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Abstract

Effective urban planning requires accurate and up-to-date spatial information. Remote sensing 

has contributed immensely to the efficiency of collecting this information. With remotely sensed high-

spatial-resolution images, details such as buildings counted in an area can be extracted; however, 

traditional methods of extracting this information involve direct counting by humans, which is often 

demanding in terms of time. Computer vision techniques have shown promising results in handling 

image-related challenges in recent years. Therefore, this study aimed to adapt deep learning-based 

algorithms to simplify the counting of buildings from high-spatial-resolution aerial images in a fairly 

suburban environment. A deep learning algorithm based on convolutional neural networks, You Only 

Look Once (YOLO), was adapted to detect and count the buildings in the Unmanned Aerial Vehicle 

(UAV) sensed images. The model achieved high accuracy, with a recall rate of 0.89, an F1 score of 

0.89, and an average precision of 91.12% on the validation data. When applied to new testing data, 

the algorithm successfully identified and counted the number of buildings with an overall accuracy 

of 71%. The approach presented in this research extracted building counts reliably, quickly, and 

accurately in a fairly suburban environment. Such information can be applied to tracking urban 

growth and physical planning. 
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1. Introduction 

Accurate and up-to-date analysis of built-up areas is significant in policymaking, establishing an 

economic and social understanding of an area, and urban planning interventions. Statistics of building 

density play a vital role in urban planning and monitoring; however, they require detailed and 

laborious surveys that are still inadequately done in most developing countries (Shakeel et al., 2019). 

Most of the widely adopted methods of extracting this information from aerial images are traditional 

and manual, involving human interpreters counting buildings directly from high-resolution images, 

making them inefficient. High-resolution images have a Ground Sampling Distance (GSD) of one 

meter or less; moderate-resolution images have a GSD of about 15–100 meters; and low-resolution 

images have a GSD measured in hundreds of meters (DiBiase, 2014). 
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Integrating Artificial Intelligence and geospatial analysis that extracts desirable information, such 

as the number of buildings in an area, from a remotely sensed image can improve urban planning and 

disaster management. Increasingly, various industries are using UAVs equipped with imaging 

cameras, and there is still an ongoing improvement in methods to explore and understand the visual 

data retrieved from these platforms (Barbedo et al., 2020; Du et al., 2018; Hsieh et al., 2017; Xia et 

al., 2018; Zhu et al., 2018). Computer vision has played a vital role in improving the efficiency of 

handling image-related challenges such as image classification and segmentation. Furthermore, 

object detection and counting algorithms have progressed in the current field of computer vision with 

the recent development of deep learning (Zhu et al., 2020), leading to the development of several 

object detection techniques such as R-CNN, Fast R-CNN, Faster R-CNN, Single Shot Detector 

(SSD), and YOLO (Anand & Meva, 2020). The speed and accuracy of object detection and counting 

improve and increase as new techniques arise. The YOLO (Redmon et al., 2016) algorithm is one of 

the latest techniques providing fast and accurate results, with YOLO version 5 being the most recent 

by 2021 (Jiang et al., 2021). 

According to Lechgar et al. (2019), YOLO is a state-of-the-art real-time object detection system 

that differs from other deep learning models because it sees the entire image once during the training 

and testing sessions. In addition, YOLO algorithms convolve learned functions with input data and 

use 2D convolutional layers, which makes them well-suited for processing 2D data, such as images. 

Among the many versions, YOLO version 2 (YOLO v2) is widely used in many academic research 

papers owing to its promising results since it is both better and faster than the original version and 

simplifies the network (Jiang et al., 2021). It is a Convolutional Neural Network (CNN)-based 

algorithm built on the Darknet-19 architecture with 19 convolutional layers that require only 5.2 

billion operations. This makes it superior to the GoogleNet architecture used in version 1, which 

requires 8.25 billion operations, consequently reducing the amount of calculation (Jiang et al., 2021). 

The overall pipeline of the YOLO v2 algorithm (Shao et al., 2020) takes three steps: detect objects in 

each image, reconstruct the 3D surface of the background, and finally merge the per-frame detection 

results guided by the 3D surface. Merging over time eliminates the double detection of single objects 

and thus ensures the correct object count in a scene. 

This study aimed to adapt deep learning-based algorithms to simplify the counting of buildings 

from high-spatial-resolution aerial images in a fairly suburban environment. The first section (1) of 

this work introduces the study concept, section two (2) explains the study method, and section three 

(3) presents and discusses the study findings and offers conclusions. 

 

2. Methodology 

2.1. Research approach 

This study involved two phases, including model training and testing and the counting phase 

(Figure 1). During the data collection phase, a UAV equipped with a camera was used to capture 
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aerial images. Pre-processing involved renaming all the images with the common prefix, "img", 

followed by image numbering. Annotation and data augmentation, as described in the proceeding 

subsections, were done to label and increase the number of images six-fold. We trained and tested the 

CNN-based model, extracted the number of buildings in the tested images, and finally assessed the 

algorithm's performance based on precision, recall, and the F1 score. 

 
Figure 1. Research approach 

 

2.2. Image acquisition 

Remotely sensed images were acquired from Makerere University Agricultural Research Institute 

Kabanyoro (MUARIK) (Figure 2) in July 2021. Kabanyoro is located in Wakiso district, Uganda. It 

has an altitude range of 1250 to 1320 m above sea level and accommodates a fairly suburban 

settlement (Ivanova et al., 2021). A DJI Phantom 4 advanced UAV with an integrated camera of 12 

megapixels was used. The study used UAVs because they can reveal the topographic view of an 

outdoor scene when they are equipped with high-resolution cameras capable of generating high 

spatial-resolution images. The UAV was flown at altitudes of 76 m and 107 m relative to the take-off 

position altitude, corresponding to Ground Sampling Distances (GSD) of approximately 2 cm/pixel 
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and 3 cm/pixel, respectively. These altitudes were chosen to ensure that the buildings could be 

observed at different heights above the ground for the model to learn from images of varying 

resolutions. The study considered this altitude range because it provides a suitable ground sampling 

distance to detect buildings. The frontal and side image overlaps were both set to 70%. Secondary 

data from the Kaggle dataset was used in addition to the collected data to increase the size of the 

training data and the generalization of the model (Luo, 2019). It included images of buildings taken 

from Zanzibar with characteristics similar to those of the study area. 

 

 
Figure 2. Map of the Study Area 

2.3. Data preprocessing 

Using the Agisoft Metashape software, the captured overlapping UAV images were merged to 

create a mosaic image for the entire area. We then split the image into regular tiles of size 480x480 

pixels to match the input image size of the detection algorithm that was used. The individual tiles 

were sorted as either building or non-building. Non-building images were discarded, and only the 

remaining images containing buildings were used to train the model. 

 

2.4. Data annotation 

Computer vision algorithms require annotated or labeled data. Image annotation involves 

assigning labels to an image or target objects within an image. The bounding-box annotation style 
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was used because the detection algorithm that was applied detects objects with bounding boxes 

encapsulating them. In this project,  LabelImg software was used to annotate the images. The software 

auto-generates a text file for each annotated image containing the location of the object in YOLO v2 

format (category number, object center in X, object center in Y, object width in X, object width in 

Y). The labeled dataset was randomly split into a training set and a validation set. Since the variation 

in the nature and orientation of the buildings in the images was relatively high, the dataset was 

randomly split into 90% and 10% for training and validation, respectively. This was done because 

CNN models require a large amount of training data to capture the spatial and feature heterogeneity 

in the data. However, it is worth noting that the literature is not definitive regarding the minimum 

number of reference training samples required for CNN, and this requirement may vary depending 

on factors such as the size and spatial diversity of the area, as well as the image classification 

algorithm being used (Mafanya et al., 2022). 

 

2.5. Data augmentation 

As earlier mentioned, CNNs heavily rely on big data to avoid overfitting in Computer Vision tasks. 

To increase the number of training data, data augmentation was carried out on the images, a process 

that results in artificially increasing the training dataset size by transforming each image into n-images 

(n depends on the number of transformations chosen). For this study, the transformations that were 

used include flipping (vertical, horizontal, and vertical-horizontal), 1800 rotation, average blurring, 

and raising the hue value (Figure). This was carried out using already defined data augmentation 

toolsets, available in Keras, running on top of the TensorFlow framework within the Google Co-

laboratory (Google Colab) platform. Google Colab is an online platform hosted by Google that offers 

ready-to-use virtual machines of high computational power, such as Graphics Processing Units 

(GPUs) and Tensor Processing Units (TPUs). 

 

                   
Original Image                 Annotated Image                    Horizontal Flip 
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Horizontal and Vertical Flip            900 Rotation                       Average blurring 

 

    
Raise Hue                  Vertical Flip 

Figure 3. Augmented Images 

2.6. Building detection 

The YOLO v2 model built on darknet architecture was used for detection purposes in this study. 

YOLO v2 is a CNN-based deep learning algorithm specifically designed for object detection in 

imagery. In contrast to two-stage models, it skips the region proposal stage and thus requires only a 

single pass through the neural network to predict all the bounding boxes in an image; hence its name, 

You Only Look Once. This network concurrently predicts several bounding boxes and class 

probabilities for these boxes. The bounding boxes are weighted by the predicted probabilities. The 

YOLO v2 algorithm was trained and validated with a total of 11,560 and 1,284 images, respectively. 

The model was run for 5000 iterations until the performance improvement became fairly constant. 

Different hyperparameters, such as batch, width, height, and filters, were tuned to increase the 

performance of the model. The average loss error value reported on every iteration was monitored to 

track the performance of the model and to prevent the model from overfitting. Other values, such as 

precision, recall rate, the F1 score, and average precision, were also used to monitor the performance 

of the model. A weights file with the predicted probabilities was obtained at the end of the model 

training. Its accuracy was tested by applying it to a new set of images with different resolutions. 

 

2.7. Counting the number of buildings 

YOLO v2, being an object detector, generates bounding boxes with a class ID and confidence 

value for each bounding box. In this study, the tracking-by-detection approach was used for counting 

the buildings using the SORT (Simple Online and Real-Time Tracker) algorithm. The weight file 

obtained from training the model was used as input to the tracker. SORT uses the Hungarian algorithm 
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and Kalman filter to detect and track objects. It tracks each detection by assigning a unique ID to each 

bounding box, and as soon as an object is lost because of occlusion or wrong identification, the tracker 

assigns a new ID and starts tracking the newfound object (Bathija & Sharma, 2019). 

 

2.8. Validation of Results 

The performance of the model was tested by evaluating its results on the test set of images. The 

area covered in this testing set was diverse, containing both small and large structures in densely and 

moderately populated areas. Ground truth data were created by manually counting the number of 

buildings in each image. The model's prediction for each of the images was compared with the 

ground-truth count of the buildings in that image. To assess the accuracy of the algorithm’s precision, 

recall, and the F1 score (Equations 1, 2, and 3),  actual and estimated counts for each image were 

generated. Precision is the fraction of buildings detected among all the detections in an image. The 

recall is the fraction of buildings detected among all the buildings present in an image. The F1 score 

is a measure of a model's overall performance. These measurements range from 0 to 1, with 1 being 

the best. 

Precision ൌ  ்

்ାி
                                                                                                     [1] 

Recall ൌ  ்

்ାிே
                                                                                                          [2] 

𝐹1 ൌ ଶൈ௦ൈோ

௦ାோ
                                                                                               [3] 

Where; TP - True positive  

 FP - False positive  

 FN - False negative 

 

3. Results and Analysis 

3.1. Building detection and counting 

The model was trained with images at ground resolutions of 2 cm to 3 cm to detect buildings from 

images of slightly varying resolutions. The model was trained for 5000 iterations, and its performance 

increased with the increase in the number of iterations run. The performance of the model was 

evaluated using the precision, recall, F1 score, and average precision computed at each model 

iteration. The model achieved high accuracy with a precision of 0.88, a recall rate of 0.89, an F1 score 

of 0.89, and an average precision of 91.12% on the validation data. The average loss at each iteration 

was also monitored for early stopping to prevent cases of overfitting where the model can detect 

objects in images from the training data only but can't perfectly detect objects in other images. This 

compares fairly well with other research works that have applied the YOLO v2 algorithm in object 

detection, such as Barbedo et al. (2020), which attained an F1 score of 90% in the application of 
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YOLO v2 in counting cattle from UAV images. Likewise, Lechgar et al. (2019) were able to detect 

the city's vehicle fleet using YOLO v2 with 91% accuracy. 

 

   
Buildings Counted: 9 

 

     
            Buildings Counted: 29                                   Buildings Counted: 1 

 

 
Buildings Counted: 14 

Figure 4. Images showing the detected buildings 
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The developed approach detects buildings in isolation (Figure) with reliable accuracy; however, 

for buildings clustered in one place and small-sized buildings in some images, a few errors occurred 

and reduced the accuracy of the model. Instance segmentation, where detection occurs by delineating 

each distinct object of interest appearing in an image, could be applied to resolve this issue, especially 

in slum areas where the buildings are next to each other (Wen et al., 2019). 

The methods in this study were applied to UAV images; nevertheless, for identifying and 

quantifying buildings over wider areas, high-resolution satellite images could prove more effective. 

These images offer broader coverage compared to UAVs, which makes them ideal for examining 

large study regions. However, the lower resolution of freely available satellite images, such as 

Landsat, limits their usefulness in detecting buildings within slum areas, or smaller structures. 

 

3.2. Validation of results 

The performance of the model was tested by applying the obtained weight file to a new set of test 

images. Figure shows the detection and counting of the building’s predictions on the testing images. 

The model creates a bounding box around each identified building in the tested image and attaches a 

confidence level. The adapted algorithm performed well in detecting buildings, with an overall 

performance of 0.7111 (Table 1). Clustered buildings presented a complex situation, although the 

algorithm yielded reasonably good estimates. To improve performance, the model was trained with 

more iterations to perform better in such complex situations. The errors obtained were due to the 

differences in the sizes of the buildings. The errors can be greatly reduced with more training data 

that take into consideration all the building sizes and different resolutions. 

 
Table 1. Accuracy results 

Metric YOLO V2 

Precision 0.8205 

Recall 0.6275 

F1 Score 0.7111 

 

Given the constraints of current datasets, models will need to be retrained whenever new 

conditions other than a fairly suburban environment are considered. This emphasizes the need for 

data sharing for more general solutions to be feasible. 

 

4. Conclusion 

The traditional ways of extracting information from UAV images involve manual counting by 

humans, a process that is inefficient and prone to error. This study adopted a YOLO v2 model to 
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detect and count buildings from high-resolution aerial images. The adapted model performed well, 

with 0.71 overall accuracy. The challenges encountered, although difficult to overcome, had a 

relatively mild impact on the overall accuracy of the proposed algorithm. Although the adapted 

algorithm was for counting buildings, the methodology can be adapted to other applications such as 

livestock detection and tent detection in refugee camps, among others. Whereas the model training 

steps of this study required a time input, the results presented highlight that the model obtained from 

this approach can be applied to automatically count buildings from new images taken from a fairly 

suburban environment without the need to modify the model. Ultimately, this provides an advantage 

to using this approach, which will become less costly and more prevalent with technological 

advancement. 
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