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Abstract 

Urbanization is directly related to changes in land surface temperature (LST). However, 
little is known about the spatial and temporal impact of urbanization on Urban Thermal 
Variance (UTV) in Umuahia. To this end, we quantified the spatiotemporal associations of 
UTV intensity between 1986 and 2017. We calculated LST change by using a land-use change 
map and computed the level of vegetation coverage based on the Normalized Difference 
Vegetation Index (NDVI), and the Urban Thermal Field Variance Index (UTFVI). In so doing, 
we could determine the ecological index from multi-temporal Landsat data. Results showed 
that, at the expense of other types of land cover, the built-up portions of the study area were 
progressively increasing in surface area with a concomitant increase in temperature. The 
transfer matrix developed in this study reveals that within the 31-year period there was a 
transformation of about 59.88% and 8.23% from vegetation and bareland, respectively, to 
built-up cover. The spatio-temporal distribution of surface temperature showed that the built-
up areas recorded the highest annual mean temperatures of 21.50oC in 1986, 22.20oC in 2001, 
and 26.01oC in 2017. Results of the UTFVI showed that more areas were undergoing 
deteriorating ecological change and imbalances, thus leading to an increase in the area 
affected by the strong heat island phenomenon, which accounted for 0.065% of the total study 
area in 1986, 1.02% in 2000, and 32.91% in 2017. We concluded that urbanization has 
increased the overall surface temperature of the city. However, owing to the re-location of the 
city’s main market, there has been a decline in UTFV in the vicinity of the city centre. The 
research findings indicate that the implementations of effective plans to mitigate the heat island 
effects are imperative for the promotion of sustainable urban development. 

 
1. Introduction 

Urbanization in sub-Saharan Africa is marked by the movement of people from rural areas 
to cities (Al-Yasiry, Al-Lami and Al-Maliki, 2023; Hoelscher et al., 2023).Urbanization in the 
humid tropics degrades the vegetation cover and transforms land surface dynamics to the extent 
that local and regional climates are modified (Lambin, Geist and Lepers, 2003, 2003; Q. Cao 
et al., 2020). Changes in local climate as a result of urbanization may lead to variations in the 
local surface temperatures. In cities, temperatures may rise several degrees higher than the 
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temperature of the surrounding rural areas,thus resulting in the urban heat island (UHI) 
effect(Q. Cao et al., 2020; Palafox-Juárez et al., 2021). 

Variations in Land Surface Temperatures (LSTs) could be used to monitor urban climates, 
the databases of both variables proving to be invaluable in determining the conditions necessary 
to sustain human life and energy use. The UTFV index is derived from surface temperature 
data that are used as an objective measure of the UHI effect. It is one of the UHI indices that is 
the most used to provide a more precise description of the surface urban heat island effect (Kafy 
et al., 2021, Tomlinson et al., 2011). The UTFVI is higher in areas where the surface 
temperatures are significantly higher than those of the surrounding rural areas (Wang et al., 
2017). The notable impacts of the UTFVI include but are not limited to local winds, humidity, 
and air quality (Sejati et al., 2019).The analysis of urban climatic patterns by using LST profiles 
has been achieved through diverse approaches as evidenced by the examination of satellite 
images and earth observations (Liu et al., 2016; J. Cao et al., 2020; Ma et al., 2022). Earth 
observations, which rely on ground assessments, depend on station-focused analyses for the 
exposition of the contraposition of atmospheric temperature as a value demonstrating UHI 
predominance (Rahman et al., 2022). A number of studies conducted previously have shown 
significant impacts on satellite-based observation systems for retrieving LST in the 
spatiotemporal measures of UHIs (Kafy et al., 2021; Naim and Kafy, 2021; Ullah et al., 2022; 
Nasar-u-Minallah et al., 2023). 

The urbanization trends occurring in Umuahia are reflected in the recent relocation of the 
main commercial complex from the city centre and the erection of several administrative 
buildings in Umuahia. The plan to relocate the Isi-gate main market in Umuahia as a result of 
increased urbanization and traffic congestion commenced in 1935, during the colonial era. 
However, it was only in 2013, that the government of Abia state broke a 78-year-old jinx by 
relocating the Umuahia main market to Ubani-Ibeku and its environs. 

It is worth noting that, owing to the sparse network of weather stations, continuous point 
surface temperature data are lacking within the study area. These datasets yield individual 
measurements which are not a good representation of reality. Furthermore, the spatial 
information relating to these landcover change-temperature relationships is lacking in the study 
area.  

A remotely sensed LST profile provides pertinent information about surface physical 
properties, energy balance, and heat diffusion in landscapes (Jiménez‐Muñoz and Sobrino, 
2003; Deilami, Kamruzzaman and Liu, 2018; J. Cao et al., 2020). Umuahia Urban is one of the 
areas in South-eastern Nigeria that has the potential for vast commercial and residential 
development. Focusing on this background, this study aims to identify the intensity of the UHI 
effect in Umuahia by assessing the changes in land use and land cover (LULC), LSTs, and the 
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UTFV indices for the years 1986, 2001, and 2017. The results of this study would be beneficial 
for urban planners and policymakers in their planning of a sustainable urban environment. 
 
2. Materials and Methods 

2.1. The Study Area 

Umuahia (Figure 1) lies in the south-eastern portion of Nigeria, between 50 25’0” N and  50 
43’30” N, and between 70 22’0” E and 70 36’0” E. The land area extends across about 385.02 
km2, and in 2022 accommodated a population of about 593920. 
 

 
Figure 1. Location of Umuahia 

 

The climate of the area is of the humid tropical rainforest type and is distinguished by a dry 
season, from November to March, and a rainy season, from April to October. The annual 
precipitation is approximately 2500 mm. The monthly average temperature varies from 25°C 
to 32°C (Ike, 2015). 
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2.2. Data 

We used the Landsat images for the years 1986 (TM), 2001 (ETM+), and 2017 (OLI) that 
are freely available on the website, https://earthexplorer.usgs.gov/to extract land cover and 
temperature data for the study area (Refer to Table 1). We corrected the images geometrically 
by using 241 ground control points (GCPs) collected through the Global Positioning System 
(GPS) and information from the 1967 1:50 000 topographic map, that covers the study area. 
The selection criteria for the images were based on those used by Deilami et al. (2016). They 
involve three criteria: (1) a time difference of at least five years between the images, (2) similar 
air temperatures at the time of acquisition, and (3) cloud-free datasets. 
 

Table 1: Sources of Satellite Data 
Satellite Sensor Path/Row Date Bands Source  

 
LANDSAT-5 

 
TM 

 
   056/188 

 
12-19-1986 

 
Digital (2-5) 

 
USGS 

 
LANDSAT-7 

 
ETM+  

 
056/188  

 
12-21-2001 

 
Digital (1-7) 

 
USGS 

 
LANDSAT-8  

 
OLI /TIRS  

 
056/188 

 
12-26-2017 

 
Digital (1-11) 

 
USGS 

      
 
3. Data analysis 

3.1. Image Processing and Extraction of Surface Parameters 

To retrieve surface temperature and land cover types from the image bands, the images were 
processed to derive the digital numbers (DN) and the top-of-atmosphere (TOA) reflectance 
values. The radiance values were then used to derive the underlying land cover patterns and 
LSTs. The Landsat TM /ETM digital numbers (DNs) were converted into TOA radiance and 
reflectance (Pλ)values by applying Equations 1 and 2. 
 

Lλ = LMAXλ−LMINλ
Qcalmax−Qcalmin

× (Qcal − Qcalmin) + LMINλ   [1] 

Pλ = �π×Lλ×d2�
(ESUNλ×sin(Θ)        [2] 

Where Lλ is the spectral radiance at the sensor aperture in W/ (m2sr µm); Qcal is the 
quantized calibrated digital number; Qcalmax and Qcalmin are the maximum and minimum 
quantized calibrated pixel values derived from the metadata file of the images;LMAXλ and 
LMINλ are the spectral radiance scales of Qcalmax and Qcalmin; d2 represents the distance 
between the Earth and the Sun in astronomical units; ESUNλis equivalent to the solar irradiance 
value; and Θ is the Sun’s elevation in degrees. For Landsat OLI Data 2017, the DNs of the OLI 
image for the reflective 2, 3, 4, 5, 6, and 7bands and thermal band 10 were converted into TOA 
radiance and surface reflectance values, and based on Equations3 and 4. 
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Lλ =  MLQcal +  Al`            [3] 

Pλ = Pƛ
sin(θSE)

             [4] 

Where Lλ is the TOA spectral radiance value, derived from the MLBand-specific 
multiplicative rescaling factor; Qcal represents the quantized and calibrated standard product 
pixel values, and Al represents the band-specific additive rescaling factor derived from the 
metadata; Pλ is the corrected TOA reflectance value for the Sun’s angle; and θSE refers to the 
Sun’s elevation angle, in degrees, and is derived from the metadata file associated with the OLI 
image. 

3.2. Land Cover Classification and Accuracy Assessment  

Four land cover classes were generated by means of the maximum likelihood classification 
method. They included built-up (amongst others, paved roads, residential and factory 
buildings), bare soil, water bodies, and vegetation cover A total of 100 samples were selected 
for each image, with 25 samples assigned to each land cover class. The data for all classes were 
collected from homogeneous areas during a field survey. Therefore, several factors, including 
the number of pixels used, the size of the dataset, the impact of spatial autocorrelation, and the 
differences in the images, were taken into consideration when selecting the training strategy. 

3.3. Derivation of Brightness Temperature (BT) from the satellite images 

Based on the method used by (Avdan and Jovanovska, 2016), the brightness temperatures 
derived from the TM and the OLI were estimated using thermal bands 6 and 10, respectively. 
Accordingly, the TOA radiance values of the thermal were converted into at-sensor brightness 
temperatures (BT). The thermal constants given in the metadata file (Table 2) and Equation 5 
were used for this purpose. 

𝐵𝐵𝑇𝑇 = 𝐾𝐾2
In �𝐾𝐾1𝐿𝐿λ

+1�
            [5] 

Where BT is the at-sensor brightness temperature in Kelvin; Lλis equivalent to  the TOA 
radiance value; and K1 and K2 are the pre-launch calibration constants.Land Surface Emissivity 
(LSE) is a factor of proportionality that is used to scale the black body radiance level (Plank's 
law) for the purpose of measuring emitted radiance. Land surface emissivity also has the ability 
to transmit thermal energy across the surface into the atmosphere (Avdan& Jovanovska, 2016).  

 

  



 
South African Journal of Geomatics, Vol. 13. No. 2, July 2024 

309 
 

Table 2: Metadata thermal values of the images 

Variable Description Value for 
Landsat 5  
TM 

Value for  
Landsat 7  
ETM+ 

Value for 
Landsat 8  
OLlI 

K1 /K2  Thermal constants 607.76 / 
1260.56 

666.09/ 
1282.71 

774.8853/ 
1321.0789  

Lmax/Lmin Maximum and Minimum  
values of Radiance  

15.303 / 
1.238 

12.650/ 
3.200 

22.00180 / 
0.10033  

Qcalmax/Qcalmin Maximum and Minimum  
values of Quantize Calibration  

255.0/ 
1.0 

255.0/ 
1.0 

65535 / 
1.0 

Band Thermal bands Band 6 Band 6 Band 10 
 

At the pixel scale, natural surfaces exhibit heterogeneity in terms of variation in LSE. 
Furthermore, LSE is significantly reliant on the surface roughness and nature of the vegetation 
cover (Artis and Carnahan, 1982; Richardson et al., 2013). These factors can be rectified by 
deriving corresponding emissivity values from the Normalized Differences Vegetation Index 
(NDVI) values for each pixel that are based on the nature of the land cover.The emissivity level 
was derived by applying Equations 6a and 6b: 

ԑλ = ԑvλPv +  ԑsλ(1 −  Pv) +  Cλ    [6a] 

Where ԑv and ԑs are the vegetation and soil emissivity values respectively, and C represents 
the surface roughness taken as a constant value of 0.005 (Jiménez‐Muñoz and Sobrino, 2003). 

PV = � NDVI−NDVIS
NDVIV−NDVIS

�
2
      [6b]   

Where Pv is the proportional vegetation cover, NDVIs is the minimum, and NDVIv is 
equivalent to the maximum. The generated brightness temperature values were then converted 
to emissivity-corrected LST values by applying Equation 7(Artis and Carnahan, 1982). 

LST = 𝐵𝐵𝑇𝑇
1+(𝜆𝜆𝜆𝜆𝑇𝑇𝐵𝐵 / (ℎ𝑐𝑐))𝐼𝐼𝐼𝐼𝐼𝐼

      [7] 

Where λ is the average wavelength;𝜎𝜎is the Boltzmann’s constant (1.38×10-23 J/K); h is 
Plank’s constant (6.626×10-34Js); c is the velocity of light in a vacuum (2.998×108 m/s); and ε 
is the emissivity range (between 0.991 and 0.973). Finally, the derived LSTs were converted 
from degrees Kelvin to degrees Celsius. 

3.4. Change Detection 

The methodology employed in this study involved basic image subtraction and cross 
tabulations to identify alterations in and conversions of the land cover and temperature pixels. 
Furthermore, matrices were generated to assess the qualitative and quantitative aspects of the 
changes in the land use classes and temperature. The software employed in this research 
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comprised ArcGIS 10.4, QGIS 3.1, ERDAS 9.1, and ILWIS 3.3. Additionally, Microsoft Excel 
2013 was employed for the purpose of conducting analyses and creating charts and graphs. 

In this study, 80 random points were selected for accuracy assessment for each image. The 
accuracy was checked by using a 1967 1:50 000 topographical map of Umuahia , GPS-acquired 
ground control points, and Google maps. The overall accuracy of the land cover maps for the 
years 1986, 2001, and 2017 were found to be 98%, 94%, and 98%, respectively (Table 3). 

3.5. Calculation of the UTFV Index 

The Urban Thermal Field Variance Index (UTFVI) for Umuahia city was calculated to 
quantitatively delineate the effects of urban heat islands. The UTFVI was calculated by 
applying  Equation 8, derived from Nasar-u-Minallah et al., (2023).  

 UTFVI  PV = � Ts−Tmean
Tmean

�      [8] 

Where TS=LST, and Tmean= the mean temperature of the area. The UTFVI was divided into 
six levels by six ecological evaluation indices (Liu and Zhang, 2011).The thresholds for the six 
UTFV levels are presented in Table 4. 

 
Table 3: Accuracy Assessment for the LandUse Types 

 

 

Year Classes User accuracy (%) Producer accuracy (%) 

1986 Water 100 100 

Built-up 100 100 

Vegetation 95 95 

Bareland 90 100 

Overall Accuracy 98 
  

2001 Water 95 90 

Built-up 91 100 

Vegetation 100 100 

Bareland 87 85 

Overall Accuracy 94 

2017 Water 100 95 

Built-up 95 100 

Vegetation 100 100 

Bareland 87 100 

Overall Accuracy 98 
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Table 4: Threshold of Ecological Evaluation Index 
 

UTFVI UHI phenomenon Ecological Evaluation Index 

<0 None Excellent 

0.000-0.005 Weak Good 

0.005-0.010 Middle Normal 

0.010-0.015 Strong Bad 

0.015-0.015 Stronger Worse 

>0.020 Strongest Worst 
 

4. Results  

4.1. Spatial Pattern of Land Use/ Land Cover Change  

The land cover maps produced for the years 1986, 2001, and 2017 are presented in Figure 
2(a-c). In 1986, the vegetation cover occupied the greatest area in terms of spatial coverage, 
followed by bare land, water bodies, and built-up areas. However, by 2017, the built-up areas 
had expanded by 21% at the cost of the other types of land cover (Table 5). 

 

 
 

Figure 2: Changes in Land Cover for (a) 1986, (b) 2001, and (c) 2017 
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Table 5: Changes in Land Cover Categories 
 

Land Cover Total Areal Coverage in Hectares  % Change 

 1986 (%) 2001 (%) 2017 (%) 1986-2001 2001-2017 1986-2017 

Bare land 4571 (11.9) 2229 (5.8) 484.76 (1.3) -6.1 -4.5 -10.6 

Built-up 2900 (7.5) 5363 (13.9) 10978 (28.5) 6.4 14.6 21 

Vegetation 30905(80.3) 30805 (80.1) 26994(70.2) -0.2 -9.9 -10.1 

Water 100.49 (0.3) 80.06 (0.2) 21.37 (0.1) -0.1 -0.1 -0.2 

 

The transfer matrix, presented in Table 6, provides an insightful indication of various 
transformation probabilities, thus effectively illustrating the process of land cover 
transformation in a quantitative manner. The rows within the table represent the initial state 
(1986) of the land cover, indicating its status at that time, and  
the corresponding situation emanating from its transformation over time. Conversely, the 
columns represent the final state of the land cover, showcasing its status at that time, and the 
associated situation emanating from its transformation over time. It is worth noting that a 
significant portion of the area covered by vegetation and bare land underwent conversion into 
built-up land areas. Furthermore, water bodies and bare land experienced a substantial decline 
of approximately 10.8% in terms of their spatial coverage between 1986 and 2017. The 
extensive conversion of various land cover types to built-up cover, aligns with the findings of 
previous studies conducted by Adewole, Ike and Eludoyin (2020); Ike et al. (2021); Naim and 
Kafy (2021). 

These studies highlight the increasing prevalence of built-up areas across cities in 
developing countries, where the extent in the area covered by the other land cover types is 
significantly surpassed. 

Table 6: Land Cover Transformation Matrix 

   

 Land Cover 2017 

La
nd

 C
ov

er
 1

98
6 

 

CLASS Built-up Bare land Vegetation Water Grand Total (ha) 

Built-up 3453.76 173.23 732.94 0.96 4360.89 

Bare land 898.66 46.70 479.30  - 1424.67 
Vegetation 6540.46 275.08 25800.44 5.55 32621.52 
Water 29.81 0.17 40.00 1.71 71.69 
Grand Total (ha) 10922.69 495.19 27052.68 8.22 38478.77 
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Therefore, the transformation of areas covered by vegetation into built-up areas in Umuahia 
can be attributed to changes in the physical landscape, specifically in the form of rise in an 
increased number of administrative structures, the establishment of new settlements, and the 
recent relocation of certain trade centres within the study area. 

4.2. LST Changes in terms of Land Cover  

According to the data presented in Table 7, the average surface temperature of the study 
area increased by 0.43oC between 1986 and 2001.Subsequently, a further increase of 1.92oC 
was recorded between 2001 and 2017. The spatio-temporal distribution of surface temperature 
indicates that the built-up areas recorded the highest mean temperatures, followed by bare land, 
water, and vegetation cover. It is noteworthy that over the first two periods the vegetation cover 
exhibited considerably low radiant temperatures, possibly on account of its ability to reduce 
the amount of heat stored in the soil and on the surface through transpiration. The surface 
temperature of water, on the other hand, was generally lower than that of the other land cover 
classes. However, as shown in Table 8, the built-up areas experienced the highest rate of 
increase throughout the period. 

The maximum decadal changes in surface temperature for the different types of land cover 
were recorded for water (1986-2001) and built-up cover/bare land (2001-2017). 
Correspondingly, built-up cover accounted for the maximum temperature increase for the 
31year (1986-2017) period. The land cover maps reveal a significant increase in surface 
temperature in areas where the vegetation cover has been converted to built-up cover (Refer to  
Figure 3). Furthermore, observations show that, owing to the increase in built-up areas and bare 
surfaces, the temperature across the study area has continued to rise over time. This 
transformation of the respective types of land cover to built-up areas with impervious surfaces, 
caused by human activities, has resulted in an increase in the albedo at the surface, leading to 
a marginal increase in the land surface temperature around the city centre of Umuahia. Similar 
findings have been reported elsewhere (Kottmeier et al., 2007; Sahana et al., 2019), where 
natural surfaces have been found to present with lower temperatures than built-up areas. 

4.3. Urban Thermal Field Variance Index  

The Urban Thermal Field Variance Index (UTFVI) was used to quantitatively analyse the 
effects of the UHI effect on ecological degradation in Umuahia. The classification of the 
UTFVIs in Table 4 was employed to determine the impact (ranging from excellent to the worst 
case scenario) of each level. An analysis of Table 8 and Figure 4(a-c) reveals that, as opposed 
to the years, 1986 and 2000, in 2017, the combination of the 'no-heat-island' effect and the 
'weak-heat-island' effect declined slightly around the city centre. However, the areas with 
moderate, strong, stronger, and strongest heat island effects remained either stable or increased 
between 1986 and 2017.  
  



 
South African Journal of Geomatics, Vol. 13. No. 2, July 2024 

314 
 

Table 7: Mean Land Surface Temperature  
 
 
 
 

 
 
 
 
 
 
 

 
 

Table 8: Nature of Surface Temperature Increase in Different Land Cover Classes 
 

Class Increase 
in OC 
from 
1986-
2001 

Yearly 
increase 

Decadal 
increase 

Increase 
in OC 
from 
2001-
2017 

Yearly 
increase 

Decadal 
increase 

Increase 
in OC 
from 
1986-
2017 

Yearly 
increase 

Decadal increase 

Bare land 0.13 0.01 0.09 3.81 0.24 2.38 3.94 0.13 1.27 
Built-up 0.7 0.05 0.47 3.81 0.24 2.38 4.51 0.15 1.45 
Vegetation 0.21 0.01 0.14 3.7 0.23 2.31 3.91 0.13 1.26 
Water 1.51 0.10 1.01 0.96 0.06 0.60 2.47 0.08 0.80 
          

Land Cover 
classes 

1986 Land Surface Temperature (oC) 2001 Land Surface Temperature (oC) 2017 Land Surface Temperature (oC) 

 AREA 
(ha) 

MIN MAX MEAN AREA 
(ha) 

MIN MAX MEAN AREA 
(ha) 

MIN MAX MEAN 

Bare land 4571 19.12 23.61 21.37 2229 19.44 23.55 21.50 484 22.61 28.00 25.31 
Built-up 2900 19.10 23.90 21.50 5363 20.84 23.55 22.20 10978 23.30 28.72 26.01 
Vegetation 30905 18.08 20.40 19.24 30805 15.94 22.96 19.45 26994 20.78 25.53 23.15 
Water 100 19.28 20.04 19.66 80.06 19.54 22.81 21.17 21.37 21.46 22.81 22.13 
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Figure 3 Land Surface Temperatures for Umuahia (a) 1986, (b) 2001, and (c) 2017 
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Figure 4.  Urban Thermal Field Variance Indices (UTFVIs) for Umuahia 
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The area of ‘excellent’ (Refer to Table 4) heat intensity has remained constant at 58% 
throughout the respective study periods. However, more areas have deteriorated in terms of 
worsening ecological change and imbalances, thus leading to an increase in the area affected 
by the strong heat island phenomenon, which accounted for 0.065% of the total area researched 
in 1986, 1.02% of it in 2001, and 32.91% of it in 2017. This deteriorating trend in the ecological 
evaluation index reflects the current state of environmental degradation and the intensification 
of the UHI effect. 
 

Table 8.  UTFV Indices for 1986, 2001, and 2017 

 
 

 
 
 
 
 
 
 
5. Discussion 

The population of Umuahia has experienced significant exponential growth since the city 
attained the status of a state capital. Consequently, the city has undergone substantial expansion 
in its industrial and business sectors, leading to a notable transformation in land use. Prior to 
1986, most of the land in Ubakala and Ohia was used primarily for agricultural purposes and 
for small-scale mining activities. However, after 2001, a significant portion of the land was 
converted into industrial and built-up land− to accommodate the rapidly increasing population. 
As a result, the sudden, rapid surge in population, coupled with the expansion of industrial, 
commercial, and residential establishments, has had a significant impact on the albedo and the 
land surface temperatures (LSTs) of the city. This finding concurs with the results of a study 
conducted by Yu et al., (2019), which revealed that, compared to rural areas, urban areas have 
experienced a greater increase in LST. Notably, a substantial increase in temperature was 
observed over the built-up areas over both the analysed years. However, owing to its relocation, 
the densely developed Isi gate Market site exhibited a reduction in urban heat intensity between 
2000 and 2017. While the heat island effect was observed predominantly over the industrial 
and administrative areas, the lowest LST values were experienced along the Umuekwule axis.  

This increasing temperature trend identified in our study is consistent with the findings of 
Liu and Zhang, (2011); Deilami, and Liu, (2018); and Felix, Chiedozie and Ejimofor, (2022) 
which indicate that average temperatures in rapidly urbanizing regions are rising, particularly 
in terms of annual minimum temperatures. Overall, the urban heat island effect has been found 

Threshold Values  1986(%) 2001(%) 2017(%) 
<0  58% 58.81 58.755 
0.000-0.005  15.69 13.86 2.32 
0.005-0.010  24.05 16.15 4.61 
0.010-0.015  1.5 5.1 1.25 
0.015-0.02 0.065 1.02 32.91 
>0.020 0.02 1.03 0.03 
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to be directly correlated with LST values, which are in turn influenced by land use and land 
cover types. 

 
6. Conclusions 

For over a century, the urban heat island effect has been a major concern all over the world. 
With rapid urbanization taking place in developing countries, assessments of the UHI 
phenomenon have become a useful tool for urban and environmental planners in monitoring 
and managing urban growth. It is now evident that urbanization and environmental alteration 
do indeed have a direct impact in that they cause increased surface temperatures in urban areas. 
This study, using satellite imagery and remote sensing techniques, was conducted to identify 
the urban heat island effect in Umuahia city that has emanated from LULC changes for the 
period, 1986 to 2017. Landsat TM and ETM data were used to assess LULC, NDVI, and 
UTFVI changes and their impacts on LSTs. The study reported drastic changes in land cover, 
with a corresponding increase in surface temperature for the period, 1986 to 2017, in Umuahia, 
south-eastern Nigeria.  

Land conversion matrices also revealed a systematic conversion of vegetation into built-up 
cover and bare land. Correspondingly, there was a consistent decline in the area occupied by 
water bodies and in bare land for the period under review. Overall, built-up cover recorded the 
highest temperatures, followed by bare land, vegetation cover, and water bodies. The results 
show that urbanization has increased the overall surface temperature of the city. However, 
owing to the relocation of the Isi-gate Market; there has been a decline in the intensity of the 
urban heat island effect around the city centre. 
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