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Abstract 

Grassland biomes are valuable socio-economic and ecological resources. However, the invasion 
of grasslands by alien plant species has emerged as one of the biggest threats to their sustainability, 
management and conservation. Timely, cost-effective and accurate determination of invasive alien 
plant spatial distribution is paramount for mitigating the adverse effects of alien plants on natural 
grasslands. Whereas literature on use of optical bands for invasive alien plants detection and 
mapping is abound, there is paucity in literature on the integration of Vegetation Indices (VIs) and 
optical reflectance bands in invasive species mapping. Specifically, there is need to test the efficacy 
of improved and freely available sensors like Sentinel-2 in understanding landscape invasion. Hence, 
this study sought to assess the efficacy of Sentinel-2’s optical bands and VIs for improving the 
mapping of American Bramble (Rubus cuneifolius) within a grassland biome. Variable Importance 
in the Projection (VIP) was used to identify the most influential reflectance bands and VIs, which 
were then fused at a feature level to determine Bramble spatial distribution. To determine the optimal 
season for Bramble mapping, seasonal classification accuracies were executed in Support Vector 
Machine (SVM) learning algorithm and accuracies for Spring, Summer, Autumn and Winter seasons 
compared. Results show that although the highest overall accuracy was achieved using only optical 
bands, fused imagery increased overall classification accuracies during spring and autumn i.e. 70% 
to 73% and 63% to 65%, respectively. However, the fused imagery failed to improve on the 
benchmark of optical imagery during summer and winter. Findings from this study underline the 
efficacy of complementing VIs and optical bands in determining the distribution of invasive species 
within grasslands at specific seasons. Furthermore, this study advocates for the adoption and fusion 
of freely available new generation satellite imagery such as Sentinel-2 as a cost effective option in 
landscape mapping.  
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1. Introduction 

Invasive alien plant species are regarded as the second most severe threat to global biodiversity 
after anthropogenic habitat destruction (Driver et al., 2012). Globally, invasive species are known to 
adversely affect the natural environmental, in turn affecting socio-economic systems (Richardson and 
van Wilgen, 2004; Davies and Johnson, 2011). In South Africa, Nel et al. (2005) notes that 
approximately 10 million hectares of land has been invaded by alien invasive plants, while Carbutt 
and Martindale (2014) note that infestations by invasive species have led to irreversible 
transformation of between 60-80% of the country’s natural grassland. Specifically, the American 
Bramble has adverse impacts on natural grazing lands, along roadsides and in riparian zones (Shezi 
and Poona, 2010). Generally, Bramble is known to adversely affect nutrient cycling, increase soil 
erosion, reduce animal carrying capacity, hinder natural plant succession, reduce quality and quantity 
of water production and promote changes in fire patterns and behaviour. Furthermore, the 
establishment of Bramble patches is known to have negative effects on specialist grassland species. 
The species is believed to be one of the most devastating invasive plant in the cool and moist 
KwaZulu-Natal mist-belt region and has significantly compromised ecological sustainability and 
socio-economic well-being (Erasmus, 1984).  

The adoption of passive remote sensing imagery for mapping invasive species is increasingly 
becoming popular (Gil et al., 2013). Whereas the currently used imagery are known to generate 
reliable spatial distribution outputs (Walsh, 2018), their high cost per unit area is commonly a major 
concern, particularly for mapping large spatial extents. Additionally, their small swath, cloud cover 
and limited spatial resolution remain an impediment in invasive species mapping. Hence, recent 
developments in freely available sensors with larger swath as well as improved spatial, temporal and 
spectral resolutions (e.g. Landsat 8 and Sentinel-2) offer unprecedented prospects for large scale cost-
effective invasive species mapping.  

In addition to the above, recent studies have focused on exploiting inherent species characteristics 
such as reflectance variability arising from phenological evolution. The seasonal phenological 
characteristics may include differences in biophysical and biochemical properties from indigenous 
species, as well as spatial extents and patterns of dispersal (Dorigo et al., 2012). Invasive species are 
commonly typified by unique phenological characteristics that facilitates superior exploitation of 
ecological niches in their invasive range. McNairn et al (2009) notes that seasonal variability in leaf 
pigmentation as well as water content and structure significantly influence leaf reflectance, useful for 
invasive species mapping (Bradley, 2014).  

There has been an increased use of satellite derived vegetation indices for increased accuracy in 
mapping invaded environments (Levin et al., 2007). According to Basso et al (2004), vegetation 
indices are more sensitive to vegetation parameters, compared to individual spectral bands, hence 
more useful when used as surrogates for vegetation and non-vegetation cover. Spectrally derived 
vegetation indices are particularly valuable as they significantly reduce the effects of soil, topography 
and satellite view angle (Hunt et al., 2013). Hence, indices have demonstrated ability to accurately 
quantify vegetation related spatial heterogeneity in complex landscapes (Benayas and Scheiner, 
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2002). Additionally, indices have been shown to vary across seasons and space, making them useful 
for detection within-field and intra and inter annual variability (Gobron et al., 2000).  

The recent launch of the European Space Agency (ESA) Sentinel-2 (S2) multispectral satellite has 
availed new opportunities in remote sensing applications. Sentinel-2 is characterized by 13 bands 
spanning the visible/near-infrared, and short wave infrared spectral range and captures images at 60m, 
20m and 10m spatial resolutions (Immitzer et al., 2016). Coupled with a 290km wide swath width 
and a five day temporal resolution, Sentinel-2 offer new opportunities for both local and regional 
scale vegetation mapping. The sensor’s unique spectral resolution allows for the derivation of 
numerous vegetation indices that cannot be derived from other freely available multispectral satellites 
such as Landsat 8 and Moderate Resolution Imaging Spectroradiometer (MODIS). Sentinel-2 also 
has three vegetation red-edge spectral bands, currently not available in the freely available 
multispectral sensors (Cho et al., 2012). These unique and progressive features, coupled with the 
sensor’s economic viability offer unprecedented opportunities in the discrimination and mapping of 
invasive alien plant species.  

Analysis based on phenological variability is imperative in optimal detection and mapping of 
vegetation species. According to Verbesselt et al (2009), seasonal changes influence plant phenology 
and foliar chemistry; characteristics that can be exploited to determine optimal mapping seasons. 
According to McNairn et al (2009), invaders often exploit empty niches within a landscape and have 
distinct seasonal phenological characteristics from the surrounding native species, characteristics 
useful for increased seasonal discrimination. Sentinel-2’s high temporal resolution (5 days), and 
consequently high data volume is a valuable asset that could be used to exploit these seasonal 
phenological variabilities. Hence, this study sought to determine the efficacy of fusing the most 
influential Sentinel-2 spectral reflectance bands and vegetation indices in mapping the American 
Bramble within a grassland biome at different seasons.  

 

2. Methodology  

2.1. Study area 

The Ukhahlamba Drakensberg Park (UDP) (-29.380018°S; 29.539746°E) borders the eastern 
escarpment of Lesotho and stretches along the western border of the KwaZulu-Natal Province (Figure 
1). The crescent shape of the UDP has an approximate length of 158km and a width of 28km at its 
widest point. The mountainous terrain of the UDP ranges in altitude from 1200m to 3408m above sea 
level, with mean annual temperatures approximately 16° Celsius. Mean annual precipitation varies 
from the foothills of the mountain (1000m) to the escarpment (1800m) (Kruger et al., 2011).   

 

2.1.1. Target species 

The American Bramble (Rubus cuneifolius) has been identified as a major threat to native flora 
and fauna within the South African grassland biome. A sprawling shrub species belonging to the 
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Rosaceae family, Bramble is known to thrive in a diverse range of habitats (Bromilow, 2010). 
Originally from North America, Bramble is believed to be one of the most harmful invasive alien 
plants in South Africa, specifically across the KwaZulu-Natal Province, where the cool and moist 
climatic conditions favour its growth. Its growth in bush clumps is directly responsible for its adverse 
effects on biodiversity. According to Henderson et al (2001), the impacts of Bramble infestation 
include a reduction in rangeland carrying capacity, alterations in nutrient cycling, increased soil 
erosion, changes in fire regimes and behavior and the disruption of hydrological process. Generally, 
Bramble is considered a severe threat to natural resources and sustainability and its effective 
management or eradication is of paramount importance.   

 

Figure 1: The uKhahlamba Drakensberg Park (UDP) (c), located within the KwaZulu-Natal 
Province (b) of South Africa (a). (The black dots are field point collected for training and 

validation). 
 

2.1.2. Field data collection 

Four major land cover classes (Bare rock, Bramble, Forest and Grassland) were considered for this study. 

Ground validation GPS points of the four land cover classes were collected using the purposive sampling 

technique. Ground validation points were collected during spring and summer of 2016, as these seasons 

coincide with Bramble flowering (ATLAS, 2014). Hence, data collection during these seasons was preferred 

as Bramble patches were easily discernable while in field. A GeoXT Trimble GPS was used to record ground 

validation data. Bramble ground validation points were recorded as close to the centroid of the respective 

Bramble patch as possible. In order to compensate for sensor spatial resolution, and to ensure collected 

Bramble ground validation points fell within the sensor pixels and are associated with the unique spectral 

reflectance, all recorded Bramble patches were spatially independent and ranged from 15m x 15m to 50m x 

50m in size. Owing to the steep and mountainous terrain of the UDP, which restricted access, Bramble patches 

accessible by foot were considered for training and validation data. Additionally, aerial photographs at a 0.5m 

spatial resolution captured in 2016 were used to supplement and verify selected land cover ground truth points. 
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2.2. Image acquisition  

2.2.1. Optical imagery 

Four seasons (spring, summer, autumn and winter) Sentinel-2 imagery were acquired from the 
Copernicus open access hub (https://scihub.copernicus.eu/). The Sentinel-2 level 1-C raw products 
(radiance) were converted to level 2-A Sentinel-2 products (surface reflectance) using the default 
parameters of Sen2Cor plugin within the ESA SNAP toolbox 3.0. All Sentinel-2 level 2-A products 
were corrected for topographic effects of shadow commonly associated with mountainous regions 
such as the UDP. Topographic correction based on a local Digital Elevation Model (DEM) was 
conducted using the System for Automated Geoscientific Analyses SAGA (2.1.2) plugin within a 
Quantum GIS environment (QGIS), using the SAGA terrain analysis lighting tool on a band by band 
basis.  

 

2.2.2. Vegetation indices 

Sixty-five vegetation indices selected from the online Index DataBase (IDB) 
(www.indexdatabase.de) were calculated from level 2A Sentinel-2 multi season optical imagery. 
Indices were selected on the basis of being specific to Sentinel-2 and recognition by the IDB as 
effective and accurate measures of various vegetation parameters such as vigor, greenness and 
seasonal influences. The IDB is a tool developed to provide a simple overview of satellite specific 
vegetation indices that are useable from a specific sensor for a specific application (Henrich et al., 
2012). All indices were calculated within a Python 2.7.13 environment using listed formulas from the 
IDB and spectral reflectance Sentinel-2 bands.  

 

2.3. Variable selection  

The Variable Importance in the Projection (VIP) method was implemented within a Python 2.7.13 
environment. The VIP is a commonly used filter method first proposed in 1993 by Wold et al. (1993). 
The VIP is determined using projection information from X and y as: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 = �𝑑𝑑∑ 𝑣𝑣𝑘𝑘ℎ
𝑘𝑘=1 �𝑤𝑤𝑘𝑘𝑘𝑘�

2
/∑ 𝑣𝑣𝑘𝑘ℎ

𝑘𝑘=1                                                                 (1) 

Where d is the number of variable and h  the number of latent variables in the PLS model. VIP is 
the proportion of the fraction of the explained variance of X expressed by 𝑣𝑣𝑘𝑘 = 𝑐𝑐𝑘𝑘2𝑡𝑡𝑘𝑘′𝑡𝑡𝑘𝑘 weighted by 
covariance between X and y, represented by 𝑤𝑤𝑘𝑘𝑘𝑘, for each variable j over latent variables. The term 𝑐𝑐𝑘𝑘 
is obtained for each colum of the PS score T for the predicted response y (k) in equation (2) 

                                             𝑥𝑥 = 𝑡𝑡𝑦𝑦′y(k)
t𝑘𝑘′𝑡𝑡𝑘𝑘

                                                                                    (2) 

As the average of sums of squares of the VIP is equal to 1, the VIP scores >1 rule is typically 
adopted as a threshold (Wold et al. 1993). 

https://scihub.copernicus.eu/
http://www.indexdatabase.de/
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The VIP method selected the 15 most influential bands across Sentinel-2 optical bands and derived 
Sentinel-2 vegetation indices. Selected VIP bands were used for data fusion and consequently formed 
the fused images used for image classification. Variable Importance in the Projection can serve to 
improve classification accuracy by efficiently identifying a subset of all initial variables that if 
combined, could enhance classification accuracies with parsimonious representation (Farrés et al., 
2015). VIP measures the importance of each variable (Sentinel-2 optical bands and vegetation 
indices) with regard to the influence it would have on increasing the classification accuracy. For 
example, a variable that scores closer to or greater than 1 was considered to be important, hence 
included in the image classification process, whereas a variable scoring significantly less than 1 was 
considered less important, hence excluded from the classification process. 

 

2.4. Image fusion: Optical bands and Vegetation Indices 

Feature level image fusion was adopted to merge the 15 most influential VIP bands. As vegetation 
indices were calculated from optical bands, selected VIP optical bands and vegetation indices were 
all calculated at a spatial resolution of 20m. VIP bands were fused using the composite bands tool 
within an ArcMap 10.4 environment, resulting in four fused images, each representing a single 
season. The extraction of ground truth points was conducted on an individual basis for VIP optical 
bands and vegetation indices. The feature level fusion of VIP optical bands and vegetation indices 
ensured that the corresponding optical spectral reflectance was used for the vegetation index value. 
Fused optical bands and vegetation indices were then used for image classification.  

 

2.5. Image classification 

Image classification was conducted using the Support Vector Machine (SVM) algorithm within a 
Python environment. The SVM is a supervised statistical learning technique that was developed to 
deal with binary classifications (Vapnik, 1979). SVM seeks to identify a hyper-plane that can clearly 
distinguish input dataset into a predefined discrete number of classes that are consistent with training 
data (Mountrakis et al., 2010). Several evaluations of SVM have shown that the algorithm is capable 
of classifying/separating several classes with limited support vectors as training data, without 
ultimately compromising classification accuracies (Foody and Mathur, 2004). Ground truth points 
were used to extract spectra for the four major land cover classes (Bare rock, Bramble, Forest and 
Grassland) in the study area. Extracted fused VIP spectral reflectance with vegetation indices 
measurements were used in the SVM classification process.  

 

2.6. Spatial distribution map and accuracy assessment 

Support Vector Machine classification maps were generated for each seasonal image within a 
Python environment. Fused (VIP optical and vegetation indices) training data (70%) of all four 
considered land cover classes were used as the input for the multi-season Bramble spatial distribution 
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maps. The respective test data set (30%) was then used to assess classification accuracies for each 
season. A confusion matrix was generated from the SVM process and user and producer accuracies 
used to quantify the reliability of resultant Bramble spatial distribution maps. Producer’s accuracy 
means that for each class, the probability that a randomly chosen point in the field has the same class 
value on the map while User’s accuracy means that for each class, the probability that a randomly 
chosen point on the map has the same class value in the field (Sammut and Webb, 2017).  

 

3. Results 

3.1. Optical and Vegetation Indices VIP band selection 

A total of 15 most influential optical bands and vegetation indices were selected per season and 
considered for further analysis. The Sentinel-2 SWIR1 (11) and SWIR2 (12) bands were the most 
influential optical bands as they were selected for spring, summer and winter imagery. The narrow 
infrared optical band (8a) was only selected for spring and summer imagery. From all analyzed 
vegetation indices, the TM5/TM7, Simple Ratio 520/670 (SR520/670), Simple Ratio 800/550 
(SR800/550) and Simple Ratio MIR/Red Eisenhydroxid-Index (SRMIR/Red) were the only indices 
selected across all seasonal imagery. The Simple Ratio 860/550 (SR860/550) and Renormalized 
Difference Vegetation Index (RDVI) vegetation indices featured across both spring and summer, 
while the Datt2 index featured across both autumn and winter. Other vegetation indices that featured 
in multiple seasons include Simple Ratio NIR/MIR (SRNIR/MIR) (spring and autumn), Simple 
Ratio672/550 (SR672/550) (summer and winter), Simple Ratio 800/470, Pigment specific simple 
ratio C2 (PSSRc2) (summer, autumn and winter), Simple Ratio Red/Green Red-Green Ratio (RGR) 
(spring and winter), SIPI3 (Structure Intensive Pigment Index 3) (spring and winter) and Chlorophyll 
IndexRedEdge  (CIrededge) (summer and autumn).  

 

3.2. Multi-seasonal reflectance bands and fused data classification accuracies 

3.2.1. S2 reflectance bands 

Seasonal classification using only Sentinel-2 reflectance bands resulted in overall accuracies 
ranging from 61-77% (Table 1). Summer exhibited the highest overall accuracy while winter 
produced the lowest. Stand-alone Sentinel-2 reflectance band results were used as a benchmark to 
investigate the potential synergistic properties of Sentinel-2 optical bands fused with vegetation 
indices to increase the accuracy of detection and mapping of Bramble.    

 
  

https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=14
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=76
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=76
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=303
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=303
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=213
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=291
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=131
https://www.indexdatabase.de/db/si-single.php?sensor_id=96&rsindex_id=131
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Table 1: S2 reflectance band Support Vector Machine (SVM) seasonal confusion matrices. Where 
BR = Bare rock; BBL = Bramble; FR = Forest; GR = grassland; PA= Producers accuracy;  

OA= Overall accuracy and UA = Users accuracy. 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 
 (a) Spring (b) Summer 

BR 31 0 0 15 67 32 2 0 12 69 
BBL 0 28 0 44 39 0 24 0 29 45 
FR 0 0 56 3 94 1 1 54 3 91 
GR 1 13 3 70 80 2 3 7 94 88 

PA (%) 96 68 94 53  91 80 88 68  
OA (%) 70     77     

 (c) Autumn (d) Winter 
BR 30 0 0 16 65 34 0 0 12 73 

BBL 0 20 1 47 30 0 22 1 69 24 
FR 1 0 55 3 93 1 0 53 5 89 
GR 1 30 0 60 66 0 15 1 51 76 

PA (%) 93 39 98 48  97 59 96 37  
OA (%) 63     61     

 

3.2.2. Fused VIP S2 reflectance bands and Vegetation Indices 

Seasonal classification accuracies ranged from 61% to 73% (Table 2), with spring imagery 
producing the highest overall accuracy and winter imagery producing the lowest overall accuracy.  

 
Table 2: Fused VIP S2 optical bands and Vegetation Indices Support Vector Machine (SVM) 

seasonal confusion matrices. Where BR = Bare rock; BBL = Bramble; FR = Forest; GR = 
grassland; PA= Producers accuracy; OA= Overall accuracy and UA = Users accuracy. 

 BR BBL FR GR UA (%) BR BBL FR GR UA (%) 
 (a) Spring (b) Summer 

BR 31 0 16 0 65 31 2 5 3 67 
BBL 0 42 0 14 75 0 34 1 28 54 
FR 17 0 35 0 63 10 0 44 0 79 
GR 0 15 0 56 78 0 14 0 44 75 

PA (%) 64 73 69 80  75 68 78 59  
OA (%) 73     70     
Autumn (c) Autumn (d) Winter 

BR 32 0 4 2 72 30 0 1 5 80 
BBL 1 27 5 25 43 3 30 1 19 56 
FR 11 0 39 0 75 17 3 29 0 49 
GR 0 31 0 48 58 0 16 15 45 56 

PA (%) 73 47 69 57  50 61 52 65  
OA (%) 65     61     

 

Spring results showed high producers and users accuracies for Bramble (73% and 75%) and 
grassland (78% and 80%) land cover classes. The classification map resulting from spring imagery 
showed a significant overestimation of the grassland land cover class and an underestimation in the 
bare rock and forest classes (Figure 2a). Although Bramble users and producers accuracies were high, 
a slight overestimation with regard to classification of Bramble patches was evident. Summer results 
produced the second highest overall classification accuracy (68%) across all seasonal imagery. 
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Summer Bramble users (54%) and producers (68%) accuracies decreased as compared to spring 
results. An underestimation in the bare rock and forest land cover classes was observed, while an 
overestimation in the Bramble and grassland classes were observed when summer classification 
results were mapped (Figure 2b).  

Autumn imagery produced an intermediate classifcation accuracy (60%) across all seasonal 
imagery. Bramble users (43%) and producers (47%) accuracies resulting from autumn imagery were 
the lowest across all seaons. The resulting autumn classificaton map overestimated Bramble and 
grassland landcover spatial extent (Figure 2c), while underestimating the spatial extent of the bare 
rock and forest landcover classes (Figure 2c). Winter imagery resulted in the lowest overall 
classification accuracy across all seasons (57%). An overestimation of the grassland and Bramble 
landcover class was observed in the resulting winter classification map, while an underestimation of 
the bare rock and forest landcover classess was observed (Figure 2d).  

Generally, overall classification accuracies decreased with seasonal chronological order, starting 
with Spring, resulting in varying users and producers accuracies across all seasonal imagery. In 
assessing the results obtained from fused imagery, although the highest overall accuracy was achieved 
using only optical bands, fused imagery increased overall classification accuracies during spring and 
autumn, while failing to improve on the benchmark of optical imagery during winter.  
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Figure 2: Multi-season classification maps produced using VIP selected optical bands and 

vegetation indices during Spring, Summer, Autumn and Winter. 
 

4. Discussion 

This study sought to determine if the synergistic properties of new generation optical imagery and 
derived vegetation indices have the potential to increase the discrimination and mapping of American 
Bramble (Rubus cuneifolius) from surrounding native vegetation. In addition, this study sought to 
determine the optimum season for the detection and mapping of Bramble. Generally, overall 
accuracies across the wet season (spring and summer) were greater, with spring achieving the highest 
accuracy (73%) across all seasons. Dry season (autumn and winter) detection and mapping of 
Bramble was poor, with winter resulting in the lowest classification accuracy (61%) across all 
seasons. Wet season overall accuracies suggest that the combination of new generation optical 
imagery bands and vegetation indices derived from these bands have sufficient potential for mapping 
and detecting Bramble. Sentinel-2 has three SWIR optical bands; two among the three were 
considered to be important variables (VIP) for spring, summer and winter seasonal imagery. Indices 
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using the Shortwave Infrared (SWIR) optical band are known to be robust and provide an additional 
axis for potential vegetation discrimination (Kandwal et al., 2009). These unique characteristics of 
SWIR optical bands coupled with the increased Sentinel-2 spectral resolution within the SWIR 
region, known to be sensitive to foliar water content (Kim et al., 2012), could have contributed to the 
elevated accuracies seen for spring and summer seasonal imagery.   

Simple ratio vegetation indices were repeatedly selected as a result of the VIP process and 
subsequently utilized in multi-season classification. According to Xue and Su (2017), the simple ratio 
combination of visible and Near Infrared (NIR) bands significantly improves the ability to distinguish 
between varying vegetation phenological parameters. This could explain the increased overall 
classification accuracies experienced during spring and summer as opposed to autumn and winter. 
Bramble is known to start flowering from early to mid-spring, resulting in white inflorescence 
(Denny, 1990), an important phenological feature that could have been responsible for the superior 
performance of vegetation indices during spring. This finding is in agreement with Evangelista et al 
(2009) who similarly compared time series imagery and derivative spectral analyses to map invasive 
alien species, where similar seasonal classification trends were observed in the respective case 
studies. 

Gilmore et al (2008) notes that vegetation spectral properties and consequently species separability 
is dependent on several variables that include leaf pigmentation, leaf water content and leaf structure 
and size. The red-edge region of the electromagnetic spectrum is known to accurately detect subtle 
differences between the above-mentioned variables (Cho et al., 2012). Although Sentinel-2 possesses 
an unprecedented three red-edge bands, none of them were deemed to have a substantial effect as a 
stand-alone variable on overall classification accuracy. In this instance, the red-edge 1 band was 
selected as a standalone variable for autumn imagery, which produced the second lowest (65%) 
overall classification accuracy. However, numerous vegetation indices that incorporated red-edge 
bands were commonly selected as VIP bands across all seasons. This finding is in agreement with 
Delegido et al (2013), who developed a unique red-edge normalized vegetation index and 
successfully validated it against field data, noting it as an integral variable in determining vegetation 
physiological parameters.  

The reduced classification accuracies in the autumn and winter imagery could be closely linked to 
similarities between the phenological life cycle of Bramble and surrounding native grass and shrub 
species. Bramble is known to flower during spring and senesce just before autumn and winter (Denny, 
1990), thus in syncrony with the inter-annual growth patterns of dominant native grass and shrub 
species found within the UDP. Successful detection based on phenological characteristics depends 
on seasonal variability or inter seasonal growth pattern of the target species from surrounding native 
vegetation (Bradley, 2014). Hence, as Bramble follows the same inter-seasonal growth pattern of 
surrounding native vegetation, there is an increased probability of misclassification between the target 
species and surrounding native vegetation (Evangelista et al., 2009). This became evident when 
attempting to detect and map Bramble using autumn and winter Sentinel-2 imagery.  
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In comparison to benchmark results achieved by Rajah et al (2018), who solely utilized Sentinel-
2  spectral reflectance bands to detect and map Bramble, the synergistic nature of spectral reflectance 
bands and vegetation indices only increased overall classification accuracies during specific seasons 
(spring and autumn). Using fused S2 optical imagery and vegetation indices, the optimum season for 
the detection and mapping of Bramble was determined to be spring. Even though results from this 
study differ from those of the benchmark, the synergistic nature of fused imagery has reasonable 
potential to advocate further research within the field of data fusion for invasive alien plant detection 
and mapping.  

 

5. Conclusion  

The primary aim of this study was to determine the potential of combined Sentinel-2 spectral bands 
and vegetation indices in increasing the discrimination and mapping accuracy of American Bramble 
(Rubus cuneifolius). An additional aim was to determine the optimal season for the most effective 
and accurate Bramble detection and mapping. Results obtained from this study allude to the practical 
and operational potential within the synergistic properties of combining Sentinel-2 spectral bands and 
vegetation indices. Furthermore, the optimum season for Bramble detection and mapping was spring, 
with the highest overall accuracy (73%) across all seasons. In addition to these practical advantages, 
free availability, wide swath width and short re-visit time of Sentinel-2 are particularly attractive traits 
that offer unprecedented opportunity for invasive alien mapping at a regional scale.  
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