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Abstract  

This study determined the variability of wildfire susceptibility in Queen Elizabeth National Park 
(QENP) in space and time. QENP is a protected area in Western Uganda. MODIS and VIIRS data for a 
six-and-a-half-year period from January 2015 - June 2021 were obtained to create an inventory of past 
fires. From these fires, spatial and temporal patterns were derived from exploratory spatial data 
analyses. The Weights of Evidence (WOE) method, a Bayesian form of statistical modelling, was used to 
determine the relationship between fires and wildfire conditioning factors, as well as to model wildfire 
susceptibility. Results of the study showed that the occurrence of wildfires within the study area vary 
seasonally. Sixty-one percent (61%) of the fires were observed to occur in the first dry season of the year, 
while thirty-one percent (31%) of the fires were observed to occur in the second dry season. Among the 
wildfire conditioning factors, altitude, vegetation (as measured by NDVI), and proximity to lakes 
indicated the highest correlation with the occurrence of fires. These conditions were attributed to 
physiographic influences, water stress in vegetation, and the socio-economic activities of the fishing 
villages around the lakes respectively. From the derived wildfire susceptibility maps, varying levels of 
wildfire susceptibility were determined. Proportional values of 19% and 20% of the study area were 
classified with very high and high susceptibility levels respectively. The remaining 61% of the study area 
was covered by moderate, low, and very low susceptibility levels. The study results provided vital findings 
about the seasonal patterns of wildfire occurrence, factors influencing the occurrence of wildfires and 
the locations most susceptible to wildfires. This information will enable managers to allocate fire 
management resources optimally to efficiently mitigate against wildfires within QENP. 
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1. Introduction 

Wildfires are considered as one of the major threats to vegetated areas (Sánchez et al., 2018). They 
are a common phenomenon in most of the vegetated landscapes in Sub-Saharan Africa (SSA) (Wimberly 
et al., 2024). This is attributed to the existence of vast savannah grasslands that support burning, as well 
as a fire-conducive climate that comprises a chronic rhythm of wetting and drying that allows for the 
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growth of vegetation in the wet season and its withering in the dry season, thus preparing it for burning. 
The savannahs and forests of West African countries, the East and Central African grasslands, and the 
fynbos biomes of the Cape region in Southern Africa are some of the notable parts of the SSA region that 
frequently experience wildfires (Global Fire Monitoring Center, 2004). In these regions, Protected Areas 
(PAs) such as national parks are some of the landscapes that have been increasingly affected by wildfires 
(Nhongo et al., 2019; Plumptre et al., 2010).  

Wildfires impact both wildlife and vegetation, leading, amongst their other effects, to animal deaths 
and loss of biodiversity (Jaafari et al., 2019; Jones et al., 2022; Xue et al., 2024). To counteract the 
adverse effects of wildfires, authorities in PAs are required to effectively implement fire management in 
the form of prevention and suppression practices, with much emphasis on the former (Adab et al., 2015). 
Fire prevention involves proactive practices that are applied before wildfires occur, while fire suppression 
involves reactive measures aimed at extinguishing active wildfires. However, for the effective application 
of fire prevention and suppression mechanisms to be carried out, knowledge regarding fire behavior and 
to identify fire-prone areas is necessary (Food and Agriculture Organisation of the United Nations, 2006). 
Unfortunately, PAs in SSA often lack updated information, not only concerning the behavior and pattern 
of fires, but also the areas susceptible to wildfires (DeMeo et al., 2010).  

The availability of detailed, reliable maps and periodic updates of them can provide vital information 
to facilitate effective wildfire management (Sánchez et al., 2018). This can be accomplished through the 
application of the remotely sensed satellite products currently available (Global Fire Monitoring Center, 
2004). These can be used to study the pattern and behavior of fires, as well as to identify fire-prone areas 
in various landscapes through wildfire susceptibility modelling. Thus, wildfire susceptibility modelling 
becomes a vital tool for landscape managers in the identification of locations posing high wildfire risks 
and leading to the optimization and allocation of resources for fire management (Nhongo et al., 2019). 

Wildfire susceptibility modelling typically starts with the identification and creation of a database 
containing records of past fire events (Jaafari et al., 2019; Xue et al., 2024). The documenting of historical 
fire events can be carried out by using a variety of data sources, such as satellite imagery, aerial 
photography, observations made and records taken during fieldwork, and historical archives (Jaafari et 
al., 2017). However, satellite data is more advantageous as it presents opportunities for global coverage 
on different spatial and temporal scales (Verbesselt et al., 2006; Xue et al., 2024). Active fire datasets 
that can be used in the documentation of past fire events can be obtained from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) hotspot product and the Visible Infrared Imaging Radiometer Suite 
(VIIRS). The daily and global availability of MODIS and VIIRS fire data makes them most suitable for 
application in fire studies (Molaudzi & Adelabu, 2018).  

Upon documentation of historical fire events, there is a need to ascertain the wildfire conditioning 
factors and identify the prospective relationships between the conditioning factors and past fires (Jaafari 
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et al., 2019). Determination of potential relationships between influential factors and historical fires can 
be achieved by employing either knowledge-based or data-based models. Data-based models are 
preferred as knowledge-based models are subjective owing to their reliance on expert opinion (Adab et 
al., 2015). Examples of methods with the widest application in wildfire susceptibility modelling include 
logistic regression (Chuvieco & Congalton, 1989; Pourghasemi, 2015), Analytical Hierarchy Process 
(AHP) (Jaafari et al., 2019; Kayijamahe et al., 2020)), the use of Frequency Ratio (FR) (Pourtaghi et al., 
2016), the application of the Weights of Evidence (WOE) method (Hong et al., 2019; Jaafari et al., 2017), 
Evidential Belief Function (EBF) (Nami et al., 2018), and the Random Forest (RF) method 
(Ghorbanzadeh et al., 2019). 

The main objective of this study was to determine the spatio-temporal variability of wildfire 
susceptibility in the case of Queen Elizabeth National Park (QENP) in Uganda using MODIS and VIIRS 
active fire data. This was accomplished by characterizing the relationship between wildfire conditioning 
factors and fires in a spatio-temporal perspective by using the WOE method, as well as by modelling 
wildfire susceptibility. The study was aimed at providing vital information regarding the behaviour and 
pattern of wildfires and at identifying the fire-prone areas within QENP for the effective management of 
wildfires.  

 

2. Study Area  

The study was carried out in the QENP, a PA located in Western Uganda (Figure 1).  

QENP covers 1,978 km² and is crossed by the equator in the Albertine Rift Valley (Uganda Wildlife 
Authority, 2012a). It lies between 0º 15’N and 0º 45’S latitude and 29º 35’E and 30º 20’E longitude. Like 
all national parks and wildlife reserves in Uganda, QENP is managed by the Uganda Wildlife Authority 
(UWA). The park is uniquely divided into northern and southern sections by the Kazinga channel, a 
waterway that connects Lake Edward on the western end of the park and Lake George on the eastern end.  
QENP is part of a much larger transboundary grassland-forest-wetland ecosystem (CARE-Uganda, 
2007). QENP comprises of two major vegetation types and lies at their convergence. These are the 
Central African rainforest and the East African grasslands, both consisting of diverse habitats, including 
open grasslands, thickets, thick bush, forests, wetlands, and a lakeshore of 250 Km  (UWA, 2012b). 
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Figure 1: Location of Study Area 

3. Data and Methods 

3.1. Data and Wildfire Conditioning Factors 

3.1.1. Inventory of Past Wildfire Events 

MODIS hotspot and VIIRS active fire products were used to compile the inventory of fire events. 
Both products were used in the study to not only ascertain and exploit their merits, but also provide the 
basis for a comparison. The fire events served as the dependent (exploratory) variable for the wildfire 
susceptibility modelling. Since most fires in the study area are human induced, with the majority 
unintentional (UWA, 2012), it was assumed that all the fires under investigation were wildfires. The 
MODIS hotspot and VIIRS active fire products were obtained from the FIRMS Portal 
(http://earthdata.nasa.gov/firms) as points in shapefile format. The fire datasets were downloaded for the 
period, January 2015 - June 2021. A study period of six-and-a-half-years was selected because it allowed 
for the acquisition of a substantial number of fire events to establish meaningful statistical relationships 
with fire conditioning factors.  
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3.1.2. Wildfire Conditioning Factors 

The wildfire conditioning factors served as independent (explanatory) variables for the susceptibility 
modelling. From the various studies, however, there is no clear agreement on which wildfire conditioning 
factors are the most useful for modelling wildfire susceptibility (Hong et al., 2019). Different studies 
employ conditioning factors based on the landscapes they study. Based on studies (Adab et al., 2015; 
Ghorbanzadeh et al., 2019; Hong et al., 2019; Jahdi et al., 2016; Kayijamahe et al., 2020; Kganyago & 
Shikwambana, 2019), the availability of data and the nature of the study area, potential wildfire 
conditioning factors included the topographic factors of altitude and aspect; precipitation; vegetation (as 
measured by the Normalized Difference Vegetation Index (NDVI)); and proximity to roads, waterbodies, 
and settlements.  

Altitude and aspect were derived from a Digital Elevation Model (DEM) generated from Advanced 
Space-borne Thermal Emission and Reflection Radiometer (ASTER) data. The 30m resolution ASTER 
data were obtained from the USGS geoportal (https://earthexplorer.usgs.gov/).  Precipitation data for the 
years 2015-2019 were obtained from the Climate Hazards Group InfraRed Precipitation with Station data 
(CHIRPS) portal (https://www.chc.ucsb.edu/data/chirps). NDVI was derived from 30m resolution 
Landsat data. The cloud-free Landsat Enhanced Thematic Mapper (ETM+) (Landsat 7) and the 
Operational Land Imager (OLI)-Landsat 8 data were obtained from the USGS geoportal. The study area 
was covered by images in two scenes and therefore two images were downloaded for each year. Vector 
datasets for roads, waterbodies (lakes and rivers), and settlements (villages) were obtained from an 
existing database at the Uganda Bureau of Statistics (UBOS). The vector datasets were used to derive 
proximity factors.  

The ASTER DEM was subset to extract data for the study area DEM. From this, altitude data were 
extracted, after which slope, and aspect were computed. The precipitation data were in grid format at 
0.05° resolution, with each image providing average annual precipitation values. The grid data were then 
projected to WGS 1984 UTM zone 36 N and subset to extract the study area precipitation raster. The 
subset images were then resampled to 30 m to match the resolution of the other variables. The yearly 
resampled precipitation images were averaged to obtain the mean precipitation values of the study area 
over the study period. Preprocessing of the Landsat images was carried out and this included gap filling 
(for Landsat 7), radiometric calibration, atmospheric correction, layer stacking, mosaicking, and image 
registration. The NDVI was computed from the geometrically corrected images for each year of the study. 
The resultant NDVI images for each year were then subset to extract the values for the study area. The 
yearly images were then averaged to obtain the mean NDVI values of the study area over the study period. 
To determine proximity to roads, lakes, rivers, and settlements, Euclidian distance computations were 
carried out to generate raster datasets with a grid size of 30 m. The raster datasets were then subset 
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according to the study area. All wildfire conditioning factors were processed as continuous variables. The 
continuous datasets were then categorized with ranges of values suited to the study area. 

3.2. Methods  

3.2.1. Spatio-temporal Analysis of Fire Data 

Based on the locations of fire events, queries were then carried out to determine any patterns in their 
spatial distribution. Fire dataset attributes, such as the date of collection, were then used in temporal 
analyses by building attribute-based queries. Exploratory spatial data analyses were then carried out on 
the results of the queries, thereby leading to the creation of histograms to represent monthly and annual 
distributions of fire events. Temporal patterns and trends were then derived from the histograms. 

3.2.2. Assessment of Multi-collinearity 

For applications of the WOE model, the explanatory variables should not exhibit multi-collinearity. 
Multi-collinearity exists when two or more explanatory variables are strongly correlated. To ensure that 
the explanatory variables considered are not correlated, a multi-collinearity diagnostic was carried out.  
Determination of Variance Inflation Factors (VIF), which is the most common method to check for multi-
collinearity among explanatory variables (Jaafari et al., 2017), was applied. Variables with values of VIF 
>5 exhibit multi-collinearity (Jaafari et al., 2018).  

3.2.3. Determining the Relationship between Wildfire Events and Wildfire Conditioning Factors using 
the WOE Method 

The WOE method was used to determine the relationship between fire events and the fire conditioning 
factors by calculating a set of weights, with one weight for each factor category, as elucidated by Lee et 
al. (2012). The WOE method was selected because it uses a straightforward analytic framework (Jaafari 
et al., 2019).  

The weight for a given wildfire conditioning factor (T) was computed based on the presence or absence 
of a wildfire event (F) (Lee et al., 2012). A positive weight (W+) indicated the presence of a causative 
factor for a wildfire, and the magnitude of this weight was an indication of the positive correlation 
between the presence of a causative factor and a wildfire event (Ozdemir & Altural, 2013). The positive 
weight was computed using Equation [1]. A negative weight (W-) indicated an absence of a causative 
factor for a wildfire, and the magnitude indicated a negative correlation between the presence of a 
causative factor and a wildfire event (Ozdemir & Altural, 2013). The negative weight was computed 
using Equation [2]. 

W+ =             [1] 
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W- =             [2]

           

The difference in weights, also known as the weights contrast (C), was then computed to reflect the 
overall association between the conditioning factor category and the wildfire event. C was computed 
using Equation [3]. A contrast value equal to zero indicated that the considered class of conditioning 
factors was not significant to the analysis. A positive contrast indicated a positive spatial correlation, and 
the opposite (vice versa) for a negative contrast (Lee et al., 2012). The final weight (Wfinal), also known 
as the studentized value of C for a given class of conditioning factor, was then calculated using Equation 
[4]. For a given conditioning factor, the higher the value of Wfinal, the higher the significance of the 
category, and vice versa (Jaafari et al., 2017). The associations and levels of significance between wildfire 
conditioning factors and wildfire locations were then derived from C and Wfinal respectively.  

 𝐶𝐶 = 𝑊𝑊+ −𝑊𝑊−            [3] 

             [4] 

            [5] 

Where S(C) is the standard deviation of the contrast given by Equation [5]. 

3.2.4. Modelling Wildfire Susceptibility and Validation 

Wfinal was used to produce multi-category weighted factors for all explanatory variables. This was 
done by assigning the values of Wfinal to the corresponding explanatory variable category. To obtain the 
first model, the multi-category weighted explanatory variables were overlaid and numerically added to 
produce fire susceptibility index maps.  

The Receiver Operating Characteristic (ROC) Area Under the Curve method, known as the ROC-
AUC method, was used to validate the model results. The method was selected because it is commonly 
used for characterizing the quality of susceptibility approaches (Ghorbanzadeh et al., 2019; Hong et al., 
2018). A ROC curve plots changes in true positive prediction rates versus false positive prediction rates 
and starts at the points (0,0) and reaches (1,1) (Jaafari et al., 2017). The highest possible area under the 
curve, where AUC =1, represents the classification in which all fire pixels and all non-fire pixels are 
correctly predicted. AUC values of <0.6 signify a poor, 0.6–0.7 a moderate, 0.7–0.8 a good, 0.8–0.9 a 
very good, and >0.9 an excellent model performance (Gralewicz et al., 2011). Validation was carried out 
on all susceptibility index maps using the ROC-AUC method to obtain the most optimally performing 
model. 

 To evaluate the impact of each explanatory variable on wildfire susceptibility and assess uncertainties, 
the process was repeated, omitting one variable at a time.  At every iteration, a new model was created, 
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and a susceptibility index map generated. For each developed model, validation was carried out by 
computing the ROC-AUC to check its performance. The model with the best performance was then used 
to produce the final susceptibility map for MODIS and the VIIRS-derived WOE data.  

 

4. Results and Discussion 

4.1. Location and Distribution of Fires 

A total of 534 and 1,585 fire events were obtained from the MODIS and VIIRS datasets respectively. 
For the MODIS data, 374 fire events (70% of the total) were randomly obtained to be used for model 
training, and 160 fire events (30% of the total) for model validation. Similarly, for the VIIRS data, 1,110 
fire events (70% of the total) were randomly obtained to be used for model training and 475 fire events 
(30% of the total) for model validation. VIIRS data comprised three times more fire events than the 
MODIS data. The higher number of fires is due to an improvement in the fire detection rate achieved by 
the VIIRS instrument. The increased fire detection rate is because of the higher spatial resolution (375m) 
of the VIIRS, and the unique sampling scheme as compared to the one-kilometer spatial resolution of the 
MODIS model (Schroeder et al., 2014). 

As previously discussed, the study area is divided into northern and southern sections by the Kazinga 
channel waterway; 317 MODIS fire locations (60% of the total) and 916 VIIRS fire locations (58% of 
the total) were observed in the northern section, while 217 MODIS fire locations (40% of the total) and 
669 VIIRS fire locations (42%) were observed in the southern section (Figure 2).  Most fire locations 
were observed in the northern section of the park. This concurs with the findings of previous studies by 
Jaksic-Born (2009) and observations by Uganda Wildlife Authority (2012). Areas north of the Kazinga 
channel generally experience frequent fires owing to the grassland expanses which are much larger than 
those of the southern areas (Uganda Wildlife Authority, 2012a).  

For the duration of the study period, fires observed in the study area presented with  two peak seasons, 
namely, January - March (with January experiencing the most fires) and June - August (with July 
experiencing the most fires) in accordance with previous studies (Jaksic-Born, 2009; Plumptre et al., 
2010) (Figure 3). The January - March season was observed to experience the greater number of fires as 
compared to the June - August season. From the MODIS data, the January - March season experienced 
326 fires (approximately 61% of the total) and the June - August season experienced 168 fires 
(approximately 31 % of the total).  From the VIIRS data, the January - March season experienced 941 
fires (approximately 60% of the total) and the June - August season experienced 496 fires (approximately 
31 % of the total). It should be noted that these two peak fire seasons coincide with the two dry seasons 
that the study area experiences.  These dry seasons are characterized by high temperatures that aid in the 
drying out of the vegetation, hence providing conducive conditions for it in which to burn. The dry 
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seasons also coincide with the periods in which farmers in communities within the park prepare their 
lands for cultivation in the subsequent wet season. These preparations involve the burning of dried stalks 
and vegetation in a bid to clear their lands for plowing. Fires related to these burning practices can easily 
spread into the park, thereby resulting in wildfires. 

a)                                                                 b) 

  

Figure 2: Fire Distribution: a) MODIS model; b) VIIRS model 

4.2. Wildfire Conditioning Factors  

The wildfire conditioning factors are shown in Figure 4. Water bodies were split further into lakes and 
rivers to derive distance from lakes and distance from rivers, each variable considered as an independent 
wildfire conditioning factor.  

4.3. Assessment of multi-collinearity  

Variance Inflation Factor (VIF) values derived using both MODIS and VIIRS data indicated that all 
factors were below the critical value of five (5) and therefore none of the factor was correlated. Therefore, 
following these results, all variables were retained for modelling. 
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Figure 3: Average Monthly Distribution of Fires (2015-June 2021) 

4.4. Relationship between Wildfire Conditioning Factors and Wildfire Locations 

The spatial relationships and significance levels of the relationships between the wildfire conditioning 
factors and the wildfire locations were derived from the WOE contrast values (C) and final weights 
(Wfinal) respectively (Tables 1). The MODIS-derived C values showed relatively similar relationships for 
all the variables as compared to the VIIRS-derived C values.  Generally, the VIIRS-derived Wfinal weights 
exhibited higher significance levels for similar variable categories as compared to the MODIS-derived 
Wfinal weights. The availability of more fire locations by VIIRS allowed for the accessing of more data to 
determine the spatial relationships between the wildfire conditioning factors and wildfires. As a result, 
more significant relationships were observed as compared to the MODIS-derived ones. 
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a)                                                                    b) 

  

c)                                                                    d) 
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e)                                                                    f) 

  

Figure 4: Wildfire Conditioning Factors: a) Altitude; b) Aspect; c) Vegetation (as measured by the 
NDVI); d) Precipitation; e) Distance from Settlement; f) Distance from Road; g) Distance from Lake; 

h) Distance from River 
 

Table 1: WOE-derived Relationships between Wildfire Conditioning Factors and Wildfire Events 

V
ar

ia
bl

e 

Class Number 
of 
Pixels 

% of 
Pixels 

MODIS 
Fire 
Events 

% of 
MODIS 
Fire 
Events 

VIIRS 
Fire 
Events 

% of 
VIIRS 
Fire 
Events 

C 
 
(MODIS) 

C 
(VIIRS) 

Wfinal 
(MODIS) 

Wfinal 
(VIIRS) 

A
sp

ec
t 

F 630229 32.32 110 29.41 350 31.53 -0.137 -0.036 -0.56 -0.16 
N 264046 13.54 47 12.57 159 14.32 -0.086 0.065 -0.26 0.21 
NE 61802 3.17 12 3.21 29 2.61 0.013 -0.199 0.02 -0.33 
E 245944 12.61 48 12.83 129 11.62 0.020 -0.093 0.06 -0.30 
SE 67348 3.45 13 3.48 36 3.24 0.007 -0.065 0.01 -0.11 
S 244367 12.53 48 12.83 149 13.42 0.027 0.079 0.08 0.25 
SW 65887 3.38 13 3.48 47 4.23 0.029 0.234 0.05 0.41 
W 287401 14.74 69 18.45 153 13.78 0.269 -0.078 0.86 -0.27 
NW 82731 4.24 14 3.74 58 5.23 -0.131 0.219 -0.23 0.43 

A
lti

tu
de

 (m
) 

<925 514021 26.36 166 44.39 534 48.11 0.802 0.951 3.21 4.05 
925 – 
950 716128 36.73 144 38.50 387 34.86 0.076 -0.081 0.32 -0.37 
950 – 
1000 485859 24.92 45 12.03 118 10.63 -0.886 -1.026 -3.16 -4.09 
1000 - 
1100 168419 8.64 15 4.01 60 5.41 -0.817 -0.504 -1.84 -1.33 
>1100 65328 3.35 4 1.07 11 0.99 -1.165 -1.242 -1.56 -1.96 

V
e

ge   <0.2 58546 3.00 3 0.80 15 1.35 -1.342 -0.815 -1.63 -1.27 
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0.2 - 0.5 1498700 76.87 340 90.91 1028 92.61 1.102 1.328 3.70 5.04 
>0.5 392509 20.13 31 8.29 67 6.04 -1.026 -1.367 -3.29 -4.89 

Pr
ec

ip
ita

tio
n 

(m
m

/A
nn

um
) 

<900 160216 8.22 38 10.16 129 11.62 0.234 0.384 0.58 1.02 
900 – 
1000 

729114 37.40 161 43.05 
466 41.98 

0.235 
0.192 

1.02 
0.89 

1000 - 
1100 

770250 39.50 135 36.10 
395 35.59 

-0.145 
-0.167 

-0.63 
-0.78 

>1100 290175 14.88 40 10.70 120 10.81 -0.378 -0.366 -1.16 -1.23 

D
is

ta
nc

e 
fr

om
 

Se
ttl

em
en

t (
K

m
) 0 – 5 808826 41.48 143 38.24 382 34.41 -0.136 -0.301 -0.59 -1.42 

5- 10 633510 32.49 152 40.64 485 43.69 0.352 0.478 1.48 2.15 
10 – 15 182846 9.38 43 11.50 165 14.86 0.227 0.523 0.60 1.48 
15 – 20 151162 7.75 26 6.95 60 5.41 -0.118 -0.386 -0.28 -0.97 
20 – 25 100076 5.13 4 1.07 12 1.08 -1.610 -1.600 -2.38 -2.97 
>25 73335 3.76 6 1.60 6 0.54 -0.874 -1.973 -1.31 -2.96 

D
is

ta
nc

e 
fr

om
 

R
oa

d 
(K

m
) 

0 – 3 852837 43.74 163 43.58 470 42.34 -0.006 -0.057 -0.03 -0.27 
3 – 6 484501 24.85 98 26.20 306 27.57 0.071 0.141 0.27 0.58 
6 – 12 369077 18.93 71 18.98 206 18.56 0.004 -0.024 0.01 -0.09 
12 – 18 174356 8.94 21 5.61 73 6.58 -0.501 -0.333 -1.20 -0.90 
>18 68984 3.54 21 5.61 55 4.95 0.484 0.352 0.83 0.63 

D
is

ta
nc

e 
fr

om
 

R
iv

er
 (K

m
) 

0 – 1.5 663439 34.03 122 32.62 365 32.88 -0.063 -0.051 -0.27 -0.23 
1.5 – 3 421578 21.62 89 23.80 289 26.04 0.124 0.244 0.46 0.97 
3 – 6 314362 16.12 70 18.72 198 17.84 0.181 0.122 0.60 0.43 
6 – 9 303591 15.57 57 15.24 147 13.24 -0.025 -0.189 -0.08 -0.65 
>9 246785 12.66 36 9.63 111 10.00 -0.308 -0.266 -0.88 -0.84 

D
is

ta
nc

e 
fr

om
 

La
ke

 (K
m

) 

0 – 3 725383 37.20 53 14.17 170 15.32 -1.278 -1.187 -5.02 -5.32 
3 – 6 565196 28.99 150 40.11 496 44.68 0.495 0.683 2.03 2.99 
6 – 9 307073 15.75 92 24.60 237 21.35 0.557 0.373 1.86 1.31 
9 – 15 270436 13.87 56 14.97 139 12.52 0.089 -0.118 0.28 -0.39 
>15 81667 4.19 23 6.15 68 6.13 0.405 0.401 0.74 0.78 

Generally, an increase in altitude was found to be inversely related to the occurrence of fires. This can 
be attributed to the fact that wildfires at higher altitudes are less severe in the light of the increased 
moisture resulting from higher rainfall. Thus, fires tend to be prevalent at lower altitudes (Ganteaume et 
al., 2013). As indicated by the Wfinal values, the correlation between aspect and fire incidents was found 
to be weak. Aspect determines the amount of solar energy received in an area (Pourghasemi, 2015) which 
depends on the latitude of an area or its location with respect to the equator and the season in which it 
finds itself the time of year and whether it is in the Northern or Southern Hemisphere. The study area 
provided a unique scenario by virtue of its being crossed by the equator, with portions in both the 
Northern and Southern Hemisphere. Thus, due to proximity of the study area to the equator, weak 
correlations were observed between aspect and fire occurrence. 

Locations with NDVI values ranging between 0.2 - 0.5 experienced the highest incidence of fires, with 
90.9% and 92.6% being MODIS and VIIRS fires respectively. Indeed, these same locations were strongly 
associated with the occurrence of fire. This is because low NDVI values point to water stress in 
vegetation, thereby implying high flammability (Bengtsson et al., 2021; Verbesselt et al., 2006). Increase 
in mean annual precipitation was negatively correlated with the occurrence of fires. Areas with low 
precipitation were associated with a high incidence of fires. As indicated by their negative Wfinal values 
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for both MODIS and VIIRS data, locations with the highest mean annual precipitation were least 
associated with the occurrence of fires. Precipitation contributes to the amount of moisture in the soil and 
vegetation. An increase in moisture is negatively correlated with the flammability of the combustible 
vegetation (Nhongo et al., 2019).  

Locations within five to fifteen kilometers of a settlement were associated with the occurrence of fires. 
Their positive Wfinal values could be attributed to this factor. These were characterized as grazing areas 
for livestock − a common agricultural activity within the study area. Pastoralists are known to set fire to 
the pastures at these locations to promote the growth of fresh grass (Uganda Wildlife Authority, 2012a). 
Distance from roads exhibited an extremely low significance in terms of its correlation with the 
occurrence of fire. Note that national roads and not smaller feeder and trail roads were considered in this 
study. In a previous study, Jaafari et al. (2017) indicated that local and feeder roads could cause human 
activities to exert a greater influence on fire ignition in that they more fully allow for a wider range of 
human mobility. This would lead to a stronger correlation between proximity to roads and the occurrence 
of fire.  

Wfinal values for both MODIS and VIIRS models indicated that locations close to water bodies are not 
associated with the occurrence of fire. Settlements further away from waterbodies exhibited positive 
Wfinal values, thereby indicating an association between this variable and fire incidents. Settlements near 
waterbodies, such as lakes and rivers, owe their location and development as settlements to fishing as the 
major economic activity. Activities of this nature are not associated with fire ignitions. Thus, such areas 
were negatively correlated with the occurrence of fires. However, Uganda Wildlife Authority (2012a) 
states that land further away from these fishing villages is used for other activities, including agriculture, 
the collection of firewood, and beekeeping, to cater for the ever-increasing populations in these 
communities which use fire for various purposes. 

Vegetation (as measured by the NDVI), altitude, and distance from the lake were variables showing 
highly significant correlations with fire occurrences. This could be attributed to the existence of vast 
grasslands that provide the fuel for fires, the physiographic influence of altitude, as well as the socio-
economic activities related to fishing villages. Aspect, precipitation, distance from a settlement, distance 
from a road, and distance from the river were variables showing extremely weak or insignificant 
correlations with the occurrence of fire. 

4.5. Wildfire Susceptibility Index Maps, Validation and Variable Importance 

The generated index maps, using natural breaks (Jenks), were classified into five classes of 
susceptibility, ranging from Very Low to Very High (Ghorbanzadeh et al., 2019; Hong et al., 2019). The 
success and prediction rates for all MODIS and VIIRS index maps are presented in Tables 2 and 3.   

 
Table 2: MODIS AUC Success and Prediction Rates 
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Excluded Variable AUC Success Rate (%) AUC Prediction Rate (%) 
None 69.9 66.1 
Altitude 68.6 65.1 
Aspect 69.8 66.4 
Vegetation (as measured by the NDVI) 68.9 64.1 
Precipitation 69.6 64.6 
Distance from Settlement 69.7 65.8 
Distance from Road 69.8 66.0 
Distance from Lake 65.4 64.2 
Distance from River 69.7 66.3 

Table 3: VIIRS AUC Success and Prediction Rates 

Excluded Variable AUC Success Rate (%) AUC Prediction Rate (%) 
None 70.3 68.2 
Altitude 69.9 67.3 
Aspect 70.3 68.3 
Vegetation (as measured by the NDVI) 68.3 67.3 
Precipitation 70.0 67.7 
Distance from Settlement 69.7 67.7 
Distance from Road 70.2 68.3 
Distance from Lake 66.8 64.9 
Distance from River 69.9 68.1 

Since two independent datasets (training and validation) were used for validation, two performance 
metrics were derived, namely, the success rate for the training data and the prediction rate for the 
validation data. From the ROC assessment, AUC values indicated that the performance of the VIIRS-
derived model is slightly better than that for the MODIS-derived model. This was expected owing to the 
higher spatial resolution of the VIIRS-derived model. With all the variables included, a 69.9% success 
rate and a 66.1% prediction rate were achieved for the MODIS-derived model. These results indicate a 
model that performs moderately well (Gralewicz et al., 2011). On the other hand, the VIIRS-derived 
model achieved a success rate of 70.3% and a prediction rate of 68.2%, thereby indicating a good model 
performance. 

The performance of the MODIS-derived and VIIRS-derived models with all variables included, was 
at its best.  As such, it was used for the generation of the wildfire susceptibility maps for both MODIS 
and VIIRS which are shown in Figure 5. Except for the northern end of the study area, most of the MODIS 
and VIIRS fires occurred within the regions classified with susceptibility levels of high and very high. 
This is consistent with the assumption about the application of the WOE model that future fire events are 
more likely to occur in areas with conditions like those that contributed to past events (Jaafari et al., 
2017). From the results, 18 - 19% of the study area is extremely susceptible to wildfires. This implies 
that 376 Km2 of the 1,978 Km2 of the study area are at a very high level of risk for wildfires. A further 
20% (396 Km2) of the study area proved to be susceptible to fire, albeit at a reduced risk level. On the 
other hand, 42% of the study area, accounting for 831 Km2, was not susceptible to wildfires.     

a) b) 
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Figure 5: Wildfire Susceptibility: a) MODIS-derived model, b) VIIRS-derived model 

5. Conclusion and Recommendations 

The occurrence of fires within the study area is largely influenced by the season of the year, with most 
fires experienced during the dry season. This study provided information on when to apply fire prevention 
practices, such as prescribed burning and the provision of sensitized information against practices that 
could lead to wildfires. Furthermore, the MODIS and VIIRS datasets enabled the study of the distribution 
of fires from a spatio-temporal perspective.  Additionally, despite the larger number of wildfires detected 
by VIIRS, both sensors identified similar wildfire susceptibility regions. The spatial distribution of fires 
within the study area not only underscores previous observations, but also indicates which places to 
prioritize while implementing wildfire management practices. Additionally, NDVI, that measures 
vegetation; altitude; and proximity to lakes proved to be the most influential wildfire conditioning factors 
in determining the occurrence of wildfires.  

The wildfire susceptibility results enabled a narrowing-down of portions of the study area that were 
prone to the occurrence of wildfires. Given that the study area covers a large area (1,978 Km2), it was 
necessary to determine those portions on which to focus the limited fire management resources. Indeed, 
the wildfire susceptibility analysis indicated that areas with very high and high levels of susceptibility 
occupy 19% and 20% of the study area respectively. Therefore, the limited fire prevention and wildfire 
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suppression resources should be focused on areas with their priorities set according to the level of 
susceptibility since this is an indication of the likelihood that a fire would occur. 

As recommendations, the study can be upscaled and used to develop early warning systems at the 
onset of the wildfire season. This can also be extended and applied to other landscapes with similar fire 
hazard issues. Future studies should also explore the inclusion of other factors that are documented to 
cause fires in the study area such as poaching. In the case of wildfire management, locations in the study 
area with high levels of susceptibility to fire should be prioritized. Owing to the dynamic nature of 
wildfire conditioning factors, the results pertaining to areas that are susceptible to wildfires are subject to 
change over time. This calls for the undertaking of similar studies periodically to better capture the current 
conditions.  
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