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Abstract 

 Urbanisation has brought about significant changes in the land use/land cover (LULC) and 
land surface temperatures (LSTs) of cities. The impact of the COVID-19 lockdown on LSTs in 
Polokwane and Johannesburg, South Africa, was analysed over the years 2020 to 2022, using 
Landsat 8 and 9 images. The relevant LSTs were retrieved by applying the 
temperature/emissivity separation algorithm. The normalized difference built-up index (NDBI) 
and the normalized difference vegetation index (NDVI) threshold techniques were used to 
evaluate the LSTs for the two cities in terms of five LULC classes: bare land, built-up area, 
road, vegetation, and waterbody. The LST patterns were estimated per LULC class and the 
Pearson’s correlation analysis was performed to examine the relationship between NDVI, 
NDBI, and LST. The findings revealed that throughout the lockdown period (i.e., from January 
2020 to March 2021, there was a decrease in LST values across all LULC categories − by 1°C 
for vegetation and 2°C for the bare land, built-up, road and waterbody classes. The LST values 
showed an increase from 2021 (during lockdown) to 2022 (post-lockdown), thereby 
demonstrating in particular their association with the bareland class, where the most notable 
increases of 1.9°C and 0.6°C were observed in Polokwane and Johannesburg, respectively. 
There were strong negative correlations between the NDVI and LST (i.e., -0.62, -0.58, and -
0.71 for Polokwane and -0.69, -0.69, and -0.73 for Johannesburg) in 2020, 2021, and 2022, 
respectively. Strong positive correlations between NDBI and LST (i.e., 0.81, 0.79, and 0.85, 
and 0.70, 0.59, and 0.77) were recorded in Polokwane and Johannesburg respectively for the 
same period. The decline in LSTs was due to the cessation of industrial activities, 
transportation, and other human activities, resulting in improved air quality that in turn 
reduced the effects of the respective urban heat islands (UHIs). The findings offer valuable 
information that is vital for decision-making procedures that are in line with the aims of SDG 
11 which are to improve the sustainability of cities. 
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1. Introduction 

Over the next three decades, urban heat island (UHI) events are projected to affect more 
than 70% of urban areas worldwide (United Nations, 2022). According to the forecasts by the 
Intergovernmental Panel on Climate Change (IPCC), carbon dioxide (CO2) levels are projected 
to increase fourfold from their pre-industrial levels. At the same time, the average global land 
surface temperature (LST) will rise by 1.4°C to 5.8°C by the year 2100 (Pörtner et al., 2022). 
This significant increase highlights the urgent need for effective climate adaptation strategies. 
The variable, LST is being increasingly used to measure surface UHI and assess climate change 
in cities/towns (Amani-Beni et al., 2019; Onishi et al., 2010). LST refers to the temperature 
experienced at the interface between the land surface and the atmosphere where turbulent heat 
fluxes and longwave radiation exchanges occur (Mustafa et al., 2020). These factors contribute 
to the intensification of urban heat islands (UHIs), which are characterised by elevated 
temperatures in urban areas compared to their rural surroundings. 

Rapid urbanisation, industrialisation, and overpopulation, all of which are the leading 
drivers of environmental degradation and are responsible for significant changes in land 
use/land cover (LULC), are the leading causes of UHIs (Shikwambana et al., 2021; Lu et al., 
2011). The UHI phenomenon is caused by the removal of the natural land cover (e.g., in the 
case of wetlands and vegetation) through the construction of roads and buildings, and through 
anthropogenic heat emissions, such as those generated by cars, air conditioners, and industries 
(Jallu et al., 2022; Onishi et al., 2010). Therefore, when roads generally constructed from 
asphalt, concrete, or other impermeable materials replace vegetation, the natural cooling effects 
of shading and evapotranspiration are reduced (Onishi et al., 2010). Also, dark surfaces, such 
as roads and rooftops, characteristic of urban areas, absorb solar heat, thereby leading to 
elevated surface temperatures and a rise in ambient temperatures (Jallu et al., 2022; University 
Corporation for Atmospheric Research, 2011). This phenomenon is compounded by the urban 
built environment, which enhances heat retention. 

Heat islands are generated through high density structures that are quick to absorb heat but 
slow to release it (Almeida et al., 2021). Narrow streets between tall buildings in urban areas 
tend to confine air between the traffic corridors separating them, thereby causing an additional 
warming effect (Tarawally et al., 2018). Increasing temperatures from UHIs can adversely 
affect the environment and overall quality of life (Jombo et al., 2022). A rise in surface 
temperatures during the day, reduced cooling at night, and increased air pollution levels related 
to UHIs may affect human health in the form of heat exhaustion, respiratory-related ailments, 
heat stroke, and heat-related mortality (Amani-Beni et al., 2019; University Corporation for 
Atmospheric Research, 2011).  

As research has indicated, there is a positive correlation between high temperatures and an 
increase in urban mortality rates, with extreme heat events expected to contribute to a continued 
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rise in heat-related deaths (Harlan & Ruddell, 2011). With global warming, expectations point 
to an increase in both the frequency and intensity of severe heat events, thus exacerbating the 
global risk of morbidity and mortality (Alexander, 2020). Urbanisation dramatically alters the 
urban microclimate, thereby increasing the consequences of global warming (Jombo et al., 
2022). Those vulnerable to heat-related illnesses are mostly those working outdoors, young 
children, older people, and chronically ill humans (University Corporation for Atmospheric 
Research, 2011). As a result, these groups face increased health risks during extreme heat 
events, highlighting the urgent need for effective public health interventions. 

Characteristically, UHIs raise the energy demand, especially during the summer months, 
by, amongst others, air conditioning units. This in turn intensifies the generation of electricity 
from combusting fossil fuels (University Corporation for Atmospheric Research, 2011). 
Pollutants from fossil fuels worsen air quality issues, particularly when higher temperatures 
prevail (United States Environmental Protection Agency, 2008). Furthermore, fossil fuels emit 
greenhouse gases, especially CO2, thereby contributing to global warming (climate change) 
(University Corporation for Atmospheric Research, 2011). As land surface temperatures 
(LSTs) rise, glaciers and ice sheets in the polar regions melt, thereby resulting in increased 
flooding and rising sea levels (Solanky et al., 2018). This melting contributes to global climate 
instability, affecting ecosystems and human settlements alike.  

Monsoon countries, also affected by global warming differently, are severely impacted by 
unpredictable rainfall—the net effect being a depleted vegetation cover unable to protect the 
exposed ground surface from erosion (Rajeshwari & Mani, 2014). This loss of vegetation 
further exacerbates environmental challenges, leading to increased vulnerability to flooding 
and soil degradation. UHIs compromise the quality of the water in that they are responsible for 
thermal pollution: −the excess heat from hot pavement and rooftop surfaces is transferred to 
the stormwater drainage channels, thereby increasing the temperature of the water when it is 
released into rivers and lakes (United States Environmental Protection Agency, 2008).  

The thermal enrichment of waterbodies serves to disrupt various aspects of aquatic life, 
particularly the metabolic and reproductive processes of organisms (University Corporation for 
Atmospheric Research, 2011). Temperature changes related to UHIs can also alter the 
accessibility of food and water, thus affecting the eating and foraging habits of animals (Larsen, 
2015; University Corporation for Atmospheric Research, 2011). Furthermore, owing to the 
heat radiating from UHIs, temperate climates typically experience a prolonged growing season, 
which changes the breeding cycles of species (Shochat et al., 2006). Rapid changes in 
temperature in aquatic ecosystems resulting from warm stormwater runoff can induce stress in 
marine life (United States Environmental Protection Agency, 2008). This stress is indicative 
of broader ecological impacts that arise from urbanisation. 
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Urbanisation and urban land-use change contribute to escalating global LSTs, declining 
rates of evaporation and precipitation, the extent of the hydrological area, and the level of land 
degradation (Patra et al., 2018). The LULC changes resulting from urbanisation can modify 
the energy balance of cities, thereby altering the thermal environment within urban areas 
leading to UHIs (Hart & Sailor, 2009). As a result, urban regions exhibit elevated air and 
surface temperatures. Therefore, city planners must consider the heat island effect in their urban 
designs. Consequently, the search for efficient ways in which to mitigate the effects of the UHI 
phenomenon has emerged as a critical area in urban ecology and planning research. In most 
studies, the UHI effect is primarily explored by observing its impacts (Errebai et al., 2022; 
Onishi et al., 2010), drivers (Li et al., 2020), and mitigation strategies to reduce its effects 
(Wang et al., 2016). Understanding these aspects is crucial, especially considering emerging 
global challenges that affect public health and urban resilience. 

Originating in Central China, in the city of Wuhan, in December 2019, the acute respiratory 
disease known as COVID-19, was brought on by Coronavirus-2 (SARS-CoV-2). COVID-19 
triggered a pandemic that resulted in various negative impacts worldwide (Louw et al., 2022). 
The COVID-19 pandemic has proved to be both the deadliest public health calamity of our 
time and the most formidable challenge to confront humanity since World War II (Ali et al., 
2021). The COVID-19 outbreak resulted in a substantial rise in global mortality rates, with 
764,474,387 reported cases, and 6,915,286 deaths (World Health Organisation, 2023), and 
significant economic causalities (e.g., the global GDP contracted by 3.3% in 2020) 
(International Monetary Fund, 2023; Louw et al., 2022). March 11, 2020, marked the 
proclamation by the World Health Organization (WHO) that the COVID-19 outbreak had 
reached pandemic proportions. Several measures were implemented to mitigate the hazards 
posed by the COVID-19 pandemic, with mass quarantines, lockdowns, complete travel bans, 
and social isolation being the order of the day (Jallu et al., 2022). However, these risk-taking 
initiatives have considerably impacted negatively on socioeconomic growth, political relations, 
and the environment (Louw et al., 2022).  

During the COVID-19 pandemic, South Africa underwent several phases of lockdown, 
including a complete lockdown, known as Level 5, which started on 26 March 2020 and lasted 
until 30 April 2020 (South African Government, 2023). This unprecedented situation provided 
a unique context for researchers to examine the effects of reduced human activity on urban 
environments.Several studies (e.g., Maithani et al. (2020), Alqasemi et al. (2021), Ali et al. 
(2021), Shikwambana et al. (2021), and Jallu et al. (2022)) investigated the impact of the 
COVID-2019 lockdown on surface UHIs. These studies underscore a shift in research 
methodologies prompted by the unique circumstances of the pandemic. 

In the traditional approach to studying UHIs, researchers typically collected in-situ air 
temperature measurements at isolated locations. These measurements would then be applied, 
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through the process of interpolation, to produce isotherm maps (Solanky et al., 2018). 
Furthermore, the mapping of urban temperatures was initially possible only on a regional scale. 
However, great strides have since been made to access the state-of-the-art technologies now 
available. The introduction of thermal sensors in Landsat and Sentinel allows for studies of 
UHIs to be undertaken continuously (Mishra & Garg, 2023). Owing to the high spatial density 
of urban environments, thermal remote sensing methods are now frequently applied to retrieve 
the necessary data around LST values to identify UHIs (Maithani et al., 2020).  

In our current study, the method of using advanced high resolution data obtained through 
the National Oceanic and Atmospheric Administration Advanced Very High-Resolution 
Radiometer (NOAA AVHRR) stands in sharp contrast to the initial methods used as described 
above (Mishra & Garg, 2023). The introduction of the higher resolution Landsat thematic 
mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) has made the mapping of urban 
temperatures at the city level possible (Mishra & Garg, 2023). Since the LST is related to the 
heat of the urban canopy layer (UCL), which may not be contiguous in urban areas, higher 
resolution remote sensing data are required for the more accurate detection of UHIs. The 
algorithms used to retrieve LSTs rely on the inversion of Planck's law and compute brightness 
temperature (BT) from atmospheric radiances acquired through thermal infrared sensors 
(TIRS) (Mathew et al., 2016). Using ground surface emissivity, the BT is then converted to 
LST (Maithani et al., 2020). Numerous algorithms are used to extract the LST from remote 
sensing data. Examples include the mono-window algorithm (Qin et al., 2001), the single-
channel algorithm  (Jimenez-Munoz et al., 2008; Jiménez‐Muñoz & Sobrino, 2003), the 
temperature-emissivity separation algorithm (Gillespie et al., 1998), the multi-angle and multi-
channel algorithms (Sobrino et al., 1996), the split-window algorithm (Sobrino et al., 1996), 
and the radiative transfer equation (Maithani et al., 2020). These algorithms play a critical role 
in accurately assessing LSTs from remote sensing data. 

Recent research has established the correlation between LULC and LST by employing 
spectral indices, including the normalized difference vegetation index (NDVI) (Chakraborty et 
al., 2021; Guha et al., 2018; Guha et al., 2017; Jallu et al., 2022; Liu & Zhang, 2011; Mishra 
& Garg, 2023; Solanky et al., 2018), the normalized difference built-up index (NDBI) (Guha 
et al., 2018; Guha et al., 2017; Jallu et al., 2022; Liu & Zhang, 2011; Mishra & Garg, 2023; 
Zha et al., 2003), the normalized difference bareness index (NDBaI) (Guha et al., 2017; Mishra 
& Garg, 2023; Zhao & Chen, 2005), the normalized difference water index (NDWI) (Mishra 
& Garg, 2023), and the modified normalized difference water index (MNDWI) (Guha et al., 
2017). The representation of LULC classes using the above-mentioned spectral indices and the 
interpretation of how they relate to LST contributes to an understanding of the nature and 
behaviour of UHIs over time. (Chen et al., 2006). 
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NDVI (Jackson et al., 1983) is usually applied to quantitatively represent the density of 
healthy vegetation. On the other hand, NDBI (Zha et al., 2003) detects changes in built-up 
areas. The quantification of the relationship between LULC changes and LSTs in urban areas 
also helps to explain the contribution of anthropogenic activities to the intensity of the UHI 
phenomenon (Mishra & Garg, 2023). Furthermore, this understanding is reinforced by previous 
research which indicates that various mitigatory measures implemented to minimise the spread 
of COVID-19 have lessened the impact of the UHI phenomenon. Previous research (e.g., 
Maithani et al. (2020), Ali et al. (2021), Alqasemi et al. (2021), Shikwambana et al. (2021), 
and Jallu et al. (2022)) reported that the various mitigatory measures implemented to minimise 
the spread of COVID-19 had lessened the impact of the UHI phenomenon. However, 
Chakraborty et al. (2021) reported enhanced surface UHIs in the Indo-Gangetic Basin, India, 
even when human activities were minimal. 

Our current study intended to examine how the COVID-19 lockdown affected surface UHIs 
in the context of different LULC types in Polokwane and Johannesburg − both cities in South 
Africa using Landsat-8 and 9 OLI/TIRS data but under different climatic conditions. The two 
cities recorded high COVID-19 infection rates (Rachuene et al., 2021). However, Polokwane 
and Johannesburg differ in that, amongst others, they support populations of different sizes and 
industrial and human activities of different intensities (Statistics South Africa, 2022).  

Polokwane city in Limpopo Province is the largest urban centre in the Great North of South 
Africa. It is considered the commercial and industrial hub of the region and is also known as 
the ‘gateway city’ because of its wide assortment of game reserves and natural attractions in 
the region (Rogerson & Rogerson, 2021). Recently, owing to high rates of immigration from 
nearby countries such as Zimbabwe, Mozambique, and Malawi, its population numbers have 
been steadily increasing (Khutso et al., 2022).  

The City of Johannesburg is South Africa’s chief mining, industrial, and financial 
metropolis — it is the economic hub of southern Africa and therefore experiences high in-
migration rates (Rogerson & Rogerson, 2021). Johannesburg is a local, national, and 
international travel hub. In the past, researchers such as Alexander (2020); Logan et al. (2020); 
Magli et al. (2015) focused on analysing the effect of a single LULC type, mainly the built-up 
area class, on the UHI phenomenon. This study highlighted the significant role that specific 
land cover types play in influencing urban temperatures. It is worth noting that an 
understanding of the effect of LULC type on the UHI phenomenon is important to 
municipalities and other stakeholders involved in urban planning in their quest to enhance 
sustainable development (Jombo et al., 2022). This understanding can inform data-driven 
decisions that lead to more effective urban management practices.  

The objectives of this current study were (i) to extract LSTs from multitemporal Landsat-8 
and 9 OLI and TIRS data and to map the spatial distribution of LSTs before January 2020, 
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during March 2021, and after April 2022) − the various stages associated with the COVID-19 
pandemic in Polokwane and Johannesburg; (ii) to use the extracted LSTs for Polokwane and 
Johannesburg to detect and interpret spatio-temporal changes in the UHIs and the non-UHIs of 
Polokwane and Johannesburg; (iii) to detect urban hot spots (UHSs) within the UHIs, and to 
perform dynamic analyses of them; and (iv) to analyse the correlations between the NDVI-
NDBI-based LULC types and the LSTs for the two cities, respectively. The objectives of the 
current study are particularly relevant considering recent changes in urban dynamics. 

The lockdowns triggered by COVID-19 have raised much interest and concern about the 
effects they have had on the different parts of metropoles/cities. Specifically, the impacts on 
the LSTs of different cities have had consequences for public health, environmental 
sustainability, and urban design. To reduce the detrimental effects of lockdowns on urban 
environments and increase the resilience and sustainability of cities, it is imperative to 
understand these effects. The analysis of the impact of the COVID-19-induced lockdown on 
LSTs offers valuable perspectives that can serve as a guideline in urban planning and 
policymaking processes, ultimately helping to build sustainable cities and communities. This 
is in line with Sustainable Development Goal (SDG) 11, which focuses on improving the 
sustainability of cities and communities. 

 

2. Material and methods 

2.1. Study area 

The cities of Polokwane and Johannesburg in the Limpopo and Gauteng provinces 
respectively were selected as the study areas (Figure 1). Polokwane occupies a total area of 
106.8 km2, while Johannesburg covers 1645 km2. Polokwane has mild to warm summers and 
cold, frosty winters (Tleane & Ndambuki, 2020). January is the hottest month, with the highest 
temperatures ranging from 26 to 28°C, whereas July is the coldest month, with temperatures 
ranging from 4 to 6°C (South African Weather Service, 2022). The annual rainfall ranges 
between 400 and 600 mm but is typically concentrated over only a short period of the year 
(South African Weather Service, 2022). On the other hand, the average annual temperature for 
Johannesburg is 20.6°C, with dry winters and wet summers (Jombo et al., 2022). Polokwane 
is home to a total human population of 463000 while Johannesburg accommodates 6065000 
people (World Population Review, 2022). 
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Figure 1: Map of a) Southern African countries and b) South African provinces highlighting 
Polokwane and Johannesburg.    

2.2. Datasets 

Landsat 8-9 operational land imager (OLI) and thermal infrared sensor (TIRS) satellite 
images were used to classify and calculate the land surface temperatures (LSTs) of the two 
cities.  The satellite imageries (Table 1) were retrieved from the United States Geological 
Survey (USGS) Earth Explorer data interface at https://earthexplorer.usgs.gov/. The Landsat-
8 and Landsat-9 imageries were collected in January 2021, March 2021, and April 2022 (Table 
1).  

Table 1: Specifications of Landsat 8-9 operational land imager (OLI) and Thermal Infrared 
Sensor (TIRS) data for Polokwane and Johannesburg. 

Place Satellite Path/Row 
Date of 
acquisition 

Sun elevation 
(°) 

Sun azimuth 
(°) 

Scene cloud 
cover (%) 

Polokwane Landsat 8 170/077 17/01/2020 59 66 6.09 
Polokwane Landsat 8 170/077 08/03/2021 52 64 4.97 
Polokwane Landsat 9 170/077 12/04/2022 45 46 5.27 
Johannesburg Landsat 8 170/078 17/01/2020 59 87 4.38 
Johannesburg Landsat 8 170/078 08/03/2021 51 62 0.24 
Johannesburg Landsat 9 170/078 20/04/2022 42 42 7.50 

 

https://earthexplorer.usgs.gov/
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At a pixel size of 30 m, the OLI acquires eight bands in the visible and near-infrared (VNIR) 
and shortwave infrared (SWIR) regions of the electromagnetic spectrum (EMS) (Table 2). It 
also acquires the panchromatic band at a pixel size of 15 m. The TIRS sensor detects a pixel 
size of 100 m in two bands between 10 and 12 μm of the EMS (Irons et al., 2012). The OLI 
data exhibit superior radiometric precision, thereby covering a dynamic range of 12 bits (Masek 
et al., 2020). Improved radiometric precision enhances the LULC classification to achieve high 
accuracies (Jallu et al., 2022). The band specifications for Landsat-8 and -9 are presented in 
Table 2. 

Table 2: Band specification for Landsat 8 and 9 satellite imageries used in this study. 
Region of the electromagnetic spectrum (EMS) and 
band number 

Central wavelength (μm) Resolution (m) 

Coastal aerosol – Band 1 0.44 30 
Blue – Band 2 0.48 30 
Green – Band 3 0.56 30 
Red – Band 4 0.65 30 
Near-infrared (NIR) – Band 5 0.87 30 
Shortwave infrared (SWIR) 1 – Band 6 1.61 30 
Shortwave infrared (SWIR) 2 – Band 7 2.20 30 
Panchromatic – Band 8 0.59 15 
Cirrus – Band 9 1.37 30 
Thermal Infrared Sensor (TIRS) 1 – Band 10 10.90 100 
Thermal Infrared Sensor (TIRS) 2 – Band 11 12.01 100 

2.3. Data pre-processing 

The LST values were derived from the Landsat 8 and 9 images. The image preprocessing 
involved radiometric calibration, surface emissivity calculation, and a thermal band 
conversion. Equation 1 was used to convert the data from the OLI and TIRS bands to spectral 
radiance.  

 𝐿𝐿𝜆𝜆 =  𝑀𝑀𝐿𝐿 ×  𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐  +  𝐴𝐴𝐿𝐿       [1] 

where Lλ represents the apparent spectral radiance at the top of the atmosphere (TOA) 
(Wm−2sr−1µm−1), ML and AL are band-wise multiplicative and additive rescaling factors, 
respectively, and Qcal stands for the quantized/calibrated standard digital number (DN) values 
(NASA, 2022). Through the application of Equation 1, radiance images were generated for 
bands 10 of the OLI and TIRS datasets.  

An improved image-based dark object subtraction (DOS) model (Equation 2) was applied 
to eliminate low reflection values attributed to air diffusion (Adeyeri et al., 2017; Chavez, 
1996).  

 𝐿𝐿1𝑃𝑃 =  𝐿𝐿1𝑚𝑚𝑚𝑚𝑚𝑚 −  𝐿𝐿1(𝐷𝐷𝐷𝐷1%)  [2] 

where L1min is the radiance of the minimum DN value of the image (Wm−2sr−1µm−1), and 
L1(DO1%) represents the radiance of the dark object (DO) (Wm−2sr−1µm−1) (Adeyeri et al., 
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2017). Only band 10 (TIRS1) was used because it performed better than band 11 (TIRS2) 
(Adeyeri et al., 2017). 

2.4. Calculation of LSTs  

The two essential inputs for the retrieval of LSTs from the Landsat thermal dataset were the 
surface emissivity and the at-sensor brightness temperature (BT) estimates. The TIRS data 
underwent a conversion from spectral radiance to BT through the application of the following 
equation (USGS, 2019). Assuming unity emissivity, BT represents the effective temperature 
observed by the satellite.  

 𝐵𝐵𝐵𝐵 =  𝐾𝐾2

𝐿𝐿𝐿𝐿 �𝐾𝐾1𝐿𝐿𝜆𝜆
 +1�

− 273.15     [3] 

where BT is the TOA brightness temperature, measured in Kelvin (K),  𝐾𝐾1 and 𝐾𝐾2 represent 
the pre-launch calibrations of band 10 — from the metadata, 𝐿𝐿𝑚𝑚 stands for the natural 
algorithm, and 𝐿𝐿𝜆𝜆 is the TOA spectral radiance (Wm−2sr−1µm−1) in Equation 1. The value of 
273.15 was subtracted from the BT to convert K to degrees Celsius (°C). This study used only 
band 10 (TIRS1) because band 11 (TIRS2) exhibited major calibration uncertainties 
(Department of the Interior United States Geological Survey, 2019) that could have led to 
inaccurate results. Owing to calibration and stray light issues, band 10 instead of band 11 was 
used in our study, as analyses showed that band 11 exhibited more substantial banding effects 
and absolute calibration errors, primarily attributed to stray light (Montanaro et al., 2014). 

Vegetation greenness, well captured using NDVI, revealed plant and biomass conditions 
(Purevdorj et al., 1998). For the NDVI calculation, bands 4 and 5 of the satellite imageries 
were used, producing values ranging between -1 and +1. Areas with less or no vegetation 
presented with values close to -1 and vice versa. Calculating the NDVI helped the researchers 
to better understand vegetation patterns in urban areas and allowed for the computation of 
surface emissivity (ε) (Sobrino et al., 2001; Sobrino et al., 2004). 

Therefore, NDVI calculation was necessary for approximating vegetation cover and 
computing surface emissivity (ε): 

 𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁 =  𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌− 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

    [4] 

where ρNIR and ρRed stand for the reflectance of the NIR and Red bands, respectively. 

The NDVI values obtained in Equation 4 were employed to calculate vegetation cover:  

 𝑃𝑃𝑣𝑣 =  � 𝜌𝜌𝑁𝑁𝑁𝑁𝜌𝜌− 𝜌𝜌𝑁𝑁𝑁𝑁𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
𝜌𝜌𝑁𝑁𝑁𝑁𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚− 𝜌𝜌𝑁𝑁𝑁𝑁𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

�
2
   [5] 

 

Where 𝑃𝑃𝑣𝑣 is the fractional vegetation cover, and 𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝐿𝐿 and 𝑁𝑁𝐷𝐷𝑁𝑁𝑁𝑁𝑚𝑚𝑐𝑐𝑚𝑚 denote minimum 
and maximum NDVI values, respectively.  
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Land surface emissions show the percentage of radiance emitted by a body at a given 
temperature and the radiance released by a blackbody at an equivalent temperature (Tarawally 
et al., 2018). The 𝑃𝑃𝑣𝑣 values were used to compute the land surface emissivity(𝜀𝜀):   

 𝜀𝜀 = 0.004∗𝑃𝑃𝑣𝑣 + 0.986   [6] 

where 𝑃𝑃𝑣𝑣 represents the proportion of vegetation1.  

Using 𝜀𝜀 and BT, it was possible to compute the LST for band 10 using the equation devised 
by Stathopoulou & Cartalis (2007) and Weng et al. (2004):  

 𝐿𝐿𝐿𝐿𝐵𝐵 =  𝐵𝐵𝐵𝐵

�1+ ��𝜆𝜆𝜆𝜆𝜆𝜆𝜌𝜌 �𝑐𝑐𝐿𝐿ε��
  [7] 

where BT represents the brightness temperature, 𝜌𝜌 stands for 1.438*10-2mk, 𝜆𝜆 represents 
band 10, and 𝑙𝑙𝑚𝑚 and 𝜀𝜀 denote the natural logarithm and land surface emissivity, respectively.  

It was therefore possible to retrieve the respective LST maps for the years 2020, 2021, and 
2022.  

2.5. Detection of UHIs and non-UHIs 

The range of LST values in each of the study areas contributed to the identification of the 
UHIs and non-UHIs in Polokwane and Johannesburg (Guha et al., 2017; Ma et al., 2010). 
Generally, the detection of UHIs and non-UHIs is made possible by examining the temperature 
patterns that prevail in urbanised and non-urbanised areas. Underlying UHIs occur in parts of 
cities where urbanisation and human activity cause temperatures to rise noticeably above those 
of the nearby rural areas (Adeyeri et al., 2017). In this study, the UHIs and non-UHIs were 
determined by applying the following equations: 

 𝐿𝐿𝐿𝐿𝐵𝐵 > 𝜇𝜇 + 0.5∗𝛿𝛿    [8] 

 0 < 𝐿𝐿𝐿𝐿𝐵𝐵 ≤ 𝜇𝜇 + 0.5∗𝛿𝛿    [9] 

where μ and δ represent the mean and standard deviation values for the LSTs in question. 

2.6. Mapping the Urban Heat Spots (UHSs) 

The LST maps were used to identify the UHSs within the UHIs over Polokwane and 
Johannesburg respectively (Guha et al., 2017): 

 𝐿𝐿𝐿𝐿𝐵𝐵 > 𝜇𝜇 + 2∗𝛿𝛿      [10] 

The hotspots were employed to extract the corresponding pixel values for Inverse Distance 
Weighting (IDW) interpolation, thereby creating a rasterised map to illustrate the spatial 
distribution of the LSTs for these hotspots. 

 
1  0.004 and 0.986 are thresholds derived from Sobrino et al. (2004). 
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2.7. Generation of LULC maps using NDVI and NDBI 

The study used two spectral indices, the NDVI (Tucker, 1979; Purevdorj et al., 1998) and 
the NDBI (Zha et al., 2003) to analyse and assess the data. The indices were calculated from 
the OLI datasets for 2020, 2021, and 2022 to represent the LULC types. The values of the two 
indices were between −1 and +1. Positive values indicate the presence of vegetation for NDVI 
and of built-up areas for NDBI, whereas negative values signify the existence of other LULC 
classes (Mishra & Garg, 2023). NDVI typically employs bands scaled to reflectance values as 
inputs, whereas NDBI uses bands expressed in DN (Mishra & Garg, 2023). Relational 
operators (>, <) were applied for accurate classification results (i.e., vegetation extraction 
involved the use of NDVI values > 0.2 and NDBI values < 0, whereas the detection of water 
bodies employed NDVI and NDBI values < 0. The criteria for identifying built-up areas, roads, 
and bare land included NDVI values between 0 and 0.2, along with NDBI values greater than 
0.1.2 The false colour composites (FCCs) for 2020, 2021, and 2022 were created by combining 
bands 5, 4, and 3. These FCCs were overlaid onto higher-resolution Google Earth imagery 
captured at the exact date and time of the OLI data acquisition. Using the visual interpretation 
skills and the regions of interest (ROIs), representing the various LULC types, the relevant 
waterbodies, bare land, built-up areas, roads, and vegetation were digitised. The ROIs were 
overlaid to serve as signatures for training the support vector machine (SVM) classification 
algorithm — this algorithm requires only a few training data samples (Mushore et al., 2017). 
The ROIs served as the ground truth for accuracy assessment. To generate LULC maps, the 
ground truth data were randomly split as follows: 70% for classification and 30% for validation.  

The NDBI was computed by applying the equation:  

 𝑁𝑁𝐷𝐷𝐵𝐵𝑁𝑁 =  𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌− 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+ 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

    [11] 

where 𝜌𝜌𝐿𝐿𝜌𝜌𝑁𝑁𝜌𝜌 and 𝜌𝜌𝑁𝑁𝑁𝑁𝜌𝜌 represent surface reflectance for band 6 and band 5. 

2.8. Accuracy assessment  

Thirty per cent (30%) of the ground truth data was used to generate confusion matrices to 
determine the level of accuracy and reliability of the created LULC maps. The overall accuracy, 
producer’s and user’s accuracies, and kappa were used in the process. The user's accuracy 
represents the likelihood that a sample belongs to a particular class, to the effect that the 
classifier accurately assigns it to that class. In contrast, the overall accuracy metric is a ratio 
(%) between the number of successfully categorised samples and the number of test samples 
(Jombo et al., 2020). The producer's accuracy indicates the frequency with which actual 
features on the ground are accurately represented on the classified map. The kappa coefficient 

 
2 According to Chen et al. (2006), these values can be integrated for LULC classification. 
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was calculated to assess the agreement between the classified and ground truth samples (Jombo 
et al., 2020). 

2.9. Estimation of LST patterns and statistics per LULC class 

To enhance the researchers’ comprehension of the correlation between LULC changes and 
LST, 50 points were chosen for analysis. These points were distributed across the study areas 
and represented 10 points for each LULC class. The goal was to examine how different LST 
patterns relate to different types of land cover or how changes in LST can be used to track land 
use changes. A representative number of points from each LULC class was selected to capture 
a range of LST values across the study areas. This approach allows for a better understanding 
of the underlying factors driving LST changes in different parts of the study areas and identifies 
potential drivers of observed changes in LST over time. By examining LST patterns at the point 
scale, this study was able to gain insights into the spatial variability of LSTs and to understand 
how LULC and LST are related. 

2.10 Correlation analysis for assessing the associations/correlations between the 
selected spectral indices and LST 

Pearson's correlation analysis was performed to examine the associations between NDVI, 
NDBI, and LST (Emerson, 2015): 

 

 𝑟𝑟 =  
Σ(𝑥𝑥𝑚𝑚 − �̅�𝑥) −   (𝑦𝑦𝑚𝑚 − 𝑦𝑦�)

�Σ(𝑥𝑥𝑚𝑚 − �̅�𝑥)2 − Σ(𝑦𝑦𝑚𝑚 − 𝑦𝑦�)2
 [12] 

where r denotes the Pearson’s correlation coefficient, with 𝑥𝑥𝑚𝑚 and 𝑦𝑦𝑚𝑚 representing the values 
of the respective x and y variables. The symbols �̅�𝑥 and 𝑦𝑦� denote the mean values of the 
respective x and y variables (Wiedermann & Hagmann, 2016). A correlation coefficient of 0 
indicates no linear correlation, while a coefficient closer to +1 or -1 indicates a stronger linear 
correlation. Using Pearson's correlation analysis in this study allowed for a more precise 
evaluation of the relationship between these variables. It provided valuable information for 
understanding the impact of LULC changes on LST. Furthermore, the selection of 50 points 
for analysis ensured a representative sample size and enhanced the statistical significance of 
the findings.  

 

3. Results 

3.1. Spatio-temporal dynamics of NDVI, NDBI, and LST 

Table 3 presents the descriptive statistics for the NDVI, NDBI and LST values. The 
descriptive statistics reveal the dynamic nature of the spectral indices and LST between 2020 
and 2022, with notable differences before, during, and after the COVID-19 pandemic. In 



South African Journal of Geomatics, Vol. 14. No. 1, February 2025 

101 
 

Polokwane, there was an increase in the mean NDVI values from 0.25 in 2020 to 0.32 in 2021 
(Table 3) but a decline to 0.29 in 2022 (post-pandemic) (Table 3). However, there was a decline 
in the mean LST value from 31.2°C in 2020 (pre-pandemic) to 25.55°C in 2021 (during the 
pandemic), followed by an increase to 28°C in 2022 (post-pandemic) (Table 3). The mean 
NDVI values in Johannesburg increased from 0.31 in 2020 to 0.39 in 2021 and decreased to 
0.26 in 2022 (Table 3). The mean NDBI values increased from 0.11 in 2020 to 0.18 in 2022, 
while LST recorded the highest mean value of 32.40°C in 2020, a decline to 28.35.8°C in 2021, 
and an increase to 31.35°C in 2022 (post-pandemic) (Table 3). 

Predominantly, in 2020 (pre-pandemic), the highest NDBI values prevailed in the southern 
and eastern regions of the study area in Polokwane (Figs. 2d-f), with LST being widely spread 
across the area (Fig. 2g). Figure 2 shows the NDVI, NDBI, and LST values for Polokwane and 
Johannesburg in 2020, 2021, and 2022, respectively. LST distributions were categorised into 
suitable ranges and colour coded as illustrative thermal pattern distribution maps for the study 
areas. To validate the LST values depicted on the maps, the in-situ temperature data obtained 
for Polokwane and Johannesburg from the South African Weather Services (SAWS), were 
used. The in-situ temperature data strongly correlated with the LST values in both study areas, 
with R2 values ranging from 0.79 to 0.88 between January 2020 and April 2022. 
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Table 3: Descriptive statistics for NDVI, NDBI, and LST for a) Polokwane and b) 
Johannesburg (2020, 2021, and 2022). 

 
Polokwane 

    

NDVI 
Year Minimum Maximum Mean Standard deviation 
2020 -0.1 0.60 0.25 0.18 

 

2021 -0.1 0.74 0.32 0.14 
 

2022 -0.1 0.67 0.29 0.13 
 

NDBI  
Minimum Maximum Mean Standard deviation 

2020 -0.4 1 0.3 0.23 
 

2021 -0.1 1 0.45 0.18 
 

2022 0 1 0.5 0.17 
 

LST  
Minimum Maximum Mean Standard deviation 

2020 19.8 42.6 31.2 0.8 
 

2021 13.6 37.5 25.55 1.98 
 

2022 17.6 38.4 28 0.47 
 

Johannesburg 
   

 
NDVI  

Minimum Maximum Mean Standard deviation 
2020 0.15 0.63 0.31 0.15  
2021 -0.07 0.69 0.39 0.13  
2022 -0.1 0.61 0.26 0.12  
NDBI  

Minimum Maximum Mean Standard deviation 
2020 -0.52 0.78 0.11 0.22 

 

2021 -0.75 0.81 0.15 0.26 
 

2022 0.12 0.84 0.18 0.12 
 

LST  
Minimum Maximum Mean Standard deviation 

2020 20.8 44 32.4 1.07 
 

2021 17.9 38.8 28.35 0.13 
 

2022 22.4 40.3 31.35 0.97 
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Figure 2: Maps showing the Normalized Difference Vegetation Index (NDVI), the 

Normalized Difference Built-up Index (NDBI), and Land Surface Temperatures (LSTs) for 
Polokwane and Johannesburg in 2020, 2021, and 2022, respectively. 

3.2. Spatio-temporal distribution of UHIs and non-UHIs 

The comparison between the mean LST values in UHIs and non-UHIs was used to 
determine the intensity of the UHI effect. Table 4 presents the findings for the years 2020, 
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2021, and 2022 for Polokwane and Johannesburg. In Polokwane, there was a mean LST 
difference of 6.22°C, 8.09°C, and 6.33°C between UHI and non-UHI areas for the respective 
years (Table 4). Similarly, in Johannesburg, the mean LST differences between UHIs and non-
UHIs were 6.14°C, 5.88°C, and 3.83°C, for the respective study years. Notably, the UHI effect 
in Polokwane presented a 2.30°C decrease from 2020 to 2021, while Johannesburg saw a 
decrease of 3.78°C during the same period (Table 4). Conversely, non-UHI areas in Polokwane 
and Johannesburg experienced decreases of 4.17°C and 3.32°C, respectively, from 2020 to 
2021 (Table 4). In Johannesburg, UHI areas predominantly occur in the southern part of the 
city, contrasting with the non-UHI areas which are concentrated in the northern part (Figure 
3). The UHI threshold temperatures for 2020 were 42.6°C for Polokwane and 44°C for 
Johannesburg (Table 4). 

 
Table 4: Temporal LST (°C) variations between UHIs and non-UHIs. 

a) Polokwane  
LST (min) LST (max) LST (mean) LST (SD) 

Year UHI Non-UHI UHI Non-UHI UHI Non-UHI UHI Non-UHI 
2020 25.4 19.8 42.6 35.11 32.14 25.92 0.81 1.24 
2021 23.6 13.6 37.5 32.52 29.84 21.75 0.64 1.11 
2022 25.8 17.6 38.4 34.35 30.05 23.72 0.71 1.22 
b) Johannesburg  

LST (min) LST (max) LST (mean) LST (SD) 
Year UHI Non-UHI UHI Non-UHI UHI Non-UHI UHI Non-UHI 
2020 25.2 20.8 44 35.24 32.77 26.63 0.74 1.33 
2021 23.5 17.9 38.8 32.11 28.99 23.31 0.64 0.92 
2022 24.6 22.4 40.3 34.76 30.68 26.85 1.12 1.56 

 

3.3. Spatio-temporal mapping of Urban Hotspots (UHSs) 

Developed within the UHIs of the two study areas, the UHSs were mapped for continuous 
monitoring over the years of study.  The UHIs with high LST values are primarily located in 
the northern part of Polokwane (Figs. 3a-c) and were found to have little vegetation and a high 
built-up structure density. Conversely, in Johannesburg, the UHIs with their high LST values 
are predominantly found in the southern part of the city (Figs. 3d-f). 

A threshold of 35°C was applied to identify UHIs in Polokwane and Johannesburg, 
respectively. The manufacturing industry, transport sector, power generation infrastructures or 
installations, and their related activities, and built-up areas − especially buildings with metal 
roofs, bare land, and exposed rocks, were recognised as the most prolific land use classes in 
the context of UHSs (Guha et al., 2018). Therefore, land conversions from vegetation or water 
bodies to bare land or built-up areas, together with the pollution of the surrounding atmosphere 
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in such areas, were identified as major factors for generating UHSs in Polokwane and 
Johannesburg. 

 
Figure 3: Land surface temperature (LST) hotspots for Polokwane (a-c) and Johannesburg (d- 

f) in 2020, 2021 and 2022, respectively. 
 

3.4. Analysis of LULC maps generated using NDVI and NDBI  

Figure 4 shows the spatio-temporal distribution of LULC indices (NDVI and NDBI). The 
area classified as built-up is situated mainly in the northern part of Polokwane (Figs. 4a-c). 
Vegetation predominates in the central area of Polokwane, while waterbodies occupy only a 
small section of the city (Figs. 4a-c). In Johannesburg, vegetation is widely spread across the 
northern side of the city (Figs. 4d-f). Built-up areas and bare land are mainly located in the 
south, and there is only a small area of coverage by waterbodies and roads (Figs. 4d-f).  
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Figure 4: Land use/land cover (LULC) maps for Polokwane in a) 2020, b) 2021, and c) 2022, 
and LULC maps for Johannesburg in d) 2020, e) 2021, and f) 2022. 

 

3.5. Validation of LULC maps 

As shown in Figure 5, the overall accuracies for the LULC maps for Polokwane ranged 
between 89 (2020) and 94% (2022). The producer's accuracies ranged from 82 to 100% for the 
three satellite imageries, while the user’s accuracies ranged between 80 and 100%.  

As indicated in Figure 6, the overall accuracies for the LULC maps for Johannesburg varied 
between 90% in 2020 and 95% in 2022. Regarding the three satellite imageries, the producer's 
accuracies were in the range of 90-100%, and the user's accuracies ranged from 88 to 100% 
(Figure 6).  
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Figure 5: User’s accuracy (UA), producer’s accuracy (PA) and overall accuracy (OA) values 

for Polokwane in 2020, 2021, and 2022. 
 

 

 
Figure 6: User’s accuracy (UA), producer’s accuracy (PA), and overall accuracy (OA) values 

for Johannesburg in 2020, 2021 and 2022. 
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3.6. The association between the distribution of LULC classes and the distribution of 
LSTs 

High LST values were observed for all LULC classes in 2020, before the COVID-19 
pandemic. The values were 38°C, 36°C, 32°C, 26°C and 24°C for the bare land, built-up, road, 
vegetation and waterbody classes, respectively (Figure 7). The lowest LST values were 
recorded in Polokwane during the pandemic in 2021 (Figure 7). These values were 32°C, 30°C, 
29°C, 20°C and 18°C for the bare land, built-up, road, vegetation and waterbody classes, 
respectively (Figure 7). The distribution plots for LST for LULC classes for Polokwane that 
were used in this study before, during, and after the COVID-19 lockdown in 2020, 2021, and 
2022, respectively, are shown in Figure 7. 

 

 
Figure 7: Land use/land cover (LULC) classes and land surface temperatures (LSTs) in 

degrees Celsius (°C) for Polokwane in 2020, 2021 and 2022. 

The highest LST value (32.6°C) for Polokwane was recorded for the built-up class in 2020, 
while the lowest value (19.7°C) was for the waterbody class in 2021, during the lockdown 
(Table 5). A rise in LST values for all LULC classes was observed from 2021 (during 
lockdown) to 2022 (after lockdown), with the most significant increase of 1.9°C being for the 
bare land class (Table 5). These outcomes highlight the beneficial effects of the lockdown in 
Polokwane. 

The distribution plots for LSTs in terms of the LULC classes used in this investigation 
before, during, and after the COVID-19 lockdown in Johannesburg in 2020, 2021, and 2022, 
respectively, are displayed in Figure 8.  Before the COVID-19 pandemic, all LULC classes in 
Johannesburg presented with high LST values. As shown in Figure 8, the LST values were 
38°C for bare land, 37°C (built-up), 34°C (road), 25°C (vegetation) and 21°C (waterbody). The 
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lowest values were recorded during the pandemic in 2021 (Figure 8). The lowest value for all 
LULC classes was 16°C for waterbodies (Figure 8).  

 
Table 5: Mean land surface temperatures (LSTs) in degrees Celsius (°C) for Polokwane in 

2020, 2021 and 2022. 
 

Mean land surface temperature (LST) in degrees Celsius (°C) 
Class January 2020 March 2021 April 2022 
Bare land 24.7 21.3 23.2 
Built-up 32.6 30.4 31.2 
Road 27.4 26.2 26.7 
Vegetation 25.4 22.1 23.4 
Waterbody 21.2 19.7 20.3 

 
 

  
Figure 8: Land use/land cover (LULC) classes and land surface temperatures (LSTs) in 

degrees Celsius (°C) for Johannesburg in 2020, 2021 and 2022. 

The LST values before, during, and after the COVID-19 lockdown in Johannesburg are 
shown in Table 6.  The highest LST value for Johannesburg in 2020 was 34.6°C for built-up, 
followed by 25.6°C (road) (Table 6). The LST values for all LULC classes increased in 2022 
(after the lockdown) (Table 6). Between 2021 and 2022, the highest LST increase was 1.3°C 
for vegetation, while the lowest increase was 0.3°C for the road class (Table 6).  
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Table 6: Mean land surface temperatures (LSTs) in degrees Celsius (°C) for Johannesburg in 
2020, 2021, and 2022. 

 
Mean land surface temperature (LST) in degrees Celsius (°C) 

Class January 2020 March 2021 April 2022 
Bare land 19.6 18.6 19.2 
Built-up 34.6 33.1 33.5 
Road 25.6 24.6 24.9 
Vegetation 25.4 22.1 23.4 
Waterbody 20.2 19.5 19.9 

 

3.7. Relationship between LULC indices and LST 

The study employed Pearson's correlation analysis, with a significance level of 95% (p-
value < 0.05), to examine the respective associations between NDVI and LST and between 
NDBI and LST in the study areas. Table 7 shows the relationships between the LULC indices 
for Polokwane in 2020, 2021 and 2022, respectively. There was typically a negative correlation 
between NDVI and LST, while a positive correlation was observed between NDBI and LST: 
− In 2020, LST was negatively correlated to NDVI with a value of -0.62, while positively 
correlated to NDBI with a value of 0.81 (Table 7). Similarly, LST was negatively correlated to 
NDVI in 2021 and 2022, with values of -0.58 and -0.71, respectively (Table 7).  
 
Table 7: Correlation coefficients for the three indices (NDVI, NDBI and LST) for Polokwane 

in 2020, 2021 and 2022. 
 

NDVI NDBI LST 
 
NDVI 

2020 
1 

  

NDBI -0.25 1 
 

LST -0.62 0.81 1 
 
NDVI 

2021 
1 

  

NDBI -0.04 1 
 

LST -0.58 0.79 1 
 
NDVI 

2022 
1 

  

NDBI -0.01 1 
 

LST -0.71 0.85 1 

 

Table 8 displays the correlation coefficients for NDVI and LST for Johannesburg in 2020, 
2021, and 2022, respectively. A negative correlation was observed in all three years, with 
respective coefficient values of -0.69, -0.69, and -0.73. Likewise, Table 8 demonstrates that 
NDVI and NDBI are negatively correlated, featuring correlation coefficients of -0.33, -0.24, 
and -0.36. As indicated in Table 8, a positive correlation was observed between NDBI and LST 
with respective coefficient values of 0.70, 0.59, and 0.77. 
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The linear regression model was applied to investigate the impact of NDVI and NDBI on 
fluctuations in LSTs. The spectral indices (NDVI and NDBI) were regarded as the independent 
variables, and LST as the dependent variable. The R2 and p-values allowed for the 
interpretation of the outcomes of the analysis. Figures 9 and 10 show the results of the models 
and the regression analysis equations for Polokwane and Johannesburg, respectively. 
Generally, the linear regression models show that the influence of NDVI and NDBI on LST 
varied over the study periods: In 2020, there was a negative correlation of -0.22 between NDVI 
and LST in Polokwane, thus indicating an inverse association between the two variables. On 
the other hand, however, as depicted in Figure 9c, there was a positive correlation of 0.11 
between NDBI and LST in Polokwane. Similarly, in 2021, negative correlations were found 
between NDVI-LST (-0.17) and NDBI-LST (-0.023) (Figs. 9e and 9f, respectively). A negative 
correlation of -0.11 was observed in 2022 between NDVI and LST (Fig. 9h), while a positive 
correlation of 0.20 was found between NDBI and LST (Fig.9i). These findings highlight the 
relationships amongst all indices (NDBI, NDVI and LST) in Polokwane during the pre-
COVID-19 pandemic (2020), the pandemic period (2021), and the post-pandemic period 
(2022). 

 
Table 8: Correlation coefficients for the three indices (NDVI, NDBI and LST) for 

Johannesburg in 2020, 2021 and 2022. 
 

NDVI  NDBI LST 
 
NDVI 

2020 
1 

  

NDBI -0.33 1 
 

LST -0.69 0.70 1 
 
NDVI 

2021 
1 

  

NDBI -0.24 1 
 

LST -0.69 0.59 1 
 
NDVI 

2022 
1 

  

NDBI -0.36 1 
 

LST -0.73 0.77 1 
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Figure 9: Linear regression analyses between NDVI, NDBI, and LST for Polokwane in 2020, 
2021 and 2022. 

 

As depicted in Figure 10b, in the case of Johannesburg in 2020, a negative correlation of -
0.69 was observed between NDVI and LST, thus indicating an inverse association between the 
two variables. Conversely, as depicted in Figure 10c, a positive correlation of 0.79 was found 
between NDBI and LST in Johannesburg. Similarly, in 2021, significant negative correlations 
were discovered between NDVI-NDBI (-0.57) and NDVI-LST (-0.58) and  (Figs. 10d and 10e, 
respectively. A negative correlation of -0.41 was observed in 2022 between NDVI and LST, 
while a positive correlation of 0.46 was identified between NDBI and LST, as illustrated in 
Figs 10h and 10i. These compelling findings underscore the interrelationships among all 
indices (NDVI, NDBI and LST) in Johannesburg throughout the pre-COVID-19 pandemic 
(2020), the pandemic period (2021), and the post-pandemic period (2022). 
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Figure 10: Linear regression analyses between NDVI, NDBI, and LST for Johannesburg in 
2020, 2021, and 2022. 

 

4. Discussion 

The study assessed how the COVID-19 lockdown affected LSTs in Polokwane and 
Johannesburg. The LST values in the study areas before (January 2020), during (March 2021) 
and post (April 2022) COVID-19 pandemic were retrieved from Landsat images. The retrieved 
LSTs for the study areas were used to detect and interpret the spatio-temporal changes in UHIs 
and non-UHIs. UHSs were detected within the UHIs and correlations between the NDVI-
NDBI-based LULC types and LSTs were analysed in the study areas. The LST values for the 
two cities declined amid the COVID-19 lockdown. The maximum LST values in Polokwane 
and Johannesburg decreased by 5.1°C and 5.2°C, respectively. These findings concur with 
those of Jallu et al. (2022), who identified a decrease in LSTs by 5°C in New Delhi, 1.9°C 
(Hyderabad), and 0.26°C (Mumbai) in April 2020. The decline in the LST values in these cities 
was due to reduced vehicular traffic, an improvement in the quality of the air, and the closure 
of industries because of lockdowns in India during the Covid-19 pandemic. Similarly, 
Zambrano-Monserrate et al. (2020) established a robust correlation between lockdowns and 
improvements in the quality of air and reduced noise levels. 

Built-up areas generally presented with higher LST values during and after the COVID-19 
lockdown period. This was due to their high radiant heat transfer levels. These results agree 
with those of Mushore et al. (2017), who indicated that built-up areas have high LSTs, with 
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substantial radiant heat transfers resulting from the transfer of relatively low latent heat. As 
indicated by the LULC maps of Polokwane and Johannesburg, high LST values were found in 
places with high-rise buildings and densely populated areas with little vegetation cover. Such 
conditions result from the prevalence of built structures, which obstruct the role of winds and 
air currents in ventilation. Furthermore, bare land areas and open spaces are generally unable 
to absorb solar radiation (Mushore et al., 2017; University Corporation for Atmospheric 
Research, 2011). Mudede et al. (2020) revealed that tall structures also present rougher 
surfaces, which hinder the transfer of heat through convection and radiative cooling. These 
authors also drew attention to the fact that bare soils are ineffective in absorbing solar radiation, 
which in turn raises LSTs.  

Increased population numbers in Polokwane and Johannesburg have led to vegetational 
losses as people tend to clear the land of its natural vegetation to cater for their growing demand 
for accommodation which in turn results in high LSTs. Njoku and Edokpayi (2022) revealed 
that the population in Polokwane is growing at a rate of 3.27% annually, with internal migration 
increasing by 1.7%. Similarly, Jombo et al. (2022) indicated that the increase in the population 
numbers in Johannesburg has caused an escalation in the demand for housing and the loss of 
vegetational cover, both of which also result in high LST values.  

During the years covered by this study, relatively lower temperatures were recorded in the 
waterbodies and vegetated areas of Polokwane and Johannesburg. Owing to their propensity to 
be porous and therefore to absorb heat, these areas presented with lower temperatures and thus 
served as heat sinks. This study found that the temperatures in vegetated areas and waterbodies 
were lower during the COVID-19 lockdown because of the reduction in emissions emanating 
from human activities. Vegetational growth and improved water quality were thus positive 
outcomes of the lockdowns. Su et al. (2021) support this claim by pointing out that during the 
COVID-19 pandemic, anthropogenic emissions were reduced, thereby resulting in lower 
aerosol optical depth (AOD) levels, thus influencing radiation levels and the growth of 
vegetation. A further reduction in water pollution during the COVID-19 lockdown period 
improved the absorptive capacity of water bodies and kept the environment cooler. This was 
because water bodies act as heat sinks. Chakraborty et al. (2021) indicated that during the 
COVID-19 lockdown, the total cessation of industrial activity, mining, and commercial 
operations played a pivotal role in enhancing the quality of water by preventing the direct 
discharge of waste effluents into water bodies. The increase in the absorption rate of 
waterbodies in this respect resulted in cooler temperatures (Jallu et al., 2022).  

The effects of COVID-19-caused lockdowns on NDBI, NDVI, and LSTs in urban areas can 
be related to Sustainable Development Goal (SDG) 11 (Sustainable Cities and Communities). 
Large-scale changes to urban environments were caused by lockdowns, which were 
implemented to slow down the spread of the virus. In fact, lockdowns changed land use patterns 
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in that they reduced the scale of human activities. In certain places, owing to the lower levels 
of human-induced pollution and human interference, higher NDVI indices and a denser 
vegetational cover were the outcomes. This observation is supported by Li et al. (2020), who 
highlighted the fact that a reduction in human activities during the lockdown resulted in lower 
air pollutant emissions, which improved the quality of the air and led in turn to better land use 
patterns. In contrast, limitations and variations in human movement and shifts in the focus areas 
of economic activity caused variations in the NDBI index, which represents built-up areas. The 
repercussions of the landscape changes thus brought about served to promote the vision of a 
sustainable urban environment, a goal closely related to SDG 11. By comprehending these 
alterations, urban planners and policymakers can thus be supported in formulating tactics to 
increase urban resilience, refine urban planning, and foster sustainable development in urban 
regions, thereby contributing to the realisation of SDG 11. 

Overall, the COVID-19 lockdown reduced LSTs in both Polokwane and Johannesburg. It is 
common knowledge that high LST values prevail in high density built-up areas, on bare land 
and on roads, while low LST values are associated with vegetated areas and waterbodies. 
Furthermore, the development of built-up and impervious surfaces, leading to changes in the 
urban environment in the form of LULC substantially impacts the temperature. This was found 
to be the case in the two cities. Through these processes, the transmission of energy and 
moisture between land and atmosphere altered in these two study areas, and the energy 
exchange resulted in temperature increases (Mushore et al., 2017).  

This research proves that the actions implemented to manage the spread of COVID-19 
improved the atmospheric conditions and biological and physical characteristics of the study 
areas. The findings of this study can better inform researchers, policymakers, decision-makers, 
town planners, and other stakeholders in urban planning as to the contributions that they could 
make in formulating future policies and implementing actions to enhance the sustainable 
development of cities.  

 

5. Conclusion  

This study used multitemporal Landsat satellite images to analyse LSTs in two South 
African cities, namely, Polokwane, and Johannesburg, before, during, and after the COVID-19 
lockdowns in 2020, 2021, and 2022, respectively. The UHIs and UHSs in Polokwane and 
Johannesburg were investigated and compared over the entire study period (i.e., before, during, 
and after the COVID-19 lockdown). Linear regression models were employed at the pixel level 
to examine the dynamic associations between both the NDVI and NDBI and LSTs. This study 
found inverse correlations between NDVI and LST, and positive correlations between NDBI 
and LST. The lockdown, which was put in place in early March 2020, was a vital step taken 
by the government of South Africa to prevent the COVID-19 virus from spreading. The 
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monitoring of the satellite imagery indicated that this lockdown helped lower LSTs in the two 
study areas. For both cities, the highest LST values were for the built-up class before the 
COVID-19 lockdown in 2020; conversely, the lowest values were for the waterbody class 
during the lockdown in 2021. Overall, the COVID-19 lockdown had a notable impact on 
reducing the LSTs in Polokwane and Johannesburg. The decline in LSTs was due to the 
cessation of industrial activities, transportation, and other human activities, which all resulted 
in improved air quality that in turn mitigated the effects of the UHIs. 

  

6. Future research 

Future research will aim to retrieve LSTs using other methods and/or remote sensing data 
with different spatial resolutions. Furthermore, an attempt will be made at data fusion, which 
would depend on the compatibility of multi-source remote sensing and sophisticated data 
integration techniques. In addition to linear regression, novel statistical methods will be 
employed to assess the correlations between other LULC indices and LST. Finally, error 
matrices only estimate classification accuracy by applying samples acquired from the field. As 
such, biased conclusions can be made from such data. Therefore, other metrics of model 
performance, such as Matthew’s Correlation Coefficient, the balanced accuracy method, and 
the F-sore bias score can be applied.  
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