Main Article Content
'n Woordsoortetiketteerder vir Afrikaans
Abstract
'n Woordsoortetiketteerder is 'n belangrike kerntegnologie wat 'n noodsaaklike komponent is van verskeie mensetaaltegnologiese toepassings en dus is dit van kernbelang om 'n woordsoortetiketteerder te ontwikkel vir 'n taal wat 'n ontluikende MTT-industrie het. Die ontwikkeling van 'n eerste woordsoortetiketteerder vir Afrikaans word in hierdie artikel beskryf. Die etiketteerder is ontwikkel deur die TnT-algoritme, wat 'n masjienleeralgoritme gebaseer op 'n Versteekte Markovmodel is, met Afrikaanse data af te rig. Die rede vir die keuse van algoritme word in die artikel uiteengesit. Die woordsoortetiketteerder is geïmplementeer met 'n etiketstel wat spesifiek vir Afrikaans ontwikkel is. Dit is moontlik om die etiketstel op verskillende vlakke van spesifisiteit te implementeer en daarom word die etiketteerder onderwerp aan twee verskillende stelle evaluasies. Die eerste evalueer die etiketteerder met die volledige stel van 139 etikette en die tweede met 'n vereenvoudigde etiketstel bestaande uit slegs 13 etikette. Met die volledige etiketstel bereik die etiketteerder 'n akkuraatheid van 85.87% met 20 000 woorde afrigtingsdata. Wanneer dit op dieselfde teks getoets word, maar met 'n vereenvoudigde weergawe van die etiketstel (13 etikette) geïmplementeer word, bereik dit 'n akkuraatheid van 93.69% met 20 000 woorde afrigtingsdata. Die etiketteerder is dus nog nie akkuraat genoeg om in taaltegnologiese toepassings te gebruik nie, maar dit kan gebruik word om semi-outomaties verdere afrigtingsdata te genereer waarmee 'n meer akkurate woordsoortetiketteerder afgerig kan word.
A part-of-speech tagger (POS tagger) is an important core technology necessary for the development of various human language technology applications and it is thus of great importance to develop a POS tagger for a language with an emerging human language technology (HLT) industry. The development of a first POS tagger for Afrikaans is described in this article. The tagger was developed by training the TnT algorithm, a machine learning algorithm based on Hidden Markov Models, with annotated Afrikaans data. The reasons for using this algorithm are explicated in the article. The tagger uses a tagset that was developed specifically for Afrikaans to tag the words in an input text. This tagset can be implemented on different levels of specificity and the tagger therefore is evaluated both with a very specific, fine-grained tagset and with a much more general tagset to determine the effect of the size of a tagset on the accuracy of a POS tagger. With the complete tagset of 139 very specific tags, the tagger is able to tag 85.87% of words correctly after being trained with only 20 000 words. When using a tagset of only 13 general tags, the tagger is 93.69% accurate on the same text after being trained with the same 20 000 words. When using the specific tagset (139 tags) the tagger developed here is not accurate enough to be implemented into applications, but it can be used to annotate more training data semi-automatically. This training data can, in turn, be used to train a more accurate tagger that can be implemented into applications such as grammar checkers, syntactic parsers and machine translation systems.
Southern African Linguistics and Applied Language Studies 2008, 26(1): 119–134
A part-of-speech tagger (POS tagger) is an important core technology necessary for the development of various human language technology applications and it is thus of great importance to develop a POS tagger for a language with an emerging human language technology (HLT) industry. The development of a first POS tagger for Afrikaans is described in this article. The tagger was developed by training the TnT algorithm, a machine learning algorithm based on Hidden Markov Models, with annotated Afrikaans data. The reasons for using this algorithm are explicated in the article. The tagger uses a tagset that was developed specifically for Afrikaans to tag the words in an input text. This tagset can be implemented on different levels of specificity and the tagger therefore is evaluated both with a very specific, fine-grained tagset and with a much more general tagset to determine the effect of the size of a tagset on the accuracy of a POS tagger. With the complete tagset of 139 very specific tags, the tagger is able to tag 85.87% of words correctly after being trained with only 20 000 words. When using a tagset of only 13 general tags, the tagger is 93.69% accurate on the same text after being trained with the same 20 000 words. When using the specific tagset (139 tags) the tagger developed here is not accurate enough to be implemented into applications, but it can be used to annotate more training data semi-automatically. This training data can, in turn, be used to train a more accurate tagger that can be implemented into applications such as grammar checkers, syntactic parsers and machine translation systems.
Southern African Linguistics and Applied Language Studies 2008, 26(1): 119–134