introduce the SoEEFPI (Second Order Extended Esemble Filter with Stochastically Perturbed
Innovation) model, derived by adding a stochastic component to the deterministic perturbation term of SOEEF.
This results in the following McKean-Vlasov Stochastic Differential Equation (SDE) for the system’s state
evolution, using mean-field theory (MFT) [13] as an approximation tool. In MFT, all interactions are replaced
by an effective interaction with the mean field.

The key stochastic differential equation is:

d(ȳt) = f(ȳt)dt+ g(ȳt)q
1
2 (t)dβt +Mhy(ȳt)r

−1(t)

[
dzt − 2h(ȳt)dt+R

1
2 (t)dū(t)]

]
(3.44)

This describes the evolution of the system’s state with stochastic innovations. In the finite system, where
M independent copies of the state variables interact, the equation becomes:

d(yit) = f(yit)dt+ g(yit)q
1
2 (t)dβi

t +Mhy(y
i
t)r

−1(t)

[
dzt +−2h(yit)dt+R

1
2 (t)dui

(t)]

]
(3.45)

This captures the stochastic interaction hypothesis for each state in the system.
The SoEEF evolution equation in its controlled Stratonovich form is then:

dyt = f(yt)dt+ g(yt)q
1
2 (t)dβt +Mhy(yt)r

−1(t)
[
dzt +R

1
2 (t)du(t) − 2h(yt)dt

]
(3.46)

This equation is eventually transformed into the Itô form, and the corresponding Fokker-Planck equation
describes the evolution of the filtering density π(yt|Zt).

3.11 Exactness of SoEEF with Stochastically Perturbed Innovation

We begin with filtering posterior
πt0(y | Z0) = Π∗

t0(y | Z0) (3.47)

π∗
t0(y | Z0) is true posterior at initial time t0 and filter posterior matches time posterior at all times, t and

hence we prove that filtering in equation (3.8.5) is exact. It makes sense to show that the equations of evolution
of true posterior and the filtering are the same. By multiplying equaton (3.9.0) by −πt we get;

−πtN = πtMh− 2πtq (3.48)

−πtM(h− ĥt)− πtMĥt + 2πtq (3.49)

by introducing πtMĥt − πtαĥt from equation (3.8.9) we get,

−π(h− ĥt) = R(t)∇ · (πtαk) (3.50)

substituting equation (3.9.3) to equation (3.9.2) we get;

−πtN = MR(t)∇ · (πtM)− πtMĥt + 2πtq (3.51)
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But
∇ ·

(
π[MRMT ]big) = πMR∇ · (M) +MR∇ · (πM) (3.52)

and applying in 3.9.4 and noting that

q(y, t) =
R

2

n∑
k=1

Mk(yt)
∂kj
∂yt

(3.53)

we get
−ΠN = −∇

(
π[MRαT ]

)
+ΠMĥt (3.54)

Taking divergence on both sides of equation 3.9.5 we get;

−∇ · (πN) = −
n∑

i,k=1

∂L

∂yi
∂yk

(
π[MRMT ]IK

)
+∇ · (πMĥt) (3.55)

we substitute equation (3.8.6) and equation (3.9.6) for;

−∇ · (πtN) +

n∑
i,k=1

∂L

∂yi
∂yt

(
π[MRMT ]ik

)
(3.56)

and ∇cdot(π,M) in equation 3.8.7 to get

dπt = L(πt)dt+ (h− ĥt)
TR−1(t)(dyt − ĥtdt) (3.57)

Thus proving exactness.

4 Filter Validation

The Lorenz 63 system, first introduced by Edward Lorenz [4], is a set of three ordinary differential equations
that exhibit chaotic behaviour for specific parameter values and initial conditions [14]. The system is given by:

dx1

dt
= a(x2 − x1)

dx2

dt
= x1(b− x3)− x2

dx3

dt
= x1x2 − cx3 (4.1)

where a = 10, b = 28 and c = 8
3 . These parameter values determine the system’s chaotic behavior, which

is highly sensitive to initial conditions. Small changes in these conditions can result in significantly different
trajectories over time, a hallmark of chaos.

Lorenz 63 is widely used as a testbed for data assimilation because it exemplifies how small initial perturbations
lead to large changes in outcomes, making it an ideal model for testing filters [4]. In this case, a new filter, the
Stochastically Perturbed SoEEKF, was applied to the Lorenz 63 model and compared with several other filters,
including:
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1. First Order Extended Ensemble Kalman Filter with perturbed Innovation (FoEEKPi)

2. First Order Extended Kalman-Bucy Filter (FoKBF)

3. Second Order Extended Kalman-Bucy Filter (SoEKBF)

4. The Bootstrap Particle Filter (KBF)

5. First Order Extended Ensemble Filter (FoEEF)

6. Second Order Extended Ensemble Filter (SoEEF)

4.1 Stochastic Lorenz 63 Model

The stochastic version of the Lorenz 63 model incorporates randomness through Brownian motion and is given
by:

dyt = f(yt, θ)dt+G(yt)Q
1
2 (t)dBt; xt0 = x(0), t0 ≤ t

where f(y) represents the Lorenz 63 dynamics, Bt is a 3-dimensional standard Brownian motion, and G and
Q represent the noise covariance. The measurement equation associated with this model is:

dx̄t = h(yt)dt+R
1
2 (t)dηt; t0 ≤ t (4.2)

where h(y) describes the observation process, and ηt is also a 3-dimensional Brownian motion.

4.2 Simulation Setup

The simulation of the Lorenz 63 system used the following setup:

1. Time increment: dt = 0.001

2. Simulation time: T = 0 to T = 30

3. Initial condition: yt0 = [−5.91652,−5.52332, 24.5723]T

4. The system ran for 30, 000 iterations with nine ensemble sizes: 10, 15, 22, 26, 29, 34, 41, 46, 49

4.3 Perturbed SoEEKF

The stochastic SoEEKF (Second Order Extended Ensemble Kalman Filter) perturbed version used for the
experiment is described by:

dyt = f(yt)dt+ g(yt)q
1
2 (t)dβt +Mhy(yt)r

−1(t)
[
dzt +R

1
2 (t)du(t) − 2h(yt)dt

]
(4.3)
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4.4 Performance Evaluation

The performance of the newly developed SoEEKF filter was tested using the Lorenz 63 system and compared
with several other filters. These include: Bootstrap Particle Filter (BPF) First Order Extended Ensemble Kalman
Filter (FoEEF), First Order Extended, Kalman-Bucy Filter (FoEKBF), Second Order Extended Kalman-Bucy
Filter (SoEKBF), Second Order Extended, Ensemble Kalman Filter (SoEEF)

By evaluating the accuracy and robustness of these filters on the Lorenz 63 system, the new filter’s
performance was validated. The chaotic nature of the Lorenz 63 system made it an ideal candidate to test
the filter’s ability to handle sensitivity to initial conditions, noise, and nonlinearity.

Licensed Under Creative Commons Attribution (CC BY-NC)

238



Vol 4(Iss.2), pp.222-242, 2024 Science Mundi ISSN:2788-5844 http://sciencemundi.net

5 Results

In Figure 1, the Root Mean Square Error (RMSE) is plotted on the y-axis against the reciprocal of the
ensemble size M on the x-axis. The graph compares the performance of six different filters: Bootstrap Particle
Filter (BPF): represented by a thin blue line, First Order Extended Ensemble Filter (FoEEF): represented by a
green line, First Order Extended Kalman-Bucy Filter (FoEKBF): represented by an orange line, Second Order
Extended Kalman-Bucy Filter (SoEKBF): represented by a purple line, Second Order Extended Ensemble
Kalman Filter (SoEEF): represented by a sky blue line and Stochastically Perturbed SoEEF (SoEEFPI): represented
by a maroon line

Figure 1: Root mean square error for the Reciprocal of Ensemble.
The sizes of the Ensamble used are 10, 15, 22, 26, 29, 34, 41, 46, 49 Other settings; dt = 0.001, R =

0.17, and G = 0.2000.

From the graph, several observations can be made; As the ensemble size increases, the RMSE of the
Bootstrap Particle Filter (BPF) rises, indicating that this filter may become less effective with larger ensembles.

In contrast, the RMSE for the other filters—FoEKBF, SoEKBF, FoEEF, SoEEF, and SoEEFPI—decreases
as the ensemble size increases, suggesting improved performance with larger ensembles.

Among these filters, SoEKBF shows the lowest RMSE, reflecting its strong performance in reducing
estimation error. However, it is important to note that the computation of the inverse of covariance matrices for
SoEKBF is quite expensive, which raises concerns about its practicality for larger applications.

The Stochastically Perturbed SoEEF (SoEEFPI) consistently demonstrates lower RMSE compared to the
other filters, making it a compelling option. Although SoEKBF has the best performance in terms of RMSE,
its high computational cost underscores the need for an efficient alternative. SoEEFPI effectively balances
performance and computational efficiency, proving to be a superior choice in this analysis.
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Figure 2 effectively illustrates the performance of the SoEEFPI filter in comparison to traditional filters in
the context of chaotic systems. The close alignment of SoEEFPI’s trajectory with the true state, combined with
its error performance, underscores its effectiveness as a reliable data assimilation method within the Lorenz
63 model framework. The findings emphasize the importance of selecting filters that not only provide accurate
estimates but also maintain computational efficiency in chaotic environments.

Figure 2: Filter Estimate and Filter Error for first variable, x1 in Lorenz 63 model 94

Figure 3 illustrates the comparison between the true trajectory of the second variable x2 of the Lorenz 63
model and the estimates produced by six different filters. The plot reveals that there is no noticeable deviation
between the output of SoEEFPI and the true trajectories of the Lorenz 63 system, indicating that SoEEFPI
outperforms the other filters in accurately tracking the true state. This highlights the effectiveness of SoEEFPI
in providing reliable estimates in chaotic systems like the Lorenz 63 model.

Figure 3: Filter Estimate and Filter Error for x2 in Lorenz 63 Model 94

Licensed Under Creative Commons Attribution (CC BY-NC)

240



Vol 4(Iss.2), pp.222-242, 2024 Science Mundi ISSN:2788-5844 http://sciencemundi.net

Figure 4: Filter Estimate and Filter Error for x3 in Lorenz 63 Model 94

Figure 4 consists of two graphs. The first graph displays the comparison of the trajectories of evolution
for the new filter SoEEFPI alongside SoEEF, SoEKBF, FoEKBF, and BPF, against the true state generated by
the third variable in the Lorenz 63 model. These trajectories are obtained using nine ensembles measured
between times T = 0 and T = 30. The second graph presents the filter errors measured across the same time
interval for all six filters. This comprehensive analysis provides insight into the performance and accuracy of
each filtering approach in relation to the true state of the Lorenz 63 model.

6 Conclusion

The complexity of integrating the covariance of high-dimensional data and the associated computational costs
have led to the emergence of ensemble Kalman filters. The plots presented compare six filters: First Order
Extended Ensemble Filter (FoEEF), First Order Extended Kalman Bucy Filter (FoEKBF), Second Order Extended
Kalman Bucy Filter (SoEKBF), and Second Order Extended Ensemble Kalman Filter (SoEEF). The experiment
was conducted on a three-dimensional stochastic Lorenz 63 model, with simulations performed using MATLAB
software. Results indicate that SoEEFPI outperformed the other filters (KBF, FoEEF, SoEEF, and FoEKBF)
across all three variables of the Lorenz 63 model: x1, x2, and x3. While SoEKBF exhibited the lowest root mean
square error (RMSE), its computational cost is significantly higher due to the integration of high-dimensional
covariance, making SoEEFPI a more desirable option since its covariance computation is performed empirically.
The graphs further demonstrate that SoEEFPI is advantageous for parallel computing, as it does not require
resampling, unlike particle filters. Additionally, the performance of SoEEFPI improves with increasing ensemble
sizes.
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