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Abstract  

The present study analyzes the seasonal variability of the relationship between the land surface 
temperature (LST) and normalized difference bareness index (NDBaI) on different land use/land 
cover (LULC) in Raipur City, India by using sixty-five Landsat images of four seasons (pre-monsoon, 
monsoon, post-monsoon, and winter) of 1991-1992, 1995-1996, 1999-2000, 2004-2005, 2009-2010, 
2014-2015, and 2018-2019. The results show that the post-monsoon season indicates the best 
correlation (0.59), followed by the monsoon (0.56), pre-monsoon (0.47), and winter (0.44) season. 
The water bodies reflect a strongly positive correlation in all the four seasons (0.65 in pre-monsoon, 
0.51 in monsoon, 0.53 in post-monsoon, and 0.62 in winter). On green vegetation, this correlation is 
also strongly positive in monsoon (0.57), post-monsoon (0.62), and winter (0.55), whereas it is 
moderate positive in pre-monsoon (0.37) season. The built-up area and bare land build a moderate 
positive correlation in all the four seasons (0.35 in pre-monsoon, 0.43 in monsoon, 0.48 in post-
monsoon, and 0.39 in winter). Among the four seasons, the post-monsoon season builds the best 
correlation for all LULC types, whereas the pre-monsoon season has the least correlation. This 
research work is beneficial for land use and environmental planning of any city under similar climatic 
conditions.  

Keywords: Landsat; Land surface temperature (LST); Land use/land cover (LULC);  
Normalized difference bareness index (NDBaI). 

 
1. Introduction 

Land surface temperature (LST) is a significant factor in analyzing the bio-geochemical functions 
of the land surface features (Tomlinson et al. 2011; Hao et al. 2016; Guha 2017). Green plants, 
wetlands, and water bodies generate low LST, whereas human settlement, and bare land surface 
produce high LST in the summer season of tropical areas (Chen et al. 2006; Guha et al. 2020). Thus, 
LST related studies are quite important in the ecological planning of the recent urban agglomerations 
(Li et al. 2016). Normalized difference bareness index (NDBaI) is the most popular index for bare 
land extraction that is invariably used in LULC and LST related studies (Zhao and Chen 2005; Chen 
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et al. 2006; Weng and Quattrochi 2006; Essa et al. 2012; Chen et al. 2013; Guha et al. 2019; Yuan et 
al. 2017).  

Several research articles presented the LST-NDBaI relationship in different parts of the world. As-
Syakur et al. (2012) investigates various bareness indices for bare land mapping in Denpasar of Bali, 
Indonesia. Ahmed (2013) used NDBaI along with other LULC indices to simulate the land surface 
changes and their impact on LST in Dhaka, Bangladesh. Sharma et al. (2013) examined the 
relationship between LST and NDBaI in Surat City of India. Guo et al. (2014) estimated sub-pixel 
LST and built a relationship between LST and NDBaI in Guangzhou core urban area of China. Ali et 
al. (2017) compared the relationship of LST with NDBaI and other LULC indices in London and 
Baghdad cities. Macarof et al. (2017) investigated the relationship between LST and NDBaI in Iaşi 
Municipality Area of eastern Romania from 2013 to 2016 by using Landsat 8 data. Alibakshi et al. 
(2019) investigated the relationship between NDBaI and LST from 2001 to 2015 in Tehran and its 
satellite cities in Iran by the geographically weighted regression model using Landsat 7 data. 
Alexander (2020) evaluated the LST-NDBaI relationship in Aarhus City of Denmark by using 
Landsat 8 data. Jain et al. (2020) investigated the LST-NDBaI relationship in Nagpur City, India from 
2000 to 2015 by using Landsat data. 

The nature of LST and NDBaI changes due to the seasonal changes of various atmospheric 
components. Thus, to reveal the characteristics of seasonal variation of the LST-NDBaI relationship 
in a tropical city, we have selected the Raipur City of Chhattisgarh State in India. The main aim of 
the study is to determine the seasonal variation of LST-NDBaI relationship on different LULC types. 
The study will be a beneficial one ecological planning and management. The seasonal LST-NDBaI 
relationship means the relationship between LST and NDBaI in different seasons like pre-monsoon, 
monsoon, post-monsoon, and winter. It is determined by using a number of Landsat satellite data of 
these four aforesaid seasons from 1991-92 to 2018-19. The study tries to establish a long-term 
relationship between LST and NDBaI for various seasons and also on different types land use/land 
cover. No such type of study has been conducted on this city before the work. The study is beneficial 
for ecological planning because it focuses on the LST-NDBaI relationship on different LULC types.     

 

2. Study area and data 

Figure 1 shows the geographical location of Raipur city of India which extends from 21o11'22"N 
to 21o20'02"N and from 81o32'20"E to 81o41'50"E. The city covers an area of around 165 km2. The 
upper left corner of the figure presents the outline map of India where Chhattisgarh State is located 
in the middle part (http://www.surveyofindia.gov.in). The lower left corner of the figure presents the 
outline map of Chhattisgarh State with districts (http://www.surveyofindia.gov.in). The upper right 
corner of the figure represents the false colour composite (FCC) image of Raipur city 
(https://raipur.gov.in) from recent Landsat 8 OLI/TIRS data of 22 October 2018 
(https://www.earthexplorer.usgs.gov). The lower right corner of the figure indicates the digital 
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elevation map (DEM) of Raipur city produced by the ArcGIS software using the last available 
ASTER DEM data of 11 October 2011 (https://www.earthexplorer.usgs.gov). The city is 
characterised by the tropical dry and wet type of climate (http://www.imdraipur.gov.in). The mean 
monthly temperature ranges from 12oC to 42oC. May presents the highest average temperature (35oC), 
while December presents the lowest average temperature (20oC). The highest average rainfall (327 
mm) is observed in July. March, April, and May are considered as the summer or pre-monsoon 
months.  

Table 1 shows the Landsat data sets used in this study. LST was retrieved through the TIR bands 
of Landsat data sets [band 6 for Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic 
Mapper Plus (ETM+) data, whereas band 10 for Landsat 8 Operational Land Imager (OLI)/ Thermal 
Infrared Sensors (TIRS) data]. The whole study was performed by using ArcGIS 9.3 software. 
Landsat 8 TIRS dataset has two TIR bands (bands 10 and 11) in which band 11 has a larger calibration 
uncertainty. Thus, only TIR band 10 data (100 m resolution) has been recommended for the present 
study (Barsi et al. 2014). The TIR band of Landsat 5 TM data and Landsat 7 ETM+ data is band 6. 
The TIR bands of each Landsat sensors have been resampled to 30 m x 30 m pixel size by the data 
provider (EROS) using the cubic convolution resampling method.  
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Figure 1. Location of the study area. 
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Table 1: Specification of Landsat data sets. 
Landsat scene ID Date of 

acquisition 
Time 

(UTC) 
Sun 

elevation 
(o) 

Sun 
azimuth 

(o) 
 

Cloud 
cover 
(%) 

Earth-Sun 
distance 

(astronomical 
unit) 

Resolution of 
TIR bands 

(m) 

LT51420451991077ISP00 18-Mar-91 04:17:34 48.58 118.92 0 0.99 120 
LT51420451991093ISP00 03-Apr-91 04:17:46 53.04 111.64 0 0.99 120 
LT51420451991141ISP00 21-May-91 04:18:39 59.93 87.09 1 1.01 120 
LT51420451991269ISP01 26-Sep-91 04:20:03 52.47 123.30 13 1.00 120 
LT51420451991285BKT02 12-Oct-91 04:20:12 42.22 131.85 6 0.99 120 
LT51420451991317ISP00 13-Nov-91 04:20:19 41.53 142.35 1 0.99 120 
LT51420451992016ISP00 16-Jan-92 04:20:22 35.26 139.03 3 0.98 120 
LT51420451992032BKT01 01-Feb-92 04:20:27 37.41 135.03 0 0.98 120 
LT51420451992048ISP00 17-Feb-92 04:20:15 40.89 130.26 4 0.98 120 
LT51420451995104ISP01 14-Apr-95 04:05:06 52.75 103.75 0 1.00 120 
LT51420451995344BKT00 10-Dec-95 03:56:47 33.01 139.15 0 0.98 120 
LT51420451996027ISP00 27-Jan-96 04:00:14 33.31 132.27 0 0.98 120 
LT51420451996267ISP00 23-Sep-96 04:14:16 51.81 120.64 2 1.00 120 
LT51420451996283ISP00 09-Oct-96 04:15:07 48.92 129.53 0 0.99 120 
LT51420451996299ISP00 25-Oct-96 04:15:55 45.37 136.48 5 0.99 120 
LT51420451996315ISP00 10-Nov-96 04:16:41 41.61 141.11 7 0.99 120 
LE71420451999315SGS00 11-Nov-99 04:49:00 45.72 149.96 0 0.99 60 
LE71420452000030SGS00 30-Jan-00 04:48:55 41.46 142.31 0 0.98 60 
LE71420452000094SGS00 03-Apr-00 04:48:35 59.72 118.62 0 1.00 60 
LE71420452000126SGS00 05-May-00 04:48:20 65.97 98.50 0 1.00 60 
LE71420452000270SGS00 26-Sep-00 04:46:33 57.21 131.59 6 1.00 60 
LE71420452000350SGS00 15-Dec-00 04:46:31 38.94 150.22 0 0.98 60 
LT51420452004081BKT00 21-Mar-04 04:35:14 53.26 121.40 0 0.99 120 
LT51420452004113BKT00 22-Apr-04 04:36:01 61.43 104.47 1 1.00 120 
LT51420452004145BKT00 24-May-04 04:36:54 64.25 86.72 0 1.00 120 
LT51420452004161BKT00 09-Jun-04 04:37:23 63.98 81.78 9 1.01 120 
LT51420452004273BKT00 29-Sep-04 04:40:16 55.47 131.40 9 1.00 120 
LT51420452004289BKT00 15-Oct-04 04:40:36 51.63 139.65 4 0.99 120 
LT51420452004321BKT00 16-Nov-04 04:41:11 43.41 148.58 0 0.98 120 
LT51420452004337BKT00 02-Dec-04 04:41:33 40.14 149.58 0 0.98 120 
LT51420452004353BKT00 18-Dec-04 04:41:52 38.12 148.74 0 0.98 120 
LT51420452005019BKT00 19-Jan-05 04:42:17 38.92 143.21 0 0.98 120 
LT51420452005035BKT00 04-Feb-05 04:42:29 41.74 139.16 0 0.98 120 
LT51420452009062KHC01 03-Mar-09 04:42:22 49.04 130.64 0 0.99 120 
LT51420452009078KHC00 19-Mar-09 04:42:44 54.10 124.40 2 0.99 120 
LT51420452009094BKT00 04-Apr-09 04:43:05 58.86 116.70 0 1.00 120 
LT51420452009110BKT00 20-Apr-09 04:43:24 62.67 107.39 0 1.00 120 
LT51420452009126BKT00 06-May-09 04:43:42 65.03 97.25 0 1.00 120 
LT51420452009142KHC00 22-May-09 04:44:00 65.88 88.22 1 1.00 120 
LT51420452009174KHC00 23-Jun-09 04:44:35 64.96 80.76 0 1.00 120 
LT51420452009286KHC00 13-Oct-09 04:46:12 53.04 140.48 0 0.99 120 
LT51420452009302BKT00 29-Oct-09 04:46:20 48.72 146.41 0 0.99 120 
LT51420452009350KHC00 16-Dec-09 04:46:44 38.90 150.21 1 0.99 120 
LT51420452010017KHC00 17-Jan-10 04:46:55 39.27 144.86 6 0.99 120 
LT51420452010033KHC00 02-Feb-10 04:46:59 41.92 140.89 0 0.98 120 
LT51420452010049KHC00 18-Feb-10 04:47:02 45.89 136.27 7 0.98 100 
LC81420452014076LGN01 17-Mar-14 04:56:36 55.95 129.38 0 0.99 100 
LC81420452014092LGN01 02-Apr-14 04:56:19 60.91 121.72 0 0.99 100 
LC81420452014140LGN01 20-May-14 04:55:38 68.56 90.40 5 1.01 100 
LC81420452014156LGN01 05-Jun-14 04:55:45 68.38 83.30 0 1.01 100 
LC81420452014316LGN01 12-Nov-14 04:56:21 46.22 152.46 7 0.98 100 
LC81420452014364LGN01 30-Dec-14 04:56:09 39.34 150.83 0 0.98 100 
LC81420452015015LGN01 15-Jan-15 04:56:09 40.22 147.71 0 0.98 100 
LC81420452015031LGN01 31-Jan-15 04:56:04 42.76 143.86 0 0.98 100 
LC81420452015047LGN01 16-Feb-15 04:55:55 46.67 139.41 0 0.98 100 
LC81420452018071LGN00 12-Mar-18 04:55:43 54.19 131.16 2 0.99 100 
LC81420452018087LGN00 28-Mar-18 04:55:36 59.29 124.07 0 0.99 100 
LC81420452018135LGN00 15-May-18 04:55:08 68.27 93.32 0 1.01 100 
LC81420452018167LGN00 16-Jun-18 04:55:01 67.74 81.10 2 1.01 100 
LC81420452018279LGN00 06-Oct-18 04:55:53 56.39 140.40 0 0.99 100 
LC81420452018295LGN00 22-Oct-18 04:55:59 51.96 147.33 0 0.99 100 
LC81420452018311LGN00 07-Nov-18 04:56:03 47.49 151.56 0 0.99 100 
LC81420452018359LGN00 25-Dec-18 04:55:59 39.40 151.57 0 0.98 100 
LC81420452019042LGN00 11-Feb-19 04:55:52 45.33 140.84 0 0.98 100 
LC81420452019058LGN00 27-Feb-19 04:55:48 49.94 135.93 4 0.99 100 
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3. Methodology 

3.1. Retrieving LST from Landsat data 

In this study, the mono-window algorithm was applied to retrieve LST from multi-temporal 
Landsat satellite sensors where three necessary parameters are ground emissivity, atmospheric 
transmittance, and effective mean atmospheric temperature (Qin et al. 2001; Weng et al. 2004; Wang 
et al. 2016; Sekertekin and Bonafoni 2020). At first, the original TIR bands (100 m resolution for 
Landsat 8 OLI/TIRS data, 120 m resolution for Landsat 5 TM data and Landsat 7 ETM+ data) were 
resampled into 30 m by USGS data centre for further application.  

The TIR pixel values are firstly converted into radiance from digital number (DN) values. 
Radiance for TIR band of Landsat 5 TM data and Landsat 7 ETM+ data is obtained using equation 
[1] (USGS):  

𝐿𝐿𝜆𝜆 = � 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀−𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀

� ∗ [𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀] + 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀     [1] 

where, 𝐿𝐿𝜆𝜆 is Top of Atmosphere (TOA) spectral radiance (Wm-2sr-1mm-1), 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶 is the quantized 
calibrated pixel value in DN, 𝐿𝐿𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼 (Wm-2sr-1mm-1) is the spectral radiance scaled to 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀, 
𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (Wm-2sr-1mm-1) is the spectral radiance scaled to 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀, 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 is the minimum 
quantized calibrated pixel value in DN and 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 is the maximum quantized calibrated pixel 
value in DN. 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀, and 𝑄𝑄𝑄𝑄𝑄𝑄𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀values are obtained from the metadata file of 
Landsat TM and ETM+ data. Radiance for Landsat 8 TIR band is obtained from equation [2] (Zanter 
2019):  

𝐿𝐿𝜆𝜆 = 𝑀𝑀𝐿𝐿 .𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐴𝐴𝐿𝐿       [2] 

where, 𝐿𝐿𝜆𝜆 is the TOA spectral radiance (Wm-2sr-1mm-1), 𝑀𝑀𝐿𝐿 is the band-specific multiplicative 
rescaling factor from the metadata, 𝐴𝐴𝐿𝐿 is the band-specific additive rescaling factor from the metadata, 
𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶is the quantized and calibrated standard product pixel values (DN). All of these variables can be 
retrieved from the metadata file of Landsat 8 data. 

For Landsat 5 data, the reflectance value is obtained from radiances using equation [3] (USGS): 

𝜌𝜌𝜆𝜆 = 𝜋𝜋.𝐿𝐿𝜆𝜆.𝑑𝑑2

𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝜆𝜆.𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑠𝑠
       [3] 

where, 𝜌𝜌𝜆𝜆is unitless planetary reflectance, 𝐿𝐿𝜆𝜆 is the TOA spectral radiance (Wm-2sr-1µm-1), 𝑑𝑑is 
Earth-Sun distance in astronomical units, 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝜆𝜆 is the mean solar exo-atmospheric spectral 
irradiances (Wm-2µm-1) and 𝜃𝜃𝑠𝑠 is the solar zenith angle in degrees. 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝜆𝜆 values for each band of 
Landsat 5 and 7 data can be obtained from the handbooks of the related mission. 𝜃𝜃𝑠𝑠 and 𝑑𝑑values can 
be attained from the metadata file. 
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For Landsat 8 data, reflectance conversion can be applied to DN values directly as in equation [4] 
(Zanter 2019): 

𝜌𝜌𝜆𝜆 = 𝑀𝑀𝜌𝜌.𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶+𝐴𝐴𝜌𝜌
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑆𝑆𝑆𝑆

       [4] 

where, 𝑀𝑀𝜌𝜌 is the band-specific multiplicative rescaling factor from the metadata, 𝐴𝐴𝜌𝜌is the band-
specific additive rescaling factor from the metadata, 𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶 is the quantized and calibrated standard 
product pixel values (DN) and 𝜃𝜃𝑆𝑆𝑆𝑆is the local sun elevation angle from the metadata file. 

Equation [5] is used to convert the spectral radiance to at-sensor brightness temperature (Wukelic 
et al. 1989; Chen et al. 2006): 

𝑇𝑇𝑏𝑏 = 𝐾𝐾2
𝑙𝑙𝑙𝑙(𝐾𝐾1𝐿𝐿𝜆𝜆

+1)
                              [5] 

where, 𝑇𝑇𝑏𝑏is the brightness temperature in Kelvin (K), 𝐿𝐿𝜆𝜆 is the spectral radiance in Wm-2sr-1mm-1; 
𝐾𝐾2and 𝐾𝐾1are calibration constants. For Landsat 8 data, 𝐾𝐾1 is 774.89, 𝐾𝐾2 is 1321.08 (Wm-2sr-1mm-1). 
For Landsat 7 data, 

𝐾𝐾1
 is 666.09, 

𝐾𝐾2

 is 1282.71 (Wm-2sr-1mm-1). For Landsat 5 data, 𝐾𝐾1 is 607.76, 𝐾𝐾2 
is 1260.56 (Wm-2sr-1mm-1).  

The land surface emissivity𝜀𝜀, is estimated from equation [6] using the NDVI Thresholds Method 
(Sobrino et al. 2001; 2004).  

𝜀𝜀 = 𝜀𝜀𝑣𝑣𝐹𝐹𝑣𝑣 + 𝜀𝜀𝑠𝑠(1 − 𝐹𝐹𝑣𝑣) + 𝑑𝑑𝑑𝑑                          [6] 

where, 𝜀𝜀 is land surface emissivity, 𝜀𝜀𝑣𝑣 is vegetation emissivity, 𝜀𝜀𝑠𝑠is soil emissivity, 𝐹𝐹𝐹𝐹is fractional 
vegetation, 𝑑𝑑𝑑𝑑is the effect of the geometrical distribution of the natural surfaces and internal 
reflections that can be expressed by equation [7]:  

𝑑𝑑𝑑𝑑 = (1 − 𝜀𝜀𝑠𝑠)(1 − 𝐹𝐹𝑣𝑣)𝐹𝐹𝜀𝜀𝑣𝑣                                           [7] 

where, 𝜀𝜀𝑣𝑣 is vegetation emissivity, 𝜀𝜀𝑠𝑠is soil emissivity, 𝐹𝐹𝐹𝐹is fractional vegetation, 𝐹𝐹is a shape 
factor whose mean is 0.55, the value of 𝑑𝑑𝑑𝑑may be 2% for mixed land surfaces (Sobrino et al. 2004).  

The fractional vegetation𝐹𝐹𝑣𝑣, of each pixel, is determined from the NDVI using equation [8] 
(Carlson and Repley 1997): 

2

m
                          

m m

I (8)
I I

in
v

ax in

NDVI NDVF
NDV NDV

 −
=  − 

 [8] 

where, (𝑎𝑎)𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼 < 0.2 for bare soil; (𝑏𝑏)𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼 > 0.5 for vegetation; (𝑐𝑐)0.2 <= 𝑁𝑁𝑁𝑁𝑁𝑁 𝐼𝐼 < = 0.5 
for mixed land with bare soil and vegetation (Sobrino et al. 2001; 2004).  

Finally, the land surface emissivity 𝜀𝜀 can be expressed by equation [9]:  

𝜀𝜀 = 0.004 ∗ 𝐹𝐹𝑣𝑣 + 0.986                       [9] 

where, 𝜀𝜀 is land surface emissivity, 𝐹𝐹𝐹𝐹is fractional vegetation. 
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Water vapour content is estimated by equation [10] (Yang and Que 1996; Li 2006): 

𝑤𝑤 = 0.0981 ∗ �10 ∗ 0.6108 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 �17.27∗(𝑇𝑇0−273.15)
237.3+(𝑇𝑇0−273.15)� ∗ 𝑅𝑅𝑅𝑅� + 0.1697           [10] 

where, 𝑤𝑤is the water vapour content (g/cm2), 𝑇𝑇0is the near-surface air temperature in Kelvin (K), 
𝑅𝑅𝑅𝑅 is the relative humidity (%). These parameters of atmospheric profile are obtained from the 
Meteorological Centre, Raipur (http://www.imdraipur.gov.in). Atmospheric transmittance is 
determined for Raipur City using equation [11] (Qin 2001; Sun 2010): 

𝜏𝜏 = 1.031412 − 0.11536𝑤𝑤                          [11] 

where, 𝜏𝜏is the total atmospheric transmittance, 𝑤𝑤is the water vapour content (g/cm2). 

Raipur City is located in the tropical region. Thus, equation [12] is applied to compute the effective 
mean atmospheric transmittance of Raipur (Qin 2001; Sun 2010): 

𝑇𝑇𝑎𝑎 = 17.9769 + 0.91715𝑇𝑇0                         [12] 
LST is retrieved from Landsat 5 TM and Landsat 8 OLI/TIRS satellite data by using equations 

[13-15] (Qin 2001): 

𝑇𝑇𝑠𝑠 = [𝑎𝑎(1−𝐶𝐶−𝐷𝐷)+(𝑏𝑏(1−𝐶𝐶−𝐷𝐷)+𝐶𝐶+𝐷𝐷)𝑇𝑇𝑏𝑏−𝐷𝐷𝑇𝑇𝑎𝑎]
𝐶𝐶

          [12]
 

𝐶𝐶 = 𝜀𝜀𝜀𝜀                                                      [13]
 

𝐷𝐷 = (1 − 𝜏𝜏)[1 + (1 − 𝜀𝜀)𝜏𝜏]                          [14] 

where, 𝜀𝜀is the land surface emissivity, 𝜏𝜏is the total atmospheric transmittance, 𝐶𝐶 and 𝐷𝐷 are internal 
parameters based on atmospheric transmittance and land surface emissivity, 𝑇𝑇𝑏𝑏is the at-sensor 
brightness temperature, 𝑇𝑇𝑎𝑎is the mean atmospheric temperature, 𝑇𝑇0is the near-surface air temperature, 
𝑇𝑇𝑠𝑠is the land surface temperature, 𝑎𝑎 = −67.355351, 𝑏𝑏 = 0.458606. 

 

3.2. Extraction of different types of LULC by using NDBaI  

In this study, special emphasis has been given on NDBaI for determining the relationship with 
LST (Chen et al. 2006; Zhao and Chen 2005). NDBaI is determined by the short wave infrared 
(SWIR) and thermal infrared (TIR) bands. For, Landsat 5 TM and Landsat 7 ETM+ data, band 5 is 
used as the SWIR band and band 6 is used as TIR band, respectively. For Landsat 8 OLI and TIRS 
data, band 6 and band 10 are used as the TIR bands, respectively (Table 2). The value of NDBaI is 
ranged between −1 and +1. Generally, the positive value of NDBaI indicates the bare land (Table 2). 
The bareness increases with the increase of the positive NDBaI. NDBaI value ranges between -0.2 to 
0 shows the built-up area, whereas NDBaI > 0 shows the bare land [3]. NDBaI is also used to extract 
other LULC types, e.g., vegetation (NDBaI < -0.25), and water bodies (NDBaI < -0.65). LULC maps 
have been generated using the aforesaid threshold limits of NDBaI and the results have been validated 
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by the maximum likelihood classification. The average calculated values of the Kappa coefficient 
and overall accuracy for all the images are 0.91 and 92.19%, respectively.  

 
Table 2. Description of NDBaI and its threshold values used for extracting the various types of 

LULC. 

Acronym Description Formulation References 

Threshold limits of NDBaI for extracting 
different LULC types 

Vegetation Water 
bodies  

Built-up 
area  

Bare 
land 

NDBaI 
Normalized 
difference  

bareness index 
 

Zhao and Chen 
2005; Chen et al. 

2006 
< -0.25 < -0.65 -0.2 - 0 > 0 

 

4. Results and discussion 

4.1. Extraction of LULC types using NDBaI 
Figure 2 shows the LULC maps of the post-monsoon Landsat images of different years. LULC 

maps have been generated using the threshold limits of NDBaI. In 1991-92, the built-up area and bare 
land were mainly found in the central part of the Raipur City. The northwest portion of the city has 
been urbanized rapidly from 1991-92 to 2004-05 as the percentage of urban vegetation has been 
declined due to the conversion into built-up areas. After 2004-05, the green areas have been reduced 
at an alarming rate as most of the parts of the city have been converted into bare land and built-up 
area. Only the east and the southwest parts were covered by urban vegetation. Water bodies are the 
most stable LULC type in the study area. Green vegetation has been decreased in a very significant 
amount (76.80 km2) from 1991-92 to 2018-19. On the other hand, the built-up area and bare land 
have been increased at a very high rate (78.37 km2 in 27 years) due to rapid land conversion. 

 

 

Figure 2. LULC maps of the study area for the following years: (a) 1991-92 (b) 1995-96 (c) 1999-
00 (d) 2004-05 (e) 2009-10 (f) 2014-15 (g) 2018-19. 
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4.2. Characteristics of the spatial distribution of LST and NDBaI  
There is a prominent seasonal variation of different periods that occurred in mean and standard 

deviation (STD) values of LST (Table 3). The winter season indicates the lowest mean LST values 
for all the years, whereas the highest mean LST values are found in the pre-monsoon seasons during 
the entire span. From 1991-92 to 2018-19, the mean LST has increased in every season. The post-
monsoon season has the mean LST value nearer to the winter season, while monsoon season has a 
slightly high value of mean LST than the post-monsoon season. The average values of LST and the 
correlation coefficient of LST and NDBaI from 1991-92 to 2018-19 have been shown in grey shades 
inside Table 3.  

 
Table 3. Temporal and seasonal variation of LST values and Pearson's correlation coefficient values 

of LST-NDBaI relationship (significant al 0.05 level). 

 

The pre-monsoon season has the maximum values of mean LST (31.54oC in 1991-92, 34.64oC in 
1995-96, 36.38oC in 1999-00, 38.01oC in 2004-05, 39.60oC in 2009-10, 41.28oC in 2014-15, and 
43.74oC in 2018-19) (Figure 3), followed by monsoon (Figure 4), post-monsoon (Figure 5), and 

Season 
 

Year of 
acquisition 

LST (oC) Correlation coefficients 
for LST-NDBaI relationship Min. Max. Mean Std. 

Pre-monsoon 1991-92 23.81 36.27 31.54 1.52 0.58 
 1995-96 24.54 41.07 34.64 1.89 0.51 
 1999-00 26.36 42.23 36.38 1.93 0.49 
 2004-05 26.95 44.07 38.01 2.19 0.48 
 2009-10 28.81 46.48 39.60 2.54 0.43 
 2014-15 31.93 48.22 41.28 1.75 0.41 
 2018-19 33.46 51.11 43.74 1.75 0.40 
 Average 27.98 44.21 37.88 1.94 0.47 

Monsoon 1991-92 19.87 30.83 25.74 1.41 0.66 
 1995-96 21.21 33.01 26.50 1.33 0.54 
 1999-00 22.76 35.91 27.81 1.34 0.53 
 2004-05 24.17 36.20 31.32 1.33 0.54 
 2009-10 25.94 38.38 33.06 2.40 0.56 
 2014-15 27.74 40.15 34.87 1.68 0.50 
 2018-19 30.59 41.98 37.30 1.13 0.55 
 Average 24.61 36.64 30.94 1.52 0.56 

Post-monsoon 1991-92 19.72 29.56 24.32 1.72 0.69 
 1995-96 20.42 30.33 25.12 1.34 0.59 
 1999-00 22.41 33.47 26.84 1.91 0.57 
 2004-05 23.03 35.25 28.01 1.71 0.56 
 2009-10 24.62 37.91 30.26 1.60 0.58 
 2014-15 26.24 38.22 31.68 1.12 0.56 
 2018-19 28.92 41.28 33.70 1.34 0.57 
 Average 23.62 35.15 28.56 1.53 0.59 

Winter 1991-92 18.22 28.33 23.29 1.22 0.53 
 1995-96 20.08 28.68 24.40 1.04 0.48 
 1999-00 20.44 32.80 25.21 1.81 0.46 
 2004-05 21.08 33.21 26.47 1.25 0.44 
 2009-10 22.06 34.36 27.98 1.23 0.42 
 2014-15 22.80 36.21 28.90 1.39 0.41 
 2018-19 24.31 38.36 30.46 1.37 0.37 
 Average 21.28 33.14 26.67 1.33 0.44 
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winter (Figure 6) season. At the macro-level, the areas with high LST values show the urban heat 
island phenomenon. These areas have relatively high NDBaI values. At the micro-level, the high 
peaks of LST also presented the high peaks of NDBaI. The correlation coefficient values of Pearson's 
linear correlation between the LST and NDBaI are positive (for any year or season). The post-
monsoon season has the best mean (mean value of 1991-92, 1995-96, 1999-00, 2004-05, 2009-10, 
2014-15, and 2018-19) correlation coefficient value (0.59), followed by the monsoon (0.56), pre-
monsoon (0.48), and winter (0.44) season. It is seen from Figure 3 that in 2018-19, more than 90% 
of the area in the pre-monsoon season was above 40oC LST. The picture is different in the winter 
season, where no area of the city was above 40oC LST. In 1991-92, almost 90% of the area was below 
25oC LST in the winter season (Figure 6). The monsoon (Figure 4) and post-monsoon (Figure 5) 
seasons indicate a moderate range of LST. The mean LST of the study area has been gradually 
increased between 1991-92 and 2018-19. The conversion of other lands into the built-up area and 
bare land influences a lot on the mean LST of the city. Both the changed and unchanged built-up area 
and bare land suffer from the increasing trend of LST. These results significantly present the influence 
of climate change in Raipur City.  

 
 

 
 

Figure 3. Spatial distribution of LST in pre-monsoon season for the following years: (a) 1991-92 (b) 
1995-96 (c) 1999-00 (d) 2004-05 (e) 2009-10 (f) 2014-15 (g) 2018-19 2004-05 (e1-e4) 2009-10 (f1-

f4) 2014-15 (g1-g4) 2018-19. 
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Figure 4. Spatial distribution of LST in monsoon season for the following years: (a) 1991-92 (b) 1995-
96 (c) 1999-00 (d) 2004-05 (e) 2009-10 (f) 2014-15 (g) 2018-19 2004-05 (e1-e4) 2009-10 (f1-f4) 2014-

15 (g1-g4) 2018-19. 

 

 

Figure 5. Spatial distribution of LST in post-monsoon season for the following years: (a) 1991-92 (b) 
1995-96 (c) 1999-00 (d) 2004-05 (e) 2009-10 (f) 2014-15 (g) 2018-19 2004-05 (e1-e4) 2009-10 (f1-f4) 

2014-15 (g1-g4) 2018-19. 
 



South African Journal of Geomatics, Vol. 10. No. 2, August 2021 

175 

 

 

Figure 6. Spatial distribution of LST in winter season for the following years: (a) 1991-92 (b) 1995-
96 (c) 1999-00 (d) 2004-05 (e) 2009-10 (f) 2014-15 (g) 2018-19 2004-05 (e1-e4) 2009-10 (f1-f4) 

2014-15 (g1-g4) 2018-19. 
 

4.3. Seasonal variation on LST-NDBaI relationship 

Figure 7 (a-d) shows the seasonal variation of LST-NDBaI relationships on different LULC types 
in winter, pre-monsoon, monsoon, and post-monsoon season, respectively. Here, only three types of 
LULC are considered, i.e., (1) vegetation, (2) water bodies, and (3) built-up area and bare land. On 
water bodies, the LST-NDBaI relationship is strongly positive for any season. NDBaI is a bareness 
index that is frequently used in bare land extraction. On the bare land and built-up area of the study 
area, the correlation is a moderate positive for all four seasons. On green vegetation, the relationship 
is strong (monsoon, post-monsoon, and winter) to moderate (pre-monsoon) positive. The pre-
monsoon season (Figure 7 (a)) has a strong positive LST-NDBaI correlation on the water bodies 
(0.65) and a moderate positive correlation on green vegetation (0.37), bare land, and built-up area 
(0.35). In the monsoon season, the correlation is strongly positive on green vegetation (0.56) and 
water bodies (0.51), whereas the correlation is moderate positive (0.43) on bare land and built-up area 
(Figure 7 (b)). The post-monsoon season has a stable and strong positive correlation (correlation 
coefficient > 0.48) for any LULC categories throughout the period (Figure 7 (c)). The best correlation 
has been built on green vegetation (0.62), followed by the water bodies (0.53), bare land and built-up 
area (0.48). In winter (Figure 7 (d)), the LST-NDBaI correlation is strongly positive on water bodies 
(0.62) and green vegetation (0.54). Bare lands and built-up areas reflect the moderate positive (0.39) 
correlation in the winter season because at that time dry soil, exposed rock surface, and building 
materials get cooler than green vegetation and water bodies. Figure 7 (e) represents a generalized 
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view of the overall seasonal variation of LST-NDBaI relationships for the whole of the study area. 
The relationship is positive, irrespective of any season. It can be concluded from Figure 7 (e) that the 
post-monsoon season reveals the best correlation among all the four seasons. It is mainly because of 
the high intensity of moisture content in the air. Dry seasons (winter and pre-monsoon) reduce the 
strength of the correlation, while the wet seasons (post-monsoon and monsoon) enhance the strength 
of the LST-NDBaI correlation. 

The present study indicates that LST builds a stable and strong to moderate positive correlation 
with NDBaI in Raipur City, India throughout the study period. The result is comparable to the recently 
conducted other similar studies on the different urban agglomerations in the world. Essa et al (2012) 
have shown that NDBaI builds a positive correlation (0.39) with LST in the Greater Dublin region, 
Ireland. Chen and Zhang (2017) have shown the strong positive nature of the correlation coefficient 
of the LST-NDBaI relationship in a study performed in Kunming, China. A weak positive correlation 
between LST and NDBaI has been presented in London (0.086) and Baghdad (0.469) by Ali et al. 
(2017). This relationship was also positive (0.458) in Kolkata Metropolitan Area, India. The LST and 
NDBaI have built a weak negative correlation (-0.11) in Guangzhou, China. This correlation was 
weak positive (0.06) in Harare Metropolitan City, Zimbabwe. Sharma and Joshi (2016) have shown 
the moderate positive nature of LSI-NDBaI correlation in the National Capital Region of India. The 
present study shows that the average correlation coefficient between LST and NDBaI of all the four 
seasons from 1991-92 to 2018-19 is moderate positive (0.052), which can be considered as a very 
stable and authentic relationship between the two variables.  
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Figure 7. (a-d) Seasonal variation of the LST-NDBaI relationship on different types of LULC: (a) 
Pre-monsoon (b) Monsoon (c) Post-monsoon (d) Winter; (e) Seasonal variation of the LST-NDBaI 

relationship for the whole of the study area (significant at 0.05 level). 
 

4. Conclusion 

The present study analyzed the temporal and seasonal relationship of LST and NDBaI in Raipur 
City, India using sixty-five Landsat data sets of four different seasons (pre-monsoon, monsoon, post-
monsoon, and winter) for different years. The main expectation was the relationship should be 
positive between LST and NDBaI across seasons. Moreover, another expectation was that the strength 
of the relationship should tend to be weaker with time. Another one is that the relationship should be 
stronger in comparatively wet season. The results support the expectations.  

In general, the results show that LST is positively related to NDBaI, irrespective of any season. In 
the post-monsoon (0.59) and monsoon (0.56) seasons, the correlation is strongly positive, whereas it 
is found moderate positive in pre-monsoon (0.47) and winter (0.44). The LST-NDBaI relationship 
varies for specific LULC types. The water bodies reflect a strong positive correlation of LST-NDBaI 
in all the four seasons (0.65 in pre-monsoon, 0.51 in monsoon, 0.53 in post-monsoon, and 0.62 in 
winter). On green vegetation, this LST-NDBaI correlation is also strongly positive in monsoon (0.57), 
post-monsoon (0.62), and winter (0.55), whereas it is moderate positive in pre-monsoon (0.37) 
season. The built-up area and bare land build a moderate positive correlation of LST-NDBaI in all 
the four seasons (0.35 in pre-monsoon, 0.43 in monsoon, 0.48 in post-monsoon, and 0.39 in winter). 
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Among the four seasons, the post-monsoon season builds the best LST-NDBaI correlation for all 
LULC types, whereas the pre-monsoon season has the least correlation. Among the various LULC 
categories, the water bodies present the best positive LST-NDBaI correlation (0.65 in pre-monsoon, 
0.51 in monsoon, 0.53 in post-monsoon, and 0.62 in winter), irrespective to any season. Green 
vegetation shows strong positive (0.57 in monsoon, 0.62 in post-monsoon, and 0.55 in winter) to 
moderate positive (0.37 in pre-monsoon) correlation between LST and NDBaI. On the other hand, 
the bare land and built-up area present a moderate positive correlation (0.35 in pre-monsoon, 0.43 in 
monsoon, 0.48 in post-monsoon, and 0.39 in winter). Among the four seasons, the post-monsoon 
season builds the best LST-NDBaI correlation for all LULC types, whereas the pre-monsoon season 
has the least correlation. The high ratio of green plants and water surface can enhance the ecological 
health. Thus, this research work can be beneficial for the environmental planners.  

 

5. Acknowledgment 

The author is indebted to the United States Geological Survey (USGS).  

 

6. Disclosure statement 

No potential conflict of interest was reported by the author. 

 

References 
Ahmed B, Kamruzzaman M, Zhu X, Rahman MS, Choi K. Simulating Land Cover Changes and Their Impacts 

on Land Surface Temperature in Dhaka, Bangladesh. Remote Sens. 2013;5(11):5969-5998. 
https://doi.org/10.3390/rs5115969 

Alexander C. Normalised difference spectral indices and urban land cover as indicators of land surface 
temperature (LST). Int. J. Appl. Earth Obs. Geoinf. 2020;86:102013. 
https://doi.org/10.1016/j.jag.2019.102013 

Alibakhshi Z, Ahmadi M, Farajzadeh Asl M. Modeling Biophysical Variables and Land Surface Temperature 
Using the GWR Model: Case Study—Tehran and Its Satellite Cities. J. Indian Soc. Remote Sens. 
2020;48:59–70. https://doi.org/10.1007/s12524-019-01062-x 

Ali JM, Marsh SH, Smith MJ. A comparison between London and Baghdad surface urban heat islands and 
possible engineering mitigation solutions. Sustain. Cities Soc. 2017;29:159-168. 
https://doi.org/10.1016/j.scs.2016.12.010  

As-syakur AR, Adnyana IWS, Arthana IW, Nuarsa IW. Enhanced Built-Up and Bareness Index (EBBI) for 
Mapping Built-Up and Bare Land in an Urban Area. Remote Sens. 2012;4(10):2957-2970. 
https://doi.org/10.3390/rs4102957 

Barsi J, Schott J, Hook S, Raqueno N, Markham B, Radocinski R. Landsat-8 thermal infrared sensor (TIRS) 
vicarious radiometric calibration. Remote Sens. 2014;6(11):11607-11626.  

Carlson TN, Ripley DA. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. 
Remote Sens. Environ. 1997;62:241-252. https://doi.org/10.1016/S0034-4257(97)00104-1  



South African Journal of Geomatics, Vol. 10. No. 2, August 2021 

179 

Chen XL, Zhao HM, Li PX, Yi ZY. Remote sensing image-based analysis of the relationship between urban 
heat island and land use/cover changes. Remote Sens. Environ. 2006;104(2):133–146. 
https://doi.org/10.1016/j.rse.2005.11.016 

Chen X, Zhang Y. Impacts of urban surface characteristics on spatiotemporal pattern of land surface 
temperature in Kunming of China. Sustain. Cities Soc. 2017;32:87-99. 
https://doi.org/10.1016/j.scs.2017.03.013 

Essa W, Verbeiren B, Van der Kwast J, Van de Voorde T, Batelaan O. Evaluation of the DisTrad thermal 
sharpening methodology for urban areas. Int. J. Appl. Earth Obs. Geoinf. 2012;19:163-172. 
https://doi.org/10.1016/j.jag.2012.05.010 

Guha S, Govil H, Diwan P. Analytical study of seasonal variability in land surface temperature with normalized 
difference vegetation index, normalized difference water index, normalized difference built-up index, and 
normalized multiband drought index. J. Appl. Remote Sens. 2019;13(2): 024518. 
https://doi.org/1010.1117/1.JRS.13.024518 

Guha S, Govil H, Gill N, Dey A. Analytical study on the relationship between land surface temperature and 
land use/land cover indices. Ann. GIS. 2020;26(2): 201-216. 
https://doi.org/10.1080/19475683.2020.1754291 

Guha S, Govil H, Mukherjee S. Dynamic analysis and ecological evaluation of urban heat islands in Raipur 
city, India. J. Appl. Remote Sens. 2017;11(3): 036020. https://doi:10.1117/1.JRS.11.036020 

Guo G, Wu Z, Chen Y. Estimation of subpixel land surface temperature using Landsat TM imagery: A case 
examination over a heterogeneous urban area. Third International Workshop on Earth Observation and 
Remote Sensing Applications 

Hao X, Li W, Deng H. The oasis effect and summer temperature rise in arid regions-case study in Tarim Basin. 
Sci. Rep. 2016;6:35418. https://doi.org/10.1038/srep35418 

Jain S, Sannigrahi S, Sen S, Bhatt S, Chakraborti S, Rahmat S. Urban heat island intensity and its mitigation 
strategies in the fast-growing urban area. J. Urban Manage. 2020;9(1):54-66. 
https://doi.org/10.1016/j.jum.2019.09.004 

Li J. Estimating land surface temperature from Landsat-5 TM. Remote Sens. Technol. Appl. 2006;21:322-326. 
Li ZN, Duan SB, Tang BH, Wu H, Ren HG, Yan GJ. Review of methods for land surface temperature derived 

from thermal infrared remotely sensed data. J. Remote Sens. 2016;20:899–920.  
Macarof P, Bîrlica IC, Stătescu F. Investigating the relationship between land surface temperature and urban 

indices using landsat-8: a case study of Iaşi. Lucrările Seminarului Geografic Dimitrie Cantemir 
2017;45:81-88. https://doi.org/10.15551/lsgdc.v45i0.07  

Mushore TD, Odindi J, Dube T, Mutanga O. Prediction of future urban surface temperatures using medium 
resolution satellite data in Harare metropolitan city, Zimbabwe. Build. Environ. 2017;122:397-410. 
https://doi.org/10.1016/j.buildenv.2017.06.033 

Nimish G, Bharath HA, Lalitha A. Exploring temperature indices by deriving relationship between land surface 
temperature and urban landscape. Remote Sens. Appl. Soc. Environ. 2020;18:100299. 
https://doi.org/10.1016/j.rsase.2020.100299 

Qin Z, Karnieli A, Barliner P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from 
Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int. J. Remote Sens. 
2001;22(18):3719-3746. https://doi:10.1080/01431160010006971 

Sharma R, Joshi PK. Mapping environmental impacts of rapid urbanization in the National Capital Region of 
India using remote sensing inputs. Urban Clim. 2016;15:70-82. 
https://doi.org/10.1016/j.uclim.2016.01.004 



South African Journal of Geomatics, Vol. 10. No. 2, August 2021 

180 

Yuan X, Wang W, Cui J, Meng F, Kurban A, De Maeyer. Vegetation changes and land surface feedbacks drive 
shifts in local temperatures over Central Asia. Sci. Rep. 2017;(1):3287. https://doi.org/10.1038/s41598-017-
03432-2 

Sekertekin A, Bonafoni S. Land surface temperature retrieval from landsat 5, 7, and 8 over rural areas: 
assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote 
Sens. 2020;12(2):294. https://doi.org/10.3390/rs12020294 

Sharma R, Ghosh A, Joshi PK. Mapping environmental impacts of rapid urbanization in the National Capital 
Region of India using remote sensing inputs. Geocarto Int. 2013;28(5):420-438. 
https://doi.org/10.1080/10106049.2012.715208 

 (EORSA), Changsha, 2014. p. 304-308. https://doi.org/10.1109/EORSA.2014.6927900 
Sobrino JA, Raissouni N, Li Z. A comparative study of land surface emissivity retrieval from NOAA data. 

Remote Sens. Environ. 2001;75(2):256–266. https://doi.org/10.1016/S0034-4257(00)00171-1 
Sobrino JA, Jimenez-Munoz JC, Paolini L. Land surface temperature retrieval from Landsat TM5. Remote 

Sens. Environ. 2004;9:434–440. https://doi:10.1016/j.rse.2004.02.003  
Sun Q, Tan J, Xu Y. An ERDAS image processing method for retrieving LST and describing urban heat 

evolution: A case study in the Pearl River Delta Region in South China. Environ. Earth Sci. 2010;59:1047-
1055. 

Tomlinson CJ, Chapman L, Trones JE, Baker C. Remote sensing land surface temperature for meteorology 
and climatology: a review. Meteorol. Appl. 2011;118:296–306. https://doi.org/10.1002/met.287  

Wang J, Qingming Z, Guo H, Jin Z. Characterizing the Spatial Dynamics of Land Surface temperature–
impervious Surface Fraction Relationship. Int. J. Appl. Earth Obs. Geoinf. 2016;45:55–65. 

Weng QH, Lu DS, Schubring J. Estimation of Land Surface Temperature–Vegetation Abundance Rela-
tionship for Urban Heat Island Studies. Remote Sens. Environ. 2004;89:467-483. 
https://doi:10.1016/j.rse.2003.11.005 

Weng Q, Quattrochi DA. Thermal remote sensing of urban areas: An introduction to the special issue. Remote 
Sens. Environ. 2006;104(2):119-122. https://doi.org/10.1016/j.rse.2006.05.002 

Wukelic GE, Gibbons DE, Martucci LM, Foote HP. Radiometric calibration of Landsat Thematic Mapper thermal 
band. Remote Sens. Environ. 1989;28:339–347. https://doi.org/10.1016/0034-4257(89)90125-9 

Yang J, Que J. The empirical expressions of the relation between precipitable water and ground water vapor 
pressure for some areas in China. Sci. Atmos. Sin. 1996;20:620-626. 

Zanter K. Landsat 8 (L8) Data Users Handbook; EROS: Sioux Falls, SD, USA. 2019. 
Zhao HM, Chen XL. Use of normalized difference bareness index in quickly mapping bare areas from 

TM/ETM+. Geoscience and Remote Sensing Symposium. 2005;3(25–29):p.1666−1668. 
https://doi.org/10.1109/IGARSS.2005.1526319 
 
  

https://doi.org/10.1016/j.rse.2004.02.003
http://adsabs.harvard.edu/cgi-bin/author_form?author=Wukelic,+G&fullauthor=Wukelic,%20G.%20E.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Gibbons,+D&fullauthor=Gibbons,%20D.%20E.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Martucci,+L&fullauthor=Martucci,%20L.%20M.&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Foote,+H&fullauthor=Foote,%20H.%20P.&charset=UTF-8&db_key=PHY

