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 ABSTRACT 

The quantification of the pattern and spatial distribution of soil organic carbon (SOC) is 
fundamental to understanding many ecosystem processes. This study aimed to apply ordinary 
kriging (OK) to model the spatial distribution of SOC in Chad. A total of 995 sampling locations 
from the region were used to extract soil organic carbon from three raster layers. Those raster 
layers represented the SOC of 0-5 cm, 5–15 cm, and 15-30 cm of soil horizon and were 
downloaded from the SoilGrids website. The mean value of the soil carbon derived from the 
three horizons was used as 0-30cm horizon data and analysed using R-4.1.3 version software 
and ArcGIS 10.5. Different variogram models were first examined on the variogram cloud, and, 
based on RMSE, MSE, and MAE criteria, the best fit was selected. The results indicated that 
the Gaussian model is the best fit to the data, with 27.84, -3.35, and 20.95 obtained, 
respectively, for RMSE, MAE, and ME. The short-range spatial dependence of SOC was strong, 
with a nugget close to zero. The spatial dependency of the data was medium, with a nugget-to-
sill ratio of 0.36. The southern portion of the country has a higher concentration of SOC than 
the northern portion. It can be concluded that the generated map could serve as a proxy for 
SOC in the region where evidence of spatial structure and quantitative estimates of uncertainty 
are reported. Therefore, the maps produced can be used for many applications, including soil 
sampling optimization. 
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1. INTRODUCTION 

Agriculture is the main source of financial income for almost 80% of the poor population. It 
remains a major sector in the economies of West African countries (Guèye, 2003). For good 
physical and mental health, people need to consume healthy and rich food. However, the 
variability of soil fertility caused by climate change effects alters nutritional quality, yield, and 
crop productivity (Razakarison, 2013), thus increasing the risk of food insecurity (N'guessan & 
Bernard, 2012). Also, there is strong demographic pressure that requires increased agricultural 
yields. To solve this problem, many farmers turn to cultivation practices involving the excessive 
use of chemical fertilizers. The knowledge of the specific location where fertilisers are needed 
on a given farm is important for soil fertility management. According to Jennings et al. (2009), 
the understanding of the spatial distribution of soil fertility parameters for soil productivity is 
very important in agriculture. The need to boost crop productivity and reduce environmental 
risk is a source of great interest to scientists (Du et al., 2016). Soil chemical and physical 
parameters such as nitrogen (N), organic carbon (SOC), phosphorus (P), and potassium (K) are 
important macronutrients for plant growth (Li et al. 2016; Tripler et al. 2006). As demonstrated 
by Marklein and Houlton (2012), nitrogen inputs have been shown to accelerate phosphorus 
cycling rates across various ecosystems,  thus underscoring the complex interdependencies 
among these essential nutrients. Soil chemical and physical parameters such as nitrogen (N), 
organic carbon (SOC), phosphorus (P), and potassium (K) are important macronutrients for 
plant growth (Li et al., 2016; Tripler et al., 2006). In addition, they are the main elements of 
soil which help to describe soil fertility across a given space. According to Wei et al. (2008), 
soil organic carbon (SOC) is mostly used to characterize soil quality in ecological modeling 
and environmental prediction for precision agriculture. According to Gouri et al. (2016), 
knowledge of the SOC spatial pattern offers tools for evaluating soil fertility and sustainable 
agriculture. It is also applied in natural resource management (Zhang et al., 2012, Liu et al., 
2014). However, many problems affect the spatial variability evaluation of SOC.  One of the 
problems is its higher spatial variability in a soil unit (Cerri et al., 2000). In addition, the analysis 
of the soil sampling data is very costly. Despite these aspects, adequate information about the 
spatio-temporal behavior of soil parameters is needed (Chabala et al., 2017). This necessitates 
regional studies that allow for the refining of global estimates, which are obtained from 
aggregated regional data (Clothing et al., 2013).  

Several studies have applied geostatistical methods (Kriging) to evaluate soil organic carbon 
concentrations in various regions of the world. In the Iran region, Mahmoud Zadeh (2020) 
evaluated the spatial prediction of soil organic carbon using machine learning techniques in 
western Iran; Chabala et al. (2017) used kriging techniques to map soil organic carbon in 
Zambia; Owusu et al. (2020) predicted the spatial distribution of SOC in Ghana using a 
regression-kriging model; Zhang (2010) combined an explanatory variable with the kriging 
method to predict SOC spatial distribution in China; and Sreenivas et al. (2016) mapped the 
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concentration of SOC in India and Akpa et al. (2020) in Nigeria. Some of these studies  have 
shown that geostatistical methods such as ordinary kriging and regression kriging, enhanced by 
environmental variables, improve the accuracy of SOC predictions [Boubehziz et al., 2020; 
Addise et al., 2022]. These techniques are crucial, especially in regions prone to erosion and 
intensive agricultural practices. In Sub-Saharan Africa, geochemical properties and climatic 
variables have been identified as key predictors of SOC variation, thus providing crucial 
insights for land management strategies (von Fromm et al., 2021). It is globally observed that 
the spatial variation of SOC and other soil fertility parameters is under-evaluated in some 
African countries. This is widely due to the unavailability of freely accessible soil data. Since 
the introduction in 2016 of the SoilGrids soil data platforms, the application of soil data to 
understand the dynamics of each soil parameter has become more attractive. The objectives of 
this study are to apply ordinary kriging to model the distribution of SOC in Chad based on 
SoilGrids data.  

Our study provides vital information for agricultural producers who require a precise 
understanding of the spatial distribution of SOC to optimize the application of soil amendments, 
reduce costs, and increase agricultural productivity by adopting these geostatistical methods. 
By providing accurate SOC maps, we not only help improve soil management, but also plan 
agricultural interventions more sustainably, enabling farmers to better respond to the challenges 
of climate change and soil degradation. 
 
2. MATERIALS AND METHODS 

2.1. Study area 

Chad occupies an area of  about 1,284,000 km² in Africa. It extends between latitudes 7° and 
24°N and longitudes 13° and 24°E. It is bordered by Libya in the north, Sudan in the east, Niger, 
Nigeria, and Cameroon in the west, and by the Central African Republic in the south. The 
country is divided into three zones. The northern portion is a desert, while the middle portion 
accommodates an arid Sahelian belt. A fertile zone where the majority of the population lives 
(Sudanian savanna) is located in the south, where the annual rainfall ranges between 600 and 
1,300 mm. The primary sector here contributes to the livelihoods of almost 75% of the 
population living in rural areas. Agriculture is mainly dominated by cotton, sorghum, millet, 
maize, peanuts, rice, potatoes, gum Arabic, and tapioca (Ba, 2017), while  the animal livestock 
component comprises cattle, sheep, goats, and camels.  

https://en.wikipedia.org/wiki/7th_parallel_north
https://en.wikipedia.org/wiki/7th_parallel_north
https://en.wikipedia.org/wiki/24th_parallel_north
https://en.wikipedia.org/wiki/24th_parallel_north
https://en.wikipedia.org/wiki/24th_parallel_north
https://en.wikipedia.org/wiki/13th_meridian_east
https://en.wikipedia.org/wiki/13th_meridian_east
https://en.wikipedia.org/wiki/24th_meridian_east
https://en.wikipedia.org/wiki/24th_meridian_east
https://en.wikipedia.org/wiki/Desert
https://en.wikipedia.org/wiki/Desert
https://en.wikipedia.org/wiki/Sahel
https://en.wikipedia.org/wiki/Sahel
https://en.wikipedia.org/wiki/Sudanian_Savanna
https://en.wikipedia.org/wiki/Sudanian_Savanna
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Figure 1: Study area. 

 

2.2. Data source and analysis 

On a regular grid size of 100 m², 1,000 soil sample locations were projected on the map of 
Chad, thus ensuring comprehensive coverage and statistical representation across various soil 
and land use types. The geographic coordinates of each location were extracted and reported. 
To determine SOC values for soil horizons of 0-30 cm, three different soil organic carbon 
horizon rasters (0-5 cm, 5-15 cm, and 15-30 cm) were accessed and downloaded from the 
SoilGrids website (https://soilgrids.org/). Because the  soil horizons of 0–30 cm were not 
available on the SoilGrids website, the mean values of the three SOC horizons were computed 
from the three distinct layers at each point to effectively represent the SOC content. This 
methodological choice is supported by the fact that most plant roots in agricultural settings 
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extend up to 30 cm deep in the soil, making this depth particularly relevant for SOC analysis. 
In addition to that, owing  to the unavailability of soil organic carbon values at some locations, 
994 sampling points were finally retained for analysis (Fig.1). All procedures were performed 
using R-4.1.3 for statistical analysis and ArcGIS 10.5 for spatial mapping and analysis. After 
this preliminary screening, summary statistics (mean, standard deviation, skewness, kurtosis, 
minimum and maximum) were generated to provide a basic understanding of the characteristics 
of the data. The spatial distribution of SOC across the study area was conducted using ArcGIS 
10.5 (Jarnevich et al., 2018).  
 

 
Fig. 2: Location of sampling points recorded from the map of Chad and projected on the SOC 

horizon, 0-5cm. 
 

2.3. Ordinary kriging for the spatial distribution of SOC 

Ordinary kriging (OK) was employed to evaluate the spatial variability of SOC in Chad. 
This geostatistical interpolation method uses information related to a given phenomenon at a 
certain location to predict the value of a given phenomenon (in this case, SOC) at an unsampled 
location (Ryu et al., 2002). Its selection was based on its suitability for managing sparse data in 
large datasets, like those typical of environmental and soil studies (Nagle, 2010). The kriging 
process involves several steps: first, constructing a semi-variogram to model spatial 
dependence; second, using the semi-variogram model to estimate the kriging weights; and 
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finally applying these weights to predict SOC at unsampled points. Bhunia et al. (2018) 
provides a detailed comparison of GIS-based interpolation methods, further validating the 
choice of kriging for accurate spatial predictions. In addition to that, it is the most used kriging 
technique for soil property prediction (Yimit et al., 2011). The kriging process involves several 
steps: first, constructing a semi-variogram to model spatial dependence; second, using the semi-
variogram model to estimate the kriging weights; and finally, applying these weights to predict 
SOC at unsampled points. The accuracy of these predictions was quantified using cross-
validation techniques, in which predictions at known points were compared to actual measured 
values.  

Let us denote by 𝑍𝑍′(𝑥𝑥0), the predicted soil property at unsampled location x0, and by 𝜎𝜎𝑘𝑘2(𝑥𝑥0), 
the error variance of the prediction computed at each sampled location using measured values, 
𝑍𝑍(𝑥𝑥𝑖𝑖) (i = 1; 2; n), by means of the following equation: 

         𝑍𝑍′(𝑥𝑥0) = �𝜆𝜆𝑖𝑖𝑍𝑍(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

               (1)                  

Where: 

𝑍𝑍′(𝑥𝑥0): Estimated value of the soil property at location 𝑥𝑥0, 

𝜆𝜆𝑖𝑖: Kriging weight for the sampled location i, 

𝑍𝑍(𝑥𝑥𝑖𝑖): Measured value of the soil property at the sampled location i, 

n: Number of sampled locations. 

 
                    𝜎𝜎𝑘𝑘2(𝑥𝑥0) = 𝜇𝜇 + ∑ 𝜆𝜆𝑖𝑖𝛾𝛾(𝑥𝑥0 + 𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (2)  

Where: 

μ is the lag range constant, 

𝜆𝜆𝑖𝑖 is the kriging weight, and  

𝛾𝛾(𝑥𝑥0 + 𝑥𝑥𝑖𝑖) is the semi-variogram value corresponding to the distance between 𝑥𝑥0 and 𝑥𝑥𝑖𝑖. 

At this level, the semi-variograms represent the basic tool which is used to evaluate the 
spatial distribution of SOC. According to Nielsen and Wendroth (2003), it is expressed as 
follows: 

 

𝛾𝛾(ℎ) =  
1

2𝑁𝑁(ℎ)
� [𝑍𝑍(𝑥𝑥𝑖𝑖) − 𝑍𝑍(𝑥𝑥𝑖𝑖 + h)]2
𝑁𝑁(ℎ)

𝑖𝑖=1

                     (3) 

 



South African Journal of Geomatics, Vol. 13. No. 2, July 2024 

403 
 

Where  

𝛾𝛾(ℎ) is the semi-variance,  

h is the lag distance,  

Z is the parameter of the soil property,  

N(h) is the number of pairs of locations separated by a lag distance, h, 

𝑍𝑍(𝑥𝑥𝑖𝑖) and 𝑍𝑍(𝑥𝑥𝑖𝑖 + h) are values of Z at positions 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 + h (Wang and Shao, 2013). 

2.3.1. Model validation 

To evaluate the most appropriate SOC data, various semi-variogram models, including 
exponential, Gaussian, spherical, penta-spherical, and cubic models, are tested. The 
performance of the models was compared using statistical measures such as the mean absolute 
error (MAE), the mean error (ME), and the root mean square error (RMSE), expressed as 
follows:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�[𝑍𝑍(𝑥𝑥𝑖𝑖) − 𝑍𝑍′(𝑥𝑥𝑖𝑖)]
𝑁𝑁

𝑖𝑖=1

                   (4) 

𝑅𝑅𝑀𝑀𝑅𝑅 =
1
𝑁𝑁
�|𝑍𝑍(𝑥𝑥𝑖𝑖) − 𝑍𝑍′(𝑥𝑥𝑖𝑖)|
𝑁𝑁

𝑖𝑖=1

                       (5)  

𝑅𝑅𝑅𝑅 =  
1
𝑁𝑁
�𝑍𝑍(𝑥𝑥𝑖𝑖) − 𝑍𝑍′(𝑥𝑥𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

                            (6) 

With △ denoting the range (the difference between the maximum and minimum observed 
data), Z(xi) the measured value of SOC, and Z′(xi) the predicted value.  

 

3. RESULTS AND DISCUSSION 

3.1. Summary statistics 

The statistical analysis of soil organic carbon (SOC) data from SoilGrids data revealed that 
the mean SOC across Chad was 56.73 g/kg with a standard deviation of 33.49 g/kg. The 
distribution showed significant skewness (2.5 g/kg) and kurtosis (8.18 g/kg), indicating that 
SOC values in Chad are highly variable and not normally distributed. This variability is typical 
in large-scale environmental datasets and emphasizes the need for robust geostatistical methods 
to accurately model SOC distribution. 
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Table1: Summary statistic of soil organic carbon in Chad 
 

Statistics Observed values Transformed values 
(logarithmic) 

Mean 56.73 3.92 
Standard error 1.06 0.014 
Standard deviation 33.49 0.44 
Kurtosis 8.18 0.71 
Skewness 2.5 1.21 
Minimum 27 3.29 
Maximum 289 5.67 
Sample size 994 994 

 
 

3.2. The variography of the SOC and the kriging interpolation surface 

During the identification of the best-fit variogram model to the data, many models are plotted 
on the data variogram cloud (fig. 3a) and the appreciation parameters (RMSE, MAE and ME), 
reported in Table 2. The SOC variogram analysis proved to be critical in understanding the 
spatial dependency and in structuring the interpolation process. We evaluated several variogram 
models, including Gaussian, exponential, and spherical, to determine the best fit for our data. 
The Gaussian model was selected on the basis of its lowest root mean square error (RMSE) of 
27.84, its mean error (ME) of -3.35, and its mean absolute error (MAE) of 20.95, thus 
suggesting that it could provide the most reliable predictions with minimal bias (Boubehziz et 
al., 2020) (Fig. 3b and Table 2). This choice was justified by the ability of the model to handle 
the medium-range spatial dependence observed in our SOC data which is characterized by a 
nugget-to-sill ratio of 0.36, suggesting that while there is some degree of spatial randomness, 
much of the variability in SOC can be explained by spatial autocorrelation. This finding 
supports the use of ordinary kriging for SOC prediction in regions with similar spatial 
characteristics (Addise et al., 2022). According to Gambardella et al. (1994), the spatial 
distribution of specific data in each area could be judged to be high if the nugget-to-sill ratio is 
less than 0.25, medium if it is between 0.25 and 0.75, and low if it is higher than 0.75. Based 
on these values, it is observed that soil organic carbon across the Chad area has a medium spatial 
dependency level, with the nugget-to-sill ratio value of 0.37 falling between 0.25 and 0.75. The 
SOC spatial distribution map generated on the basis of SoilGrids data is shown in Fig. 4, and 
the prediction standard error map in Fig.5. The analysis of both figures shows that the southern 
portion of Chad is richer than the northern portion of the country. This could be justified by the 
fact that the northern portion is desert, while the southern portion is greener and used for 
agricultural activities.  
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3.2.1. Spatial Distribution of Predicted SOC Map 

The spatial distribution map of SOC generated from the Gaussian variogram model shows 
higher SOC concentrations in the southern portion of Chad, reflecting the region's higher soil 
fertility level and agricultural activity. This distribution pattern is consistent with the area's 
known climatic and soil conditions, where more humid conditions favor higher organic carbon 
content. The accuracy of the map was further confirmed through cross-validation, where the 
predicted SOC values closely matched the observed data at known sample locations. 
 

 
Fig 3: (a) Semi-variogram models applied on the SOC variogram cloud; (b) Best-fit semi-

variogram model for the spatial distribution of soil organic carbon in Chad. 
 

Table2: Choice of variogram model 
Models RMSE ME MAE 
Exponential 36.49 29.40 32.80 
Spherical 35.25 -11.80 22.32 
Gaussian 27.84 -3.35 20.95 
Logarithmic 6428.91 6428.52 6428.51 
Linear 32.22 -14.11 18.24 
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Fig. 4: Predicted spatial distribution map of soil organic carbon (SOC) in Chad, based on 

SoilGrids data and a fitted variogram. 
 

 
Fig. 5: Standard error map of SOC spatial prediction in Chad. 
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4. CONCLUSION 

This study has successfully illustrated the medium spatial autocorrelation level of soil 
organic carbon (SOC) across different regions of Chad, as characterized by a nugget-to-silt ratio 
of 0.37. This ratio indicates a significant but not overwhelming influence of spatial factors on 
SOC distribution, suggesting that both local site conditions and broader regional factors play 
roles in shaping SOC levels. Identification of such a level of spatial autocorrelation is critical 
for improving the precision of SOC predictions and guiding soil management practices that can 
be specifically tailored to different areas. The SOC spatial distribution maps generated by this 
study serve as valuable tools for stakeholders in agricultural planning and environmental 
management. By providing a clearer picture of SOC variability, these maps allow for  more 
targeted soil-sampling efforts, reducing the need for extensive field surveys and thus optimizing 
both the cost and efficiency of soil management practices. Furthermore, the maps can be used 
to identify potential areas for soil degradation or improvement, thus guiding interventions that 
can improve soil health and agricultural productivity. Additionally, the methodology applied in 
this study offers a replicable model for updating SOC maps within shorter timespans, an 
essential feature in the context of rapid environmental change and agricultural intensification. 
The ability to quickly update these maps ensures that they remain relevant and useful for 
ongoing soil management and conservation efforts. Our findings from this study not only 
contribute to the scientific understanding of SOC dynamics in Chad, but also provide practical 
tools and approaches that can significantly impact sustainable agricultural practices and 
environmental conservation strategies. Moving forward, it is recommended that further 
research be conducted to refine SOC prediction models and to explore the impacts of different 
land use practices on SOC levels, ultimately supporting the development of more resilient 
agricultural systems and improved land management policies. 
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