Bodysurfing injuries of the spinal cord A. T. Scher In a group of 104 patients paralysed as a result of injury while swimming or diving, 3 patients were identified in whom the injury was sustained during bodysurfing. The mechanism of the injury and the clinical and radiological findings in this group differ markedly from the findings in the 101 patients paralysed after diving into shallow water. The 3 patients were significantly older with a mean age of 46 years. No fracture or dislocation of the cervical spine was present, but evidence of osteo-arthrosis was present in all cases. The pattern of spinal cord injury was that of incomplete paralysis consistent with the central cord syndrome. This combination of findings suggests that the mechanism of injury was forced hyperextension of the head and neck due to the surfers having been caught up in turbulent wave action and driven into the sandy sea bottom. S Afr Med J 1995; 85: 1022-1024. In two previous analyses^{1,2} of patients paralysed as a result of diving injuries to the cervical spinal cord, a small, distinct, sub-group of older patients who had sustained spinal cord injuries while bodysurfing was identified. The circumstances and consequences of injury in this small group of patients differ in several significant respects from those of patients paralysed as a result of diving into shallow water. There is only one other report in the literature of cervical spinal cord injury caused by bodysurfing³ and an analysis of this group has therefore been made in order to define further the mechanism of injury, orthopaedic injury, neurological deficit and preventive measures. ## Analysis of clinical and radiological findings Out of a total of 104 patients paralysed as a result of water-related accidents, 12 3 were identified who had sustained their spinal cord injury while surfing in the waves, and not while diving into shallow water. The ages of the 3 patients were 42, 44 and 52 years, the mean age being 46 years. All 3 provided similar histories of having been caught up in turbulent wave action and driven into the sandy bottom. All 3 had sustained neurological injury with incomplete paralysis consistent with central spinal damage. None had sustained any fracture or dislocation, but all 3 showed evidence of osteo-arthrotic changes in the cervical spine. None had consumed alcohol prior to entering the sea. Fig. 1. Marked disc space narrowing at the C5/C6 level. A large posterior osteophytic spur (arrow), protruding into the spinal canal, is present at this level. #### Discussion This analysis has revealed marked differences in the findings between the two groups of patients analysed, i.e. the 101 patients paralysed because of diving into shallow water and the 3 patients injured as a result of surfing. Those injured as a result of diving accidents were predominantly young, with a mean age of 22 years, while the surfing accident patients were significantly older, with a mean age of 46 years. While the diving accident patients showed severe orthopaedic injuries, the most common being 'tear-drop' fractures of the vertebral bodies, the surfing group showed no radiological evidence of orthopaedic injury. Neurological deficit associated with the orthopaedic injuries in the diving group was severe, with 65% of patients sustaining complete, permanent quadriplegia. In the surfing group, all 3 patients were fortunate to have sustained only incomplete paralysis consistent with the central-cord syndrome. This results from haemorrhage into the central grey matter of the spinal cord, with a varying degree of white matter involvement which severely affects the centrally located arm tracts and, to a lesser extent, the leg tracts. The central haemorrhage damages the anterior horn cells over several segments, producing a lower motor neuron paralysis of the hands and arms. The peripheral haemorrhage into the white matter results in weakness and spasticity of the legs. There is usually loss of voluntary bladder control, urinary retention, and some degree of sensory loss.⁴ While the diving patients showed no evidence of any significant osteo-arthrosis of the cervical spine, all 3 of the surfing injury patients had well-marked changes of osteo-arthrotic disease of the spine. Posterior osteophyte formation at the C4/C5 and C5/C6 levels was present. This combination of pre-existing osteo-arthrotic changes of the cervical spine, spinal cord injury without orthopaedic injury and the onset of the central cord syndrome all suggest that the mechanism of injury was forced hyperextension. The majority of these injuries⁵ occur in the presence of cervical spondylosis in which the cord is pinched anteriorly between the degenerate vertebral discs and osteophytes and posteriorly between protruding redundant folds of ligamentum flavum. There are usually no radiological signs of injury and only the presence of changes of cervical spondylosis are observed.⁵ The cervical spinal cord in the lower cervical spinal canal (C3 - C6) is especially liable to trauma in extension, as the subarachnoid space around the cord (in the sagittal diameter) is narrowest in this region. On extension the available space is diminished still further as the spinal cord itself increases its thickness, while the sagittal diameter of the canal narrows by approximately 2 mm in the normal adult subject. Additional decrease in diameter due to the intrusion of projecting osteophytic ridges and ligamentum flavum combines with the abovementioned physiological changes in extension to precipitate spinal cord injury. Apart from functional narrowing of the spinal canal some individuals have congenitally narrow canals that place them at great risk of spinal cord injury. If the sagittal diameter of the cervical canal at any level is 10 mm or less, then any additional narrowing due to trauma or other processes will almost certainly result in spinal cord damage.⁶ With diameters of 10 - 13 mm, a high risk is present. The circumstances of injury, neurological deficit, age of the patients and absence of orthopaedic injury are similar to the findings reported by Cheng *et al.*³ in their larger series of 14 patients who sustained bodysurfing accidents. ### Conclusion This study has shown that spinal cord injuries due to bodysurfing accidents differ markedly from those sustained as a result of diving into shallow water. The mechanism of these injuries is forced hyperextension of the head and neck due to the surfers being caught up in turbulent wave action and driven into the sandy sea bottom. The presence of pre-existing osteo-arthrosis predisposes these patients to injury of the central portion of the spinal cord, without associated fracture or dislocation of the cervical spine. Middle-aged people are prone to these injuries. The absence, therefore, of fracture or dislocation of the cervical spine in middle-aged patients presenting with spinal cord injury and paralysis sustained during bodysurfing, should not cause surprise. An exhaustive search for subtle fractures or dislocations, utilising sophisticated imaging techniques such as computed tomography and magnetic resonance imaging, is not indicated. Careful inspection of the plain radiographs for changes of osteo-arthrosis and a narrow spinal canal is required. If either or both of these conditions are present on the plain radiographs, it is unnecessary to continue with the imaging investigation of these patients, as these examinations will not contribute towards the initial clinical management of the patient. #### REFERENCES - 1. Scher AT. Diving injuries to the cervical spinal cord. S Afr Med J 1981; 59: 603-605. - 2. Scher AT. Diving injuries of the spinal cord. S Afr Med J 1992; 81: 291-292. - Cheng CLY, Aizik LW, Mirvis S, et al. Bodysurfing accidents resulting in cervical spinal injuries. Spine 1992; 17: 257-260. Schneider RC. The syndrome of acute anterior spinal cord injury. J Neurol Neurosurg - Schneider RC. The syndrome of acute anterior spinal cord injury. J Neurol Neurosurg Psychiatry 1958; 21: 216-227. - Nordquist L. The sagittal diameter of the spinal cord and subarachnoid space in different age groups. Acta Radiol Suppl (Stockh) 1964; 227: 1-240. - Scher AT. Cervical spinal cord injury without evidence of fracture or dislocation. S Afr Med J 1976: 50: 962-965. - Brieg A. Biomechanics of the Central Nervous System. Stockholm: Almqvist & Wiksell. 1961: 68. Accepted 28 Dec 1993.