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Abstract:  

Water is an essential resource for the survival and well-being of humans and ecosystems; hence, 
the quality of water is also crucial. To determine the quality of surface water, water quality 
parameters are traditionally measured by using in-situ measurements. However, accessing such 
measurements is time-consuming and labor-intensive. Furthermore, it is almost impossible to 
obtain measurements of the entire waterbody through this method. Therefore, in this study, we 
compare the capability of Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) 
models in retrieving water quality parameters from remotely sensed data in inland waterbodies in 
the case of Lake Victoria, in Tanzania. The models are commonly used for retrieving remote 
sensing-based water parameters. The performance of MLR and ANN in retrieving Turbidity and 
Total Dissolved Solids (TDS) data is evaluated. Surface reflectance values from Landsat 8 
Operational Land Imager (OLI) sensor images and in-situ data are used to find reliable 
relationships between Turbidity and Total Dissolved Solids (TDS). The results indicate that the 
ANN model performs better than MLR in retrieving Turbidity and TDS data: ANN had an accuracy 
(R2) of 88.73% and 83.36%, respectively, while MLR had an accuracy (R2) of 66.66% and 78.42%, 
respectively. Other criteria that were used for comparison include the standard error (SE), root 
mean square error (RMSE) and mean absolute error (MAE) which indicated that ANN performed 
better than MLR. The general distribution of Turbidity and TDS data, as mapped in Lake Victoria, 
shows that the water quality of the lake, as described by World Health Organization (WHO) 
standards, is good and could, therefore, be used for human consumption. Based on the results for 
Turbidity and TDS obtained in this study, we recommend that ANNs and Landsat 8 OLI satellite 
images be used for water quality parameter modeling. 
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1. Introduction 

Lakes are vital resources which play an important role in providing various ecosystem services 
(Bonansea et al., 2019). They provide water as an essential resource for the survival and well-
being of people and ecosystems such that the quality of water constantly remains crucial(Liu et 
al., 2024a). However, anthropogenic activities have led to the deterioration of water quality in 
more than half of these systems worldwide (Dai et al., 2017; Ji et al., 2021; Sidabutar et al., 2017; 
Thai-Hoang et al., 2022; Zhu et al., 2022). Water quality is a term generally used to describe and 
define the physical, chemical, and biological characteristics of waterbodies and to identify the 
possible contamination source that degrades the quality of water (Al-Mukhtar et al., 2020; Al-
Mukhtar & Al-Yaseen, 2019a; Ritchie et al., 2003). Degradation in the quality of water resources 
emanates mainly from the discharge of waste, pesticides, heavy metals, nutrients, microorganisms, 
and sediments (Barrett & Frazier, 2016; Thai-Hoang et al., 2022). Several water quality standards 
have been laid down to aid in checking the extent of water pollution, and thus to maintain these 
water quality standards (EWURA, 2020; URT, 2018; WHO, 2011). Water quality monitoring is 
crucial for preserving ecosystem health and for supporting the livelihoods of local communities. 
By monitoring the quality of surface water, it is  possible to establish an indicator of the state of 
health of the surface waterbody in question (Srivastava et al., 2020). Such monitoring is also vital 
for detecting undesirable changes in water quality. Therefore, it is essential to implement best 
practices and to make concerted efforts to monitor and enhance water quality. In monitoring 
surface water quality, the distribution of the water quality parameters applicable to the entire 
waterbody must be known.  

Traditionally, field campaigns are conducted to take in-situ measurements of water samples at 
water monitoring stations. The number and location of the sampling stations should be 
representative of each of the water sources entering the system and representative of the conditions 
(e.g., dead-ends, loops, storage facilities, and pressure) within each system (Pu et al., 2019). 
However, traditional point sampling methods are not easily able to identify the spatial or temporal 
variations in water quality, and these methods are time-consuming, labour-intensive, and 
expensive (Kc et al., 2019). Remote sensing is the science and art of measuring an object without 
being in actual contact with the object (Bhatti, 2008). Remote sensing can be used to acquire water 
quality parameters in surface waterbodies as snapshots at various temporal resolutions (days, 
weeks, months, years) (Nakkazi et al., 2024; Srivastava et al., 2020) Remote sensing-measurement 
techniques have useful applications in many fields, including the water quality monitoring field 
(Batina & Krtalić, 2024; Elhag et al., 2019; Gholizadeh et al., 2016a; Giardino et al., 2014; Jin, 
2022; Kapalanga, Hoko, & Gumindoga, 2021; Ochaeta et al., 2020; Sagan et al., 2020). An 
important principle underlying the use of remotely sensed data is that different objects on the 
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Earth’s surface and in the atmosphere reflect, absorb, transmit, or emit electromagnetic energy in 
different proportions; it is such differences that allow these components to be identified (Laili et 
al., 2015). 

Monitoring water quality through remote sensing involves first determining a reliable 
relationship between light reflectance (for certain wavelength bands) and the water parameters 
collected in situ in cases where different relationships between the reflectance and the parameters 
have developed (Bonansea et al., 2019, Tu et al., 2018). From the remote sensing perspective, 
water can be divided into two classes; Case I waters are the ones whereby the optical properties 
vary according to the phytoplankton concentrations, while Case II waters are those in which the 
optical properties do not only depend on the phytoplankton concentrations, but also on other 
constituents such as suspended sediments and dissolved organic matter (Al-Mukhtar et al., 2019). 
With remote sensing, it is possible to have a spatial and temporal view of surface water quality 
parameters to monitor the waterbodies more effectively and efficiently and to quantify water 
quality issues (Batina & Krtalić, 2024; Bonansea et al., 2019; Gholizadeh et al., 2016b; Jin, 2022; 
Kc et al., 2019; Muhoyi et al., 2022; Pourghasemi & Gokceoglu, 2019; Ritchie et al., 2003; 
Srivastava et al., 2020; H. Yang et al., 2022). With rapid environmental change, it is necessary to 
regularly monitor the quality of water, whereas remote sensing techniques provide more efficient 
and less labour intensive and cheaper ways to do so (Batina & Krtalić, 2024; Gholizadeh et al., 
2016b; Jin, 2022; Kc et al., 2019; Muhoyi et al., 2022; Ritchie et al., 2003; H. Yang et al., 2022). 
Remote sensing modeling techniques are usedin the field for extracting various surface water 
quality parameters (Isık & Akkan, 2024a; Kc et al., 2019; Loaiza et al., 2023; Palabıyık & Akkan, 
2024a; Pu et al., 2019). In-situ observations are useful for the calibration and validation of remotely 
sensed estimations of water quality parameters (Gholizadeh et al., 2016b). The most commonly 
applied modeling approaches include multiple linear regression (MLR) and artificial neural 
network (ANN) modeling (Abyaneh, 2014; Al-Mukhtar et al., 2020; Bonansea et al., 2019; Isık & 
Akkan, 2024b; Kwong et al., 2022; Liu et al., 2024b; Palabıyık & Akkan, 2024a; Pu et al., 2019).  

However, the performance of these models in Tanzania’s inland waterbodies has not been 
tested. Thus, this topic serves as motivation for this study. Inland waterbodies are important to 
Tanzania's ecosystems and economy, providing necessary resources such as water, food, and 
energy. However, there is a significant gap in applying and validating satellite-based water quality 
models for these unique environments. The existing models, often developed in different regions, 
may not accurately reflect the local conditions, including varying turbidity levels and seasonal 
changes to water chemistry and ecological dynamics. This study addresses this gap by adapting 
and evaluating these models specifically for Tanzanian inland waterbodies. By doing so, it aims 
to improve local surface water quality assessment and management and offer valuable insights into 
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the use of satellite-based monitoring in diverse and understudied regions. The objective of this 
study, therefore, is to compare the performance of MLR and ANN in modeling water quality 
parameters, particularly Turbidity and Total Dissolved Solids (TDS).  

1.1. Study Area 

Lake Victoria is one of Africa’s freshwater Great Lake extending into Tanzania (49%), Kenya 
(6%), and Uganda (45%), and covering an area of 68,800 km2 (Nakkazi et al., 2024). This study 
is focused on the Tanzanian water spanning the coastlines of the Kagera, Mwanza, and Mara 
regions, as indicated in Figure 1. Lake Victoria is the largest lake in Tanzania. It is used for fishing, 
transportation and for supplying water to the area. The lake has several inlets, with the main inlet 
being the Kagera river that feeds into the lake on  its western  margin. The Nile is the only outlet 
from the lake; it drains into the Mediterranean Sea on the northern coast. The lake lies between 
longitudes 31°E and 34°E and between latitudes 1°S and 2°S, with the elevation ranging from 920 
to 2552 m above mean sea level (Figure 1), and the basin is under the jurisdiction of the Lake 
Victoria Basin Water Board (LVBWB).  
 

 

Figure 1: Lake Victoria (Tanzanian water) showing the sampling stations 
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2. Dataset and Methods 

2.1. Data 

There are two types of datasets that were used in this study, namely, the remote sensing dataset 
and the field campaigns dataset. The remote sensing dataset used Landsat 8 OLI images obtained 
from the United States Geological Survey (USGS) website (https://glovis.usgs.gov/app). The field 
campaign dataset included the in-situ data of Turbidity and Total Dissolved Solids collected from 
water quality monitoring stations in Lake Victoria’s Tanzanian water. About 28 sampling locations 
were used. All the data used and the supporting dataset are summarized in Table 1. Table 2 presents 
descriptive statistics of the used water quality data computed for all sampling points (Figure 1), 
while Figure 2 depicts their distribution before and after normalization using log transformation in 
the Q-Q plots (Ewuzie et al., 2021; Kepford & Warren Hicks, 1993; Mishra et al., 2019; G. Yang 
& Moyer, 2020). The observed water quality data used in this study meet the 
requirements/standards   of the Water Quality Standard of 2016 of the Tanzanian Bureau of 
Statistics (TBS) , the Energy and Water Utilities Regulatory Authority (EWURA), (URT, 2007), 
and the World Health Organization (WHO)  (EWURA, 2020; URT, 2007; WHO, 2011). 
According to the WHO Guidelines for drinking water quality, the turbidity level for drinking water 
should not exceed 1 Nephelometric Turbidity unit (1NTU), and should always be below 1NTU 
(WHO, 2011). On the other hand, water with a total dissolved solids (TDS) level of less than about 
600 mg/l is generally considered to be of a good quality. (Drinking water becomes significantly 
and increasingly unpalatable at TDS levels greater than about 1000 mg/l.)  
 

Table 1: Datasets and data sources used in the study 
Data Location/ path & row Acquisition date Source 
Landsat 8 OLI image 170/61 

170/62 
171/61 
171/62 

25/06/2020 
25/06/2020 
31/05/2020 
31/05/2020 

USGS 
(https://glovis.usgs.gov/app)  

TDS and Turbidity Lake Victoria June, 2020 MWAUWASA 
 

  

https://protect.checkpoint.com/v2/___https:/glovis.usgs.gov/app___.YzJlOnVuaXNhbW9iaWxlOmM6bzpjN2FhOWNmMzkxOTA3Mjk4ZDVkYWU3NWIwZWJlM2RhMjo2OjU0M2Q6ODIzYmEzMzFhMzkyNjc3NGNiNTI2MjM0MjhkMDc5YzM2ODE4ODFhZDFjZmNhNGExYzEzYTAxZjU2YzM3MTU5NzpwOlQ6Tg
https://protect.checkpoint.com/v2/___https:/glovis.usgs.gov/app___.YzJlOnVuaXNhbW9iaWxlOmM6bzpjN2FhOWNmMzkxOTA3Mjk4ZDVkYWU3NWIwZWJlM2RhMjo2OjU0M2Q6ODIzYmEzMzFhMzkyNjc3NGNiNTI2MjM0MjhkMDc5YzM2ODE4ODFhZDFjZmNhNGExYzEzYTAxZjU2YzM3MTU5NzpwOlQ6Tg
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Table 2: Observed water quality dataset descriptive statistics (SE =Standard Error, CI = 
Confidence Interval, TBS -Tanzania Bureau of Standards, TZS =Tanzania, EAS = East Africa, 

ICS = the document which provides the specifications for water quality sampling) 

Descriptive Statistics Turbidity (NTU) TDS (mg/l) 
Minimum 1.00 43.49 
Maximum 10.67 86.36 
Range 9.67 42.87 
Sum 84.02 1388.22 
Median 2.17 51.47 
Mean 3.36 55.53 
Standard Error 0.58 2.23 
Confidence Interval 1.20 4.59 
Variance 8.43 123.86 
Standard Deviation 2.90 11.13 
Coefficient of Variation 0.86 0.20 
TBS 2016 STD, TZS 789:2016-EAS 12:2014 ICS 
13.060.20  25 1500 

 

 

Figure 2: The distribution of the observed (a-b) and log-transformed samples (c-d) 
 

2.2. Methods 

2.2.1. Pre-processing of images 

The Landsat 8 satellite image used includes four scenes covering Lake Victoria. These images 
were provided in the form of at-surface radiance levels stored in Digital Number (DN) values. 
Firstly, atmospheric corrections were carried out to convert the DN values to surface reflectance 
values using the Semi-automatic Classification Algorithm in Quantum Geographical Information 

(a) 

(b) 

(c) 

(d) 
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Systems (QGIS) software. This was carried out individually at all four Landsat 8 scenes by using 
the Dark Object Subtraction technique, whereby the parameters provided at the metadata file of 
each image were used (Kapalanga, Hoko, Gumindoga, et al., 2021). The atmospheric corrected 
images were then mosaicked to form a single scene, as indicated in Figure 3. Lake Victoria was 
then extracted from the Landsat 8 scene by using the boundary of the lake to obtain the surface 
reflectance of the water area, using only s. 
 

 

Figure 3: Landsat 8 OLI scenes covering Lake Victoria, as indicated by their paths and rows 

 

Even though the Landsat images are valuable in water quality parameter modeling, they have 
some limitations in terms of the  following categories: 

(i) Spatial resolution – Landsat 8 scenes have a spatial resolution of 30 metres, which might 
be too coarse for smaller or narrower waterbodies, small-scale pollution events, and 
fine-scaled water quality features (Frasson et al., 2024). The 30 m spatial resolution may 
fail to capture localized variations in water quality, particularly in narrow rivers and 
small lakes (Huangfu et al., 2020).  

(ii) Temporal resolution – Landsat has a revisit period of 16 days, which is a relatively long 
interval and could limit the frequency of observations, especially in sub-Saharan Africa, 
which is frequently affected by cloud cover. The retrieval of Landsat data may not be 
frequent enough to monitor rapid changes in water quality.  
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(iii)Atmospheric interference – Atmospheric conditions such as clouds, haze, and aerosols 
can affect the quality of Landsat data and lead to challenges in retrieving accurate water 
quality parameters.  

(iv) Depth Penetration: Landsat imagery is limited to surface water observations because the 
sensor does not penetrate below the surface. Parameters related to subsurface water 
quality or bottom properties cannot be assessed directly.  

(v) Limited Parameters – Landsat data effectively estimate optically active parameters such 
as chlorophyll-a, turbidity, and suspended solids. However, in the case of non-optically 
active parameters, such as nutrients, Landsat satellite images are less effective. 
Generally, it is very difficult to estimate the non-optically active water quality 
parameters using remote sensing (Arias-Rodriguez et al., 2023). 

2.2.2. The models used 

Multiple linear regression (MLR) is a statistical model used to evaluate the linear relationship 
between one dependent variable and two or more independent variables (Al-Mukhtar and Al-
Yaseen, 2019a). MLR is widely used around the world for estimating water quality parameters 
(Abyaneh, 2014; Palabıyık & Akkan, 2024b). The general form of the multiple linear regression 
model is expressed in Equation 1. 

 y =  β0 + β1x1 +··· +βn ∗ xn + ε   (1) 

Where y is the dependent variable in the model, β0, β1, β2, ··· βn are regression coefficients, 
and x1, x2, ··· xn are independent variables. ε is the error which follows the normal distribution 
with E(ε) = 0, and constant variance Var(ε) = σ2. 

To perform MLR modeling, the data should be normally distributed and there should not be a 
multicollinearity problem among the independent variables. As such, the collected in-situ data 
were statistically analysed to check whether the data were normally distributed. The results 
indicated that the observed data showed a skewed distribution (Figure 2a-b), such that a log 
transformation was applied to reduce the skewness and normalize them prior to the analysis 
(Ewuzie et al., 2021; Kepford & Warren Hicks, 1993; G. Yang & Moyer, 2020).  

A standard practice in remote sensing and environmental modeling is to divide the available 
data into two subsets: one for calibration (or training) and one for validation (or testing). The 
calibration subset is used to estimate the model parameters, while the validation subset provides 
an independent measure of the level of accuracy and robustness of the model. The term 
‘calibration’ in this context refers to the process of adjusting the model parameters to best fit the 
observed data, thereby ensuring that the model accurately represents the relationship between the 
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satellite observations and the in-situ measurements. Thus, a routine procedure for calibrating the 
model and a representative sample for validating the data were selected. Random splits of 60-80% 
calibration data and of 20-40% validation data were used (Ali et al., 2024; Gholizadeh et al., 
2016b; Kc et al., 2019; Loaiza et al., 2023; Mohammed et al., 2022; Sagan et al., 2020). In this 
study, about 60% of the in-situ Turbidity and TDS data were then used to calibrate the models, 
with the model then being fitted in the datasets (Mohammed et al., 2022). The decision to use 60% 
of the data for calibration was based on the balance between having enough data to adequately 
train the model and retaining sufficient data for an independent assessment of the predictive 
performance of the model. Using 60% of the data for calibration helped ensure that the model 
could capture the wide range of conditions prevailing  in the study area, such as varying levels of 
turbidity and TDS. This is crucial for developing a robust model capable of accurately predicting 
these parameters under different environmental conditions. The remaining 40% of the data, which 
were not used in the calibration process, served as an independent test dataset. This separation 
helped to avoid overfitting, where the model might have performed well on the calibration data 
but poorly on new, unseen data.  

In model development, the backward elimination method was used. The procedure was initiated 
by fitting all the possible predictors in the model. The predictors with the highest p-value were 
then removed and the model was fitted again. This procedure was done repeatedly until all the 
possible models were generated. Three models for estimating turbidity were generated and three 
for estimating TDS. 

In adopting the best MLR model, the factors that were considered in choosing the model 
included the coefficient of determination (R2), the root mean square error of the model, the 
variation inflation factor (VIF), and the Akaike Information Criterion (AIC). A good MLR model 
is one that is devoid of  a multicollinearity problem between the independent variables (i.e., VIF 
values 1-5), has the lowest value for AIC, the lowest for RMSE, and a high R2 (coefficient of 
determination) (Chan et al., 2022; James et al., 2021) 

Artificial Neural Network (ANN) modeling is a system that simulates the working capabilities 
of the human brain; it consists of different layers that are connected by weighted links called 
neurons. This system uses learning phases to model both the linear and non-linear relations of the 
input and output layers (Isık & Akkan, 2024b; Palabıyık & Akkan, 2024b, 2024a). The architecture 
of ANN contains a set of approximated mathematical functions which can assume the form (in 
two ways) of   a feed-forward network or a feedback network (W.-B. Chen & Liu, 2015; Y. Chen 
et al., 2020). Essentially, an ANN comprises an input layer, a hidden layer, an output layer, 
weights, bias, and activation functions (Ritchie et al., 2003). The output of an ANN is expressed 
in Equation 2. Figure 4 depicts the architecture of the ANN model used in this study. 
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 output = sum (weights ∗ inputs) + bias       (2) 

The learning algorithms for the ANN model include gradient descent, the Newton method, 
conjugate gradient, the Quasi-Newton method, and the Levenberg-Marquardt algorithm (Ciaburro 
& Venkateswaran, 2017). In this study, a Levenberg-Marquardt feed-forward multilayered ANN 
was adopted for modelling both Turbidity and TDS, where two input layers were used with three 
hidden layers having 7, 5 neurons and one (1) neuron, respectively. The initial weights of the input 
layer were uniform and adaptively distributed with a constant momentum of 0.001. The activation 
function that was used was Tanh, while the learning epoch was set to 100, and the learning rate 
annealing of the model was 1×10100 (López et al., 2022; Shanmuganathan, 2016). The choice of 
100 epochs was based on balancing sufficient training and avoiding overfitting, as the performance 
of the model stabilized around this point. A learning rate annealing factor of 1×10−1001 was selected 
to ensure stable convergence, thereby preventing the model from overshooting the minimum loss 
function. The momentum was set to 0.001 to accelerate training and smooth out updates, thus 
preventing oscillations. Other parameters, such as the initial learning rate and batch size, were 
chosen through experimentation to optimize convergence and computational efficiency. 

The training data for the ANN model consisted of in-situ measurements of Turbidity and Total 
Dissolved Solids (TDS) along with corresponding satellite-derived variables. The preparation and 
processing of these data involved several key steps: 

(i) Data collection and preprocessing: In-situ data: In-situ measurements of turbidity and 
TDS were collected from various locations on the Lake Victoria waters. These 
measurements were accompanied by point geolocation data. Satellite Data: Satellite 
imagery from Landsat was acquired for the same time periods and locations as those for 
the in-situ measurements.  

(ii) Data synchronization and alignment: The in-situ and satellite data were synchronized to 
ensure that the satellite observations corresponded to the same timeframes as those for 
the in-situ measurements.  

(iii)Feature extraction and selection: The satellite data were processed to extract relevant 
features, such as surface reflectance values, from specific spectral bands known to be 
sensitive to water quality parameters. Additional derived indices, such as the 
Normalized Difference Water Index (NDWI), were also included as potential predictors. 
Features were selected based on their relevance to turbidity and TDS, and guided by the 
existing literature and exploratory data analyses. 

(iv) Data normalization: All input features and target variables were normalized to a 
common scale to improve the performance and convergence of the ANN. Normalization 



South African Journal of Geomatics, Vol. 14. No. 1, February 2025 

177 
 

was performed using min.-max. scaling, thereby transforming the data to a range of 0 
to 1. 

(v) Data input format: The prepared data were organized into a tabular format, with rows 
representing individual observations (sampling points) and columns representing 
features (satellite-derived variables) and target variables (turbidity and TDS levels). 
These structured data were then fed into the ANN. 

(vi) Data feeding into the ANN: The tabular data were divided into training and test sets, 
with, as previously mentioned, 70% allocated for training and 30% for testing. The 
training data were used to optimize the weights and biases of the ANN through 
backpropagation and gradient descent, thereby minimizing the error between the 
predicted and actual values. The input layer of the ANN received the satellite-derived 
features, while the output layer produced predictions for turbidity and TDS. The model 
architecture was designed to accommodate the number of input features and output 
predictions, with appropriate hidden layers to capture the complex relationships in the 
data. 

 

Figure 4: Illustration of the utilized Artificial Neural Network Model (I = input layer, H = 
hidden layer and WQV = predicted water quality variable) 

  

In order to prevent overfitting in our ANN model, we employed several techniques, and these 
include: 
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(i) Train-test Split: We divided our dataset into training and test sets with a 70:30 ratio, 
thereby ensuring that the model was evaluated on a separate dataset that it had not seen 
during training. 

(ii) Cross-validation: We implemented cross-validation, specifically k-fold cross-
validation, where the training data were divided into k subsets. The model was trained 
k times, each time using a different subset as the validation set and the remaining subsets 
as the training set. (This method provides a more robust estimate of the model's 
performance and helps in detecting overfitting.) 

(iii)Dropout: Dropout randomly "drops" a fraction of the neurons during training. This 
prevents the network from becoming overly dependent on specific neurons and forces 
the model to learn more robust features. 

(iv) Early Stopping: Early stopping involves monitoring the model's performance on the 
validation set during training. If the performance does not improve in a predefined 
number of epochs, the training is halted to prevent overfitting. This approach helps in 
finding the optimal number of training epochs. 

(v) Data Augmentation: Data augmentation techniques were used to artificially increase the 
size of the training dataset by applying random transformations (e.g., rotations, scaling) 
to the training data. This approach helps the model to generalize better by granting it 
consistency and stability in the face of such transformations. 

(vi) Model Complexity: We carefully selected the architecture of the ANN model, including 
the number of layers and neurons per layer, to balance its complexity and performance. 
A more complex model can capture more patterns but is also more prone to overfitting. 
Thus, we chose a model architecture that provided a good trade-off. 

(vii) Performance Metrics: We monitored various performance metrics, such as mean 
squared error (MSE) and R-squared, on both the training and test sets. A significant 
difference between the performance on these sets could indicate overfitting. By tracking 
these metrics, we ensured that our model was not just memorizing the training data but 
also generalizing well. 

2.2.3. Comparison of models 

To assess the performance of the MLR and ANN models in predicting water quality parameters, 
the coefficient of determination, R2, (Tsakiri et al., 2018), was determined in terms of Equation 3. 
R2 measures the percentage of the variance in the dependent water quality parameter that is 
explained in terms of the predictor/independent water quality parameters. The coefficient of 
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determination, R2, ranges from 0 to 1 and is interpreted as a percentage between 0 and 100%; − 0 
for poor performance and 100% for strong performance or a sharper level of accuracy in the model. 
For ideal water quality parameter modeling, the coefficient of determination, R2, should approach 
100% as closely as possible. However, a model performance of R2= 60% and above is satisfactory. 

 

 
R2 = 1 −

� (𝑶𝑶𝒊𝒊 −  𝑷𝑷�𝒊𝒊 )𝟐𝟐
𝒏𝒏
𝒊𝒊=𝟏𝟏

� (𝑶𝑶𝒊𝒊 −  𝑶𝑶�  )𝟐𝟐𝒏𝒏
𝒊𝒊=𝟏𝟏

 
(3) 

Where O is the measured/observed water quality parameter and P is the predicted/estimated 
water quality parameter value. 𝐎𝐎� is the mean observed water quality parameter. Other statistical 
parameters that were used include root mean square error (RMSE) (Equation 4), mean absolute 
error (Equation 5) and standard error (Equation 6). (Amodel with good performance has a high 
coefficient of determination, a low root mean square error, a low mean absolute error, and a low 
standard error (Montgomery et al., 2012)). 

 

 
RMSE = �∑ (yı� −  yi)2n

i=1
n

 
(4) 

 MAE =
∑ |yı� −  yi|n
i=1

n
 (5) 

 SE =
SD
√n

 (6) 

2.2.4. Modeling Turbidity and TDS 

The validated models for estimating Turbidity and TDS by using MLR and the ANN model 
were then used to estimate turbidity and TDS in Lake Victoria to determine their distribution in 
the study area. For Turbidity, a band combination of optical bands (R*G*B) and a band ratio of 
green and near infrared (G/NIR) were used. On the other hand, for TDS, a band combination of 
blue, red, and near infrared bands (B*R*NIR), together with Normalized Difference Water indices 
(NDWI), was used (Akbar et al., 2010). The 70/30 train/test data split for the ANN model was 
chosen to provide a robust evaluation framework, ensuring that its performance could be assessed 
on independent data and not just on the data used for training (Sagan et al., 2020). 

Tanzania's long rainy season, ending in May/June 2020, was marked by increased runoff and 
sediment influx, which altered the quality of the water, thereby affecting the turbidity levels and 
TDS of its waterbodies. The elevated turbidity during this period could have interfered with the 
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accuracy of the satellite-based models for water quality mapping. Our study addressed these 
challenges by timing the data collection and model application phases to account for the impact of 
the high turbidity levels on the remote sensing signals. Ground truth data validated the accuracy 
of the models. This highlights the necessity of season-specific calibration and validation to ensure 
reliable remote sensing-based water quality monitoring in regions such as Tanzania which present 
with significant seasonal variations. 

3. Results  

3.1. Developed Models 

3.1.1. Multiple Linear Regression 

The in-situ data used were normalized by applying  the log transformation function, as depicted 
in Figure 2. Shown by the VIF values, 1 – 5, in this figure, the independent variables had no multi-
collinearity problem (). The model that was adopted for modeling Turbidity (Equation 6) and TDS 
(Equation 7) had VIF values of 1 - 5, with the lowest AIC value, the lowest RMSE value and a 
high R2 value. 

 Turbidity = 26485.26 ∗ RGB + 8.053
G

NIR
− 1.753 (6) 

 TDS = 69841.552 ∗ BRNIR + 5.127NDWI + 52.609 

 

(7) 

The validation of these two models, as indicated in Figure 5, shows that the models have 
allowable accuracy and can be used for modeling Turbidity and TDS. 

 

 

Figure 5: MLR model validation results 
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3.1.2. Artificial Neural Network Model 

The model for estimating Turbidity had input layers, a band combination of optical bands 
(R*G*B), and a band ratio of green and near infrared (G/NIR). The model for estimating TDS had 
input layers, a band combination of blue, red, and near infrared (B*R*NIR), together with a 
normalized difference water index (NDWI). The two ANN model parameters are summarized in 
Table 3. 
 

Table 3: ANN model parameters for retrieving Turbidity and TDS respectively 
Layer Type Units Mean 

Weight 
Weight RMS 

Turbidity 
Input Input 2 - - 
Hidden 1 Tanh 7 0.441438 1.327155 
Hidden 2 Tanh 3 -0.110532 0.817854 
Hidden 3 Tanh 1 -0.445876 1.060671 

Output Linear 1 -0.630847 0.000000 

TDS 

Input Input 2 - - 

Hidden 1 Tanh 7 -0.032262 0.451694 

Hidden 2 Tanh 5 0.013097 0.394285 

Hidden 3 Tanh 1 0.276924 0.449770 

Output Linear 1 0.121476 0.000000 

As indicated in Figure 6, the validation of these two models shows that these models have 
allowable accuracy and can be used for modeling Turbidity and TDS. 

 

 

Figure 6: ANN model validation results 
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3.2. Comparison of ANN and MLR 

From the model results, ANN performed better than MLR in estimating Turbidity and TDS. As 
summarized in Table 4 and Figure 7, ANN had the highest value for R2 and the lowest standard 
error compared to MLR. 

Table 4: MLR and ANN Models: assessment comparison results for Turbidity and TDS 
 Turbidity TDS 

 R2 SE RMSE MAE R2 SE RMSE MAE 

MLR 66.66% 0.107 14.45 7.72 78.42% 0.226 11.22 8.007 

ANN 88.73% 0.0009 10.10 7.67 83.36% 0.0025 5.22 4.45 
 

 

Figure 7: Goodness-of-fit between observed and remotely-sensed- water quality parameters 
 

3.3. Modeling Turbidity and TDS 

Modeling the turbidity of the waters  in the study area indicated values ranging from a minimum 
value of 1NTU to a maximum value of 2200NTU. These results indicate that most of the area 
around the lake, as presented in Figure 8, has clear water (0 < 15 NTU shows clear water),. 
Modeling the TDS indicated TDS values ranging from the lowest value of 48mg/l to the highest 
of 27,000mg/l. The mean was 50.9mg/l, with a standard deviation of 83.8. As presented in the 
TDS distribution map in Figure 9, the values of TDS on the Mwanza coast ranged from 48mg/l to 
200mg/l. 
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Figure 8: Turbidity distribution map 

 

Figure 9: TDS distribution map 
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4. Discussion of Results 

In this study, the Turbidity and TDS models were generated with the aid of MLR and ANNs 
(Al-Mukhtar & Al-Yaseen, 2019a).  The root means square error (RMSE), standard error (SE), 
mean absolute error (MAE), and coefficient of determination (R2) were used to pinpoint the 
accuracy of the ANN and MLR models. Figures 4 and 5 depict the validation results for the MLR 
and ANN modelss for both Turbidity and TDS. The results clearly show that the retrieval of 
Turbidity and TDS from Landsat 8 OLI using MLR and ANNs is reliable. Palabiyik and Akkan 
(2024) detected that MLR model can be used to predict the water quality index with very high 
accuracy (Palabıyık & Akkan, 2024b). However in this study, Table 5 and Figure 7 indicate that 
ANN is more effective than MLR in retrieving Turbidity and TDS data. ANN outperforms MLR 
in terms of the four criteria usedto assess model performance, namely R2, RMSE, SE, and MAE 
(Abyaneh, 2014; Hafeez et al., 2019). This is due to the fact that ANN takes into consideration 
both linear and non-linear relationships between the independent and dependent variables. 
Additionally, the ANN models can deal with different modeling problems in rivers, lakes, and 
reservoirs (Y. Chen et al., 2020).  Chen and Liu (2015) compared two ANN and MLR models in 
Taiwan water reservoirs and found that ANN performed better than MLR (W.-B. Chen & Liu, 
2015). Tsakiri et al. (2018) compared these two models in predicting floods in Mohawk River, 
New York: they found that ANN outperformed MLR when they used a hybrid model, which 
improved the performance of the model. The hybrid model involved time series decomposition 
and artificial neural networks (Tsakiri et al., 2018). 

The developed models can be used to monitor the quality of water in the lake by taking 
advantage of temporal data provided by satellite imagery. From these results, the authority can be 
assured that the water from the lake is safe and can be used for various purposes, such as for 
drinking water, irrigation, and recreational activities, without causing any health problems.  

4.1. 4.1 Limitation of the developed models 

The current study used water quality data acquired by the Mwanza Urban Water Supply and 
Sanitation Authority (MWAUWASA) from the 26 selected sampling stations (Figure 1). 
MWAUWASA take routine measurements of the water quality variables for the purpose of water 
quality monitoring. Because the observed water quality  data used in this study were not normally 
distributed a log transformation was applied to normalize the data. This implies that the developed 
models might have limitations in terms of their accuracy. Further studies may be conducted using 
normalized observed data for better evaluation of the machine learning and regression models in 
estimating water quality in other parts of Lake Victoria and in other waterbodies, especially in 
dams and lakes across East Africa and Africa at large. 
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5. Conclusion and Recommendations 

The main objective of this research was to compare the capability of MLR and ANN in 
retrieving Turbidity and Total Dissolved Solids data by using Landsat-8 OLI data. The findings 
indicate that Landsat 8 OLI satellite images are suitable for water quality modeling. Model 
evaluation results show that the ANN model outperformed MLR in retrieving Turbidity and TDS 
data. After mapping the distribution of turbidity and TDS levels  within the lake, it was s  observed 
that the quality of the water in Lake Vicroria is good and that it can be used for drinking purposes 
without causing any health problems as per the World Health Organization Guidelines on Water 
Quality (WHO, 2011). 

Locally, the findings of this study provide essential insights for water quality and will contribute 
to the sustainable monitoring, assessment, and management of surface water resources. Based on 
the findings and conclusion of this research, it is recommended that further study of  various 
waterbodies and an application of higher resolution satellite images be pursued. This lies in the 
fact that waterbodies have different characteristics based on the constituents of the waterbody 
which reflect differently. By testing these models in different waterbodies, it will be possible to 
find a universal model that can be applied in any waterbody to retrieve the associated water quality 
parameters. Considering the results attained for Turbidity and TDS in this study, we further 
recommend the application of the ANN model and Landsat 8 OLI satellite images for water quality 
parameter modeling. 
 

6. Acknowledgments 

The authors would like to thank the Ministry of Water and the Mwanza Urban Water Authority 
for providing the in-situ data and background information about the Lake Victoria water 
ecosystem. Landsat 8 OLI satellite images were downloaded from USGS. 

 

7. Data Availability Statement 

The remote sensing data that support the findings of this study are available from USGS website 
(https://earthexplorer.usgs.gov/. Upon reasonable request, the raw (in-situ) data that were used are 
available from the corresponding author. 

https://protect.checkpoint.com/v2/___https:/earthexplorer.usgs.gov/___.YzJlOnVuaXNhbW9iaWxlOmM6bzpjN2FhOWNmMzkxOTA3Mjk4ZDVkYWU3NWIwZWJlM2RhMjo2OmI4ODg6MzQwNDFmYzJmNzllZWM5ZjEwZGI1OGYwNDdkNGRiZTA1MTUwYzYwNmMyZjI0MjI4ZWZiMjMwZmJkY2MyOTI3ZTpwOlQ6Tg


South African Journal of Geomatics, Vol. 14. No. 1, February 2025 

186 
 

8. References 
Abyaneh, H. Z. (2014). Evaluation of multivariate linear regression and artificial neural networks in 

prediction of water quality parameters. Journal of Environmental Health Science and Engineering, 
12(1). https://doi.org/10.1186/2052-336X-12-40 

Akbar, T., Hassan, Q., & Achari, G. (2010). A remote sensing-based framework for predicting water 
quality of different source waters. The International Archives of Photogrammetry, Remote Sensing 
and Spatial Information Sciences, 34(2004), 1–4. 

Ali, A., Zhou, G., Pablo Antezana Lopez, F., Xu, C., Jing, G., & Tan, Y. (2024). Deep learning for 
water quality multivariate assessment in inland water across China. International Journal of 
Applied Earth Observation and Geoinformation, 133. https://doi.org/10.1016/j.jag.2024.104078 

Al-Mukhtar, M., & Al-Yaseen, F. (2019a). Modeling Water Quality Parameters using Data-driven 
Models: a Case Study of Abu-Ziriq Marsh in the south of Iraq. Hydrology, 6(1). 
https://doi.org/10.3390/hydrology6010024 

Al-Mukhtar, M., Al-Yaseen, F., & Sahib, J. (2020). Modelling water quantity parameters using 
Artificial Intelligence techniques” a Case Study of Abu-Ziriq Marsh in the south of Iraq. IOP 
Conference Series: Materials Science and Engineering, 737(1). https://doi.org/10.1088/1757-
899X/737/1/012156 

Arias-Rodriguez, L. F., Tüzün, U. F., Duan, Z., Huang, J., Tuo, Y., & Disse, M. (2023). Global Water 
Quality of Inland Waters with Harmonized Landsat-8 and Sentinel-2 using Cloud-computed 
Machine Learning. Remote Sensing, 15(5). https://doi.org/10.3390/rs15051390 

Barrett, D. C., & Frazier, A. E. (2016). Automated method for monitoring water quality using Landsat 
imagery. Water (Switzerland), 8(6). https://doi.org/10.3390/W8060257 

Batina, A., & Krtalić, A. (2024). Integrating Remote Sensing Methods for monitoring Lake Water 
Quality: a Comprehensive Review. In Hydrology,10(7) 11,(7). Multidisciplinary Digital 
Publishing Institute (MDPI). https://doi.org/10.3390/hydrology11070092 

Bhatti, A. M. (2008). Modelling and monitoring of suspended matter in surface waters using remotely 
sensed data. 165. 

Bonansea, M., Ledesma, M., Rodriguez, C., & Pinotti, L. (2019). Using new remote sensing satellites 
for assessing water quality in a reservoir. Hydrological Sciences Journal, 64(1), 34–44. 
https://doi.org/10.1080/02626667.2018.1552001 

Chan, J. Y. Le, Leow, S. M. H., Bea, K. T., Cheng, W. K., Phoong, S. W., Hong, Z. W., & Chen, Y. 
L. (2022). Mitigating the Multicollinearity Problem and its Machine Learning Approach: a 
Review. In Mathematics, 10(8) 10 (8). MDPI. https://doi.org/10.3390/math10081283 

Chen, W.-B., & Liu, W.-C. (2015). Water Quality Modeling in Reservoirs using Multivariate Linear 
Regression and Two Neural Network Models. Advances in Artificial Neural Systems, 2015, 1–12. 
https://doi.org/10.1155/2015/521721 

Chen, Y., Song, L., Liu, Y., Yang, L., & Li, D. (2020). A review of the artificial neural network 
models for water quality prediction. In Applied Sciences (Switzerland), 10(17) 1017). MDPI AG. 
https://doi.org/10.3390/app10175776 

Ciaburro, G., & Venkateswaran, B. (2017). Neural Networks with Remote Sensing Techniques:  Smart 
models using CNN, RNN, deep learning, and artificial intelligence principles. Packt Publishing. 



South African Journal of Geomatics, Vol. 14. No. 1, February 2025 

187 
 

Dai, X., Zhou, Y., Ma, W., & Zhou, L. (2017). Influence of spatial variation in land-use patterns and 
topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau 
of southwestern China. Ecological Engineering, 99, 417–428. 
https://doi.org/10.1016/j.ecoleng.2016.11.011 

Elhag, M., Gitas, I., Othman, A., Bahrawi, J., & Gikas, P. (2019). Assessment of Water Quality 
Parameters using Temporal Remote Sensing Spectral Reflectance. In 
https://doi.org/10.3390/w11030556 

EWURA. (2020). Water and Wastewater Quality Monitoring Guidelines for Water Supply and 
Sanitation Authorities. Second Edition. https://www.ewura.go.tz/wp-
content/uploads/2020/06/Water-and-Wastewater-Quality-Monitoring-Guidelines-2020.pdf 

Ewuzie, U., Aku, N. O., & Nwankpa, S. U. (2021). An appraisal of data collection, analysis, and 
reporting adopted for water quality assessment: A case of Nigeria water quality research. Heliyon, 
7(9). https://doi.org/10.1016/j.heliyon.2021.e07950 

Frasson, R. P. M., Ardila, D. R., Pease, J., Hestir, E., Bright, C., Carter, N., Dekker, A. G., Thompson, 
D. R., Green, R. O., & Held, A. (2024). The impact of spatial resolution on inland water quality 
monitoring from space. Environmental Research Communications, 6(10). 
https://doi.org/10.1088/2515-7620/ad7dd8 

Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016a). A comprehensive review on water quality 
parameters estimation using remote sensing techniques. In Sensors (Switzerland),16(8). 
https://doi.org/10.3390/s16081298 

Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016b). A comprehensive review on water quality 
parameters estimation using remote sensing techniques. In Sensors (Switzerland),16(8). MDPI 
AG. https://doi.org/10.3390/s16081298 

Giardino, C., Bresciani, M., Cazzaniga, I., Schenk, K., Rieger, P., Braga, F., Matta, E., & Brando, V. 
E. (2014). Evaluation of Multi-resolution Satellite Sensors for assessing Water Quality and Bottom 
Depth of Lake Garda. 1, 24116–24131. https://doi.org/10.3390/s141224116 

Hafeez, S., Wong, M. S., Ho, H. C., Nazeer, M., Nichol, J., Abbas, S., Tang, D., Lee, K. H., & Pun, 
L. (2019). Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators 
in Case-II waters: a Case Study of Hong Kong. Remote Sensing, 11(6). 
https://doi.org/10.3390/rs11060617 

Huangfu, K., Li, J., Zhang, X., Zhang, J., Cui, H., & Sun, Q. (2020). Remote estimation of water 
quality parameters of medium-and small-sized inland rivers using Sentinel-2 imagery. Water 
(Switzerland), 12(11), 1–18. https://doi.org/10.3390/w12113124 

Isık, H., & Akkan, T. (2024a). Water Quality Assessment with Artificial Neural Network Models: 
Performance Comparison between SMN, MLP and PS-ANN Methodologies. Arabian Journal for 
Science and Engineering. https://doi.org/10.1007/s13369-024-09238-5 

Isık, H., & Akkan, T. (2024b). Water Quality Assessment with Artificial Neural Network Models: 
Performance Comparison between SMN, MLP and PS-ANN Methodologies. Arabian Journal for 
Science and Engineering. https://doi.org/10.1007/s13369-024-09238-5 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning with 
Applications in R (2nd ed.). Springer New York, NY. https://doi.org/https://doi.org/10.1007/978-
1-0716-1418-1 



South African Journal of Geomatics, Vol. 14. No. 1, February 2025 

188 
 

Ji, L., Li, Y., Zhang, G., & Bi, Y. (2021). Anthropogenic disturbances have contributed to degradation 
of river water quality in arid areas. Water (Switzerland), 13(22). 
https://doi.org/10.3390/w13223305 

Jin, D. (2022). Application of remote sensing technology in water quality monitoring. In Highlights 
in Science, Engineering and Technology. MSESCS (Vol. 2022). 

Kapalanga, T. S., Hoko, Z., Gumindoga, W., & Chikwiramakomo, L. (2021). Remote-sensing-based 
algorithms for water quality monitoring in Olushandja Dam, north-central Namibia. 1878–1894. 
https://doi.org/10.2166/ws.2020.290 

Kc, A., Chalise, A., Parajuli, D., Dhital, N., Shrestha, S., & Kandel, T. (2019). Surface Water Quality 
Assessment using Remote Sensing, GIS and Artificial Intelligence. In Technical Journal, 1, (1). 

Kepford, K., & Hicks, W. (1993). Statistical Methods for the Analysis of Lake Water Quality Trends. 
Technical Supplement to The Lake and Reservoir Restoration Guidance Manual. 
https://nepis.epa.gov/ 

Kwong, I. H. Y., Wong, F. K. K., & Fung, T. (2022). Automatic Mapping and Monitoring of Marine 
Water Quality Parameters in Hong Kong using Sentinel-2 Image Time Series and Google Earth 
Engine Cloud Computing. Frontiers in Marine Science, 9. 
https://doi.org/10.3389/fmars.2022.871470 

Laili, N., Arafah, F., Jaelani, L. M., Subehi, L., Pamungkas, A., Koenhardono, E. S., & Sulisetyono, 
A. (2015). Development of Water Quality Parameters Retrieval Algorithms for 
estimating Total Suspended Solids and Chlorophyll - a Concentration using Landsat-8 Imagery: 
Poteran Island Water. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 2(2W2), 55–62. https://doi.org/10.5194/isprsannals-II-2-W2-55-2015 

Liu, Q., Xu, X., & Chen, M. (2024a). Changing pattern and driving factors of ecosystem service value 
of the lakes in Northern China since 1990. Ecological Indicators, 158. 
https://doi.org/10.1016/j.ecolind.2023.111370 

Liu, Q., Xu, X., & Chen, M. (2024b). Changing pattern and driving factors of ecosystem service value 
of the lakes in Northern China since 1990. Ecological Indicators, 158. 
https://doi.org/10.1016/j.ecolind.2023.111370 

Loaiza, J. G., Rangel-Peraza, J. G., Monjardín-Armenta, S. A., Bustos-Terrones, Y. A., Bandala, E. 
R., Sanhouse-García, A. J., & Rentería-Guevara, S. A. (2023). Surface Water Quality Assessment 
through Remote Sensing based on the Box–Cox Transformation and Linear Regression. Water 
(Switzerland), 15(14). https://doi.org/10.3390/w15142606 

López, O. A. M., López, A. M., & Jose, C. (2022). Fundamentals of Artificial Neural Networks and 
Deep Learning. In Multivariate Statistical Machine Learning Methods for Genomic 
Prediction.379–425. Springer International Publishing. https://doi.org/10.1007/978-3-030-89010-
0_10 

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive statistics 
and normality tests for statistical data. Annals of Cardiac Anaesthesia, 22(1), 67–72. 
https://doi.org/10.4103/aca.ACA_157_18 

Mohammed, H., Michel Tornyeviadzi, H., & Seidu, R. (2022). Emulating process-based water quality 
modelling in water source reservoirs using machine learning. Journal of Hydrology, 609. 
https://doi.org/10.1016/j.jhydrol.2022.127675 



South African Journal of Geomatics, Vol. 14. No. 1, February 2025 

189 
 

Montgomery, D. C., Peck, A. E., & Vining, G. G. (2012). Introduction to Linear Regression Analysis 
(6th ed.). John Wiley & Sons, Inc. 

Muhoyi, H., Gumindoga, W., Mhizha, A., Misi, S. N., & Nondo, N. (2022). Water quality monitoring 
using remote sensing: Lower Manyame Sub-catchment, Zimbabwe. Water Practice and 
Technology, 17(6), 1347–1357. https://doi.org/10.2166/wpt.2022.061 

Nakkazi, M. T., Nkwasa, A., Martínez, A. B., & van Griensven, A. (2024). Linking land use and 
precipitation changes to water quality changes in Lake Victoria using earth observation data. 
Environmental Monitoring and Assessment, 196(11), 1104. https://doi.org/10.1007/s10661-024-
13261-2 

Ochaeta, G., Skinner-alvarado, J., Violeta, M., Moran, R., & Hanan, N. P. (2020). Hyperspectral 
Satellite Remote Sensing of Water Quality in Lake. 8 (February). 
https://doi.org/10.3389/fenvs.2020.00007 

Palabıyık, S., & Akkan, T. (2024a). Evaluation of water quality based on artificial intelligence: 
performance of multilayer perceptron neural networks and multiple linear regression versus water 
quality indexes. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-
024-05075-6 

Palabıyık, S., & Akkan, T. (2024b). Evaluation of water quality based on artificial intelligence: 
performance of multilayer perceptron neural networks and multiple linear regression versus water 
quality indexes. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-
024-05075-6 

Pourghasemi, H. R., & Gokceoglu, C. (2019). Spatial Modeling in GIS and R for Earth and 
Environmental Sciences. Elsevier. 

Pu, F., Ding, C., Chao, Z., Yu, Y., & Xu, X. (2019). Water-quality classification of inland lakes using 
Landsat8 images by convolutional neural networks. Remote Sensing, 11(14). 
https://doi.org/10.3390/rs11141674 

Ritchie, J. C., Zimba, P. V., & Everitt, J. H. (2003). Remote sensing techniques to assess water quality. 
In Photogrammetric Engineering and Remote Sensing,69(6)69 (6), 695–704. American Society 
for Photogrammetry and Remote Sensing. https://doi.org/10.14358/PERS.69.6.695 

Sagan, V., Peterson, K. T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B. A., Maalouf, S., & 
Adams, C. (2020). Monitoring inland water quality using remote sensing: potential and limitations 
of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth Science 
Reviews, 205, 103187. https://doi.org/https://doi.org/10.1016/j.earscirev.2020.103187 

Shanmuganathan, S. (2016). Artificial Neural Network Modelling: an Introduction. In S. 
Shanmuganathan & S. Samarasinghe (Eds.), Artificial Neural Network Modelling (1st ed), 1–14. 
Springer Cham. https://doi.org/https://doi.org/10.1007/978-3-319-28495-8 

Sidabutar, N. V., Namara, I., Hartono, D. M., & Soesilo, T. E. B. (2017). The effect of anthropogenic 
activities on the decrease of water quality. IOP Conference Series: Earth and Environmental 
Science, 67(1). https://doi.org/10.1088/1755-1315/67/1/012034 

Srivastava, P. K., Malhi, R. K. M., Pandey, P. C., Anand, A., Singh, P., Pandey, M. K., & Gupta, A. 
(2020). Revisiting hyperspectral remote sensing: origin, processing, applications and way forward. 
In P. C. Pandey, P. K. Srivastava, H. Balzter, B. Bhattacharya, & G. P. Petropoulos (Eds.), 
Hyperspectral Remote Sensing, 3–21. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-
102894-0.00001-2 



South African Journal of Geomatics, Vol. 14. No. 1, February 2025 

190 
 

Thai-Hoang, L., Thong, T., Loc, H. T., Van, P. T. T., Thuy, P. T. P., & Thuoc, T. L. (2022). Influences 
of anthropogenic activities on water quality in the Saigon River, Ho Chi Minh City. Journal of 
Water and Health, 20(3), 491–504. https://doi.org/10.2166/WH.2022.233 

Tsakiri, K., Marsellos, A., & Kapetanakis, S. (2018). Artificial neural network and multiple linear 
regression for flood prediction in Mohawk River, New York. Water (Switzerland), 10(9). 
https://doi.org/10.3390/w10091158 

Tu, M., Smith, P., & Filippi, A. M. (2018). Hybrid forward-selection method-based water-quality 
estimation via combining Landsat TM , ETM + , and OLI / TIRS images and ancillary 
environmental data. 1–23. 

URT. (2007). The Environmental Management (Water Quality Standards) Regulations, 2007. 
https://www.nemc.or.tz/uploads/publications/sw-
1660810388The%20Environmental%20Management%20(water%20Quality%20Standards)Regu
lations,%202007%20.pdf 

URT. (2018). National Guideline on Drinking Water Quality Monitoring and Reporting. 
https://www.maji.go.tz/uploads/publications/sw1541500878-
National%20Guideline%20on%20Drinking%20Water%20Quality%20Monitoring%20and%20R
eporting.pdf 

World Health Organization. (2011). Guidelines for drinking-water quality: Fourth edition 
incorporating the first and second addenda. 
https://iris.who.int/bitstream/handle/10665/44584/9789241548151_eng.pdf 

Yang, G., & Moyer, D. L. (2020). Estimation of nonlinear water-quality trends in high-frequency 
monitoring data. Science of the Total Environment, 715. 
https://doi.org/10.1016/j.scitotenv.2020.136686 

Yang, H., Kong, J., Hu, H., Du, Y., Gao, M., & Chen, F. (2022). A Review of Remote Sensing for 
Water Quality Retrieval: Progress and Challenges. Remote Sensing, 14(8), 1770. 
https://doi.org/10.3390/rs14081770 

Zhu, X., Wang, L., Zhang, X., He, M., Wang, D., Ren, Y., Yao, H., Ngegla, J. V., Pan, H.  . (2022). 
Effects of different types of anthropogenic disturbances and natural wetlands on water quality and 
microbial communities in a typical black-odor river. Ecological Indicators, 136. 
https://doi.org/10.1016/j.ecolind.2022.108613 

  


