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Abstract 

Water is a scarce resource in South Africa, and approximately 62% of the water used in South 

Africa is for irrigation. This water is stored in many small dams scattered across the country. If not 

managed correctly, they could have a negative effect on catchment areas and on the availability of 

water. As such, there is a need for a new monitoring and management system to be developed. This 

study determined the minimum surface area that would be required for a waterbody to be detected 

on Sentinel-1 Synthetic Aperture Radar imagery. A Random Forest classifier was used to detect 

waterbodies on a Sentinel-1 image calculated from a time series of imagery taken over a period of 

three months. Steep incidence angles outperformed shallow incidence angles, with the classification 

having an overall accuracy of 80%. Detection rates were almost 90% for waterbodies of one 

hectare and greater, with no false positives, and a 10% false negative rate. These findings provide 

the foundation for developing a detection and monitoring system, which would allow for the better 

management of water resources in South Africa. 

 

1. Introduction 

South Africa has a semi-arid climate and water is a scarce resource (Friedrich, Pillay & Buckley, 

2009). Of all the water used in the country, 62% is used for irrigation (Claassen, 2010) and this 

figure is likely to rise with increasing pressure on the agricultural sector to produce more food (De 

Lange, 2010). In semi-arid climates, dams facilitate dry season water storage for irrigation 

(Stephens, 2010). In South Africa, most dams are typically smaller than 2.5 hectares (ha) (DWAF, 

1986). Owing to the increasing gap between the need for and the availability of water in the 

Western Cape province, there is mounting pressure to build more dams (du Plessis 2017; van der 

Zaag & Gupta, 2008). The construction of these small dams limits the total amount of water 

available downstream (Tingey-Holyoak, 2010), reduces streamflow (Habets et al., 2018), increases 

the salinity of the water (Bugan, Jovanovic & De Clercq, 2012) and causes siltation of the 

hydrological system (van der Zaag & Gupta, 2008).  

There is, therefore, a need to implement a dam monitoring system to ensure that the agricultural 

sector can fulfil its role, without causing permanent damage to the hydrological system. This will 

allow the Department of Water and Sanitation (DWS) and the Western Cape Government (WCG) to 
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manage and maintain the system in a more efficient and effective manner. While DWS does in fact 

maintain a list of dams in South Africa, it only contains those registered as a safety risk, and the list 

is not complete. Hence, the total number of dams in South Africa is not accurately known 

(Boardman et al., 2009), and a new method of monitoring these small dams is needed (WCG, 

2018). There is also a need for more research on the effects of small dams on the hydrological 

system in the South African context (Boardman et al., 2009). 

Remote sensing has proven useful in many studies relating to the mapping and monitoring of 

water resources (Mahdavi et al. 2018; Smith, 1997). Specifically, there is often little data available 

on the smallest of dams, to the effect that the methods provided by remote sensing for gaining 

information on this topic are valuable. Synthetic Aperture Radar (SAR) has been shown to be a 

favourable system for waterbody mapping since open water produces a distinctive return that can be 

clearly identified (Brisco et al., 2009). SAR imagery is often preferred above optical imagery for 

waterbody mapping as it is not limited by atmospheric conditions and is also independent of 

illumination from the sun (Lettenmaier, 2007). Unlike optical imagery, SAR imagery also provides 

surface structure information and, since water is structurally different from most other land cover 

(LC) classes, it can easily be differentiated (Muro et al., 2016). SAR sensors transmit a microwave 

pulse, which interacts with the surface of the Earth and then records the intensity of the pulse that is 

backscattered (Moreira et al., 2013). The backscatter intensity is dependent on the texture and 

structure of the observed surface (Curlander & McDonough, 1991), as well as the incidence angle 

of the incoming pulse and the dielectric properties of the surface (McCandless & Jackson, 

2004). Surfaces, such as waterbodies, that are smooth relative to the wavelength of the incoming 

pulse, cause specular reflection and, as very little of the pulse is returned to the sensor, generally 

appear as dark patches on SAR images (Liebe et al., 2009). Despite these benefits, SAR imagery 

can be expensive, has a high processing time and there is often a long delay before the data become 

available. The Sentinel-1 constellation overcomes these drawbacks, as the European Space Agency 

(ESA) freely provides imagery with a high temporal resolution and a short time period between 

capture and availability (Torres et al., 2012). Co-polarised horizontal (HH) imagery is generally 

considered superior to other polarisations for waterbody mapping (Henry et al., 2006; Twele et al., 

2016), but, unless a special request is made, Sentinel-1 does not provide this information. 

Nonetheless, Sentinel-1 has been shown to be a suitable sensor for many waterbody mapping 

applications (Amitrano, di Martino, et al., 2014, Bangira et al., 2019, Janse van Rensburg & Kemp, 

2022).   

The most common method of using SAR for waterbody mapping is to use a threshold to divide 

backscatter imagery into regions of similar intensities (Bioresita et al., 2018; Heine et al., 2014; Li 

& Wang, 2015). Another common method is to use machine learning classification algorithms to 

perform the threshold splitting (Bangira et al., 2019; Long, Fatoyinbo & Policelli, 2014; Pôssa & 

Maillard, 2018). Studies that have shown the most promising results have also used various 

methods of filtering and smooth labelling to reduce speckle and to take advantage of spatial 
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autocorrelation (Amitrano, Ciervo, et al., 2014; Bioresita et al., 2018). While many studies have 

extracted waterbodies successfully from SAR imagery (Amitrano, Ciervo, et al., 2014; Brisco et al., 

2009; Heine et al., 2014), limited research has been undertaken to detect waterbodies of less than 

1ha. 

In this study, small dams are classified using Sentinel-1 imagery, and a determination is made of 

the minimum waterbody surface area that can be successfully detected from the classification. The 

impact of incidence angle on the detection rate is also assessed. Waterbodies are classified using a 

pixel-based Random Forest (RF) algorithm applied to a Sentinel-1 image which has undergone 

multitemporal filtering. The surface areas of the waterbodies in the study area range from 0.01ha to 

12ha. Since the smallest dams are often covered by only one or two pixels, smooth labelling or 

filtering was not used.  

 

2. Data and Methods 

The data and methods used are outlined in the following sections. 

 

2.1. Study area 

The chosen study area is situated in the Western Cape province of South Africa, between Cape 

Town and Malmesbury, and is illustrated in Figure 1.  

The study area is located in the overlap of two Sentinel-1 orbits. There are many farm dams of 

various sizes distributed across the study area that are used mainly to store freshwater for irrigation 

(Boardman et al., 2009). The study area is covered predominantly by agricultural farmland, with 

wheat, canola and grapes being the main crop types (Halpern & Meadows, 2013). The remainder of 

the study area is mostly urban or covered in natural vegetation, the latter often found in areas of 

greater topographic relief. The area experiences a Mediterranean climate, with a winter rainfall of 

approximately 450mm per annum (CWDM, 2017). 
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Figure 1. The study area is between the towns of Cape Town and Malmesbury. The blue dots 

represent dams that are present in the DWS list of registered dams. 

 

2.2. Experimental design 

The workflow of the study can be seen in Figure 2. Sentinel-1 images were processed and 

classified, and the accuracy of the classifications was assessed. Sections 2.3 and 2.4 describe these 

processing steps in greater detail. 
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Figure 2. The processing workflow of the study. 

 

2.3. Data collection and preparation 

Sentinel-1 imagery was used for image classification, while ancillary Sentinel-2 and aerial 

imagery were used to collect training and validation datasets. 

 

2.3.1. Sentinel-1 imagery 

The study used C-band (λ = 5.6 cm) SAR imagery that was captured in 20m × 5m pixels and was 

resampled to a 10m resolution. The imagery had been captured in the Interferometric Wide (IW) 

swath mode in both co-polarised Vertical-Vertical (VV) and cross polarised Vertical-Horizontal 

(VH) polarisations. The backscattering coefficient, Sigma-naught (σ°), was converted to decibels 

(dB) via log scaling. As indicated in Table 1, images from six different dates and from two different 

orbits were used.  

GEE’s Sentinel-1 GRD ImageCollection was used (GEE 2019). Thermal noise removal, 

radiometric calibration and terrain correction had already been performed by GEE using the 

Sentinel-1 Toolbox. The images were all taken over the two months at the end of the wet season in 

2018 when water levels in the dams are expected to be at their highest. A mean backscatter image 

was calculated for the time period, where each pixel value in this image represented the average 

backscatter intensity of that pixel over the six images. A standard deviation image was also 

calculated in the same manner. However, the standard deviation was used instead of the mean. This 

mitigated the effect of speckle, combined all the data and added greater definition to the shorelines. 
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Table 1. Product names of the Sentinel-1 and Sentinel-2 imagery that were used, along with 

acquisition dates and relative orbit numbers. 

Sensor Product Name 
Acquisition 

Date 

Relative 

Orbit 

Number 

S1 
S1A_IW_GRDH_1SDV_20180701T172601_20180701T172626_02260

3_0272EE_81AD 
1 Jul 2018 131 

S1 
S1A_IW_GRDH_1SDV_20180713T172602_20180713T172627_02277

8_027822_AF30 
13 Jul 2018 131 

S1 
S1A_IW_GRDH_1SDV_20180725T172602_20180725T172627_02295

3_027DA9_FF74 
25 Jul 2018 131 

S1 
S1A_IW_GRDH_1SDV_20180806T172603_20180806T172628_02312

8_02831F_CC19 
6 Aug 2018 131 

S1 
S1A_IW_GRDH_1SDV_20180818T172604_20180818T172629_02330

3_0288CA_3C32 
18 Aug 2018 131 

S1 
S1A_IW_GRDH_1SDV_20180830T172605_20180830T172630_02347

8_028E58_0B25 
30 Aug 2018 131 

S1 
S1A_IW_GRDH_1SDV_20180624T173408_20180624T173433_02250

1_026FE5_43AC 
24 Jun 2018 29 

S1 
S1A_IW_GRDH_1SDV_20180706T173409_20180706T173434_02267

6_0274FE_0B82 
6 Jul 2018 29 

S1 
S1A_IW_GRDH_1SDV_20180718T173409_20180718T173434_02285

1_027A5A_11BA 
18 Jul 2018 29 

S1 
S1A_IW_GRDH_1SDV_20180730T173410_20180730T173435_02302

6_027FDF_226C 
30 Jul 2018 29 

S1 
S1A_IW_GRDH_1SDV_20180811T173411_20180811T173436_02320

1_02856B_9DF6 
11 Aug 2018 29 

S1 
S1A_IW_GRDH_1SDV_20180823T173411_20180823T173436_02337

6_028B14_1DA1 
23 Aug 2018 29 

S2 20180730T081559_20180730T083741_T34HBH 30 Jul 2018  

 

These images were then masked, using a projected local incidence angle raster, to exclude as 

many areas of radar shadow as possible (Prasad et al. 2019). The projected local incidence angle 

raster was generated in SNAP, using the 30m resolution SRTM DEM. The incidence angles for 

relative orbit 29 ranged from 42.9° to 44.9°, and for relative orbit 131, from 31.7° to 34.3°. Relative 

orbit 29 was therefore used for shallow incidence angles and relative orbit 131 for steep incidence 

angles. 

 

2.3.2. Training and validation data 

Three different datasets were created for training and validation use. One was used for training 

and the other two for validation. The first dataset, used to train the classifier, was digitised from the 

Sentinel-2 image. Table 2 shows the seven different LC classes identified in the study area, with 40 

polygons digitised per class, as in Myburgh and Van Niekerk (2014). This dataset was used to train 

the classifier. 
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Table 2. Land cover classes represented in the study area. 

Number Class Name Description 

0 Bare Ground Artificial and natural areas where the mineral layer is not covered by 

any vegetation or buildings 

1 Urban Man-made/built features, such as houses, farm buildings and large 

warehouses 

2 Natural Vegetation Brushy vegetation, consisting of Fynbos, dune plants and grasslands 

3 Water Areas of standing water, natural or man-made 

4 Vineyards and Orchards Woody crops planted in a defined pattern in large fields 

5 Wheat and Canola Fields Smaller crops planted in large fields; high temporal variability 

6 Hard Man-made Surfaces Surfaces such as parking lots, roads, covered reservoirs and airstrips 

 

The second dataset, used for validation, consisted of polygons representing the respective water 

extents of the waterbodies in the study area. These polygons were digitised from high-resolution 

(0.5m) colour aerial photographs. As seen in Table 3, 120 waterbodies were digitised for each size 

class. Since these aerial images were captured in 2014, each polygon was checked against the 

Sentinel-2 image to ensure that the water extent was current. 

 

Table 3. Waterbody extent size classes. 

Number Class Name Abbreviation Surface Area (ha) 

0 Extra-small XS 0.00 – < 0.20 

1 Small S 0.20 – < 0.50 

2 Medium M 0.50 – < 1.00 

3 Large L 1.00 – < 2.10 

4 Extra-large XL ≥ 2.10 

 

The third dataset, which was the second dataset used for validation, consisted of polygons 

representing the non-water LC classes. Six hundred (600) points were randomly generated across 

the study area. A random selection was made and then buffered by a random distance. This was 

repeated multiple times until there were 120 polygons in each size range, as with each size class in 

the water extents dataset. The LC class for each polygon was then allocated from the Sentinel-2 

image. 
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2.4. Classification and accuracy assessment 

Using the mean backscatter image, a ratio index between VV and VH was calculated. This index, 

along with the mean and standard deviation VV and VH backscatter images, was used as input data 

to an RF classification algorithm in GEE. The number of classification trees per class was tested, 

and it was found that 30 trees per class performed best. As recommended by Breiman (2001), the 

other RF hyperparameters were left unchanged. This produced a binary water/not-water 

classification. The RF algorithm was run separately on imagery from each incidence angle, 

producing two different classifications. 

Three different accuracy assessment and validation steps were performed. First, the accuracy of 

the classifications across all size classes was assessed using an error matrix. The error matrix was 

constructed using both the water extents dataset and the non-water dataset. A random sample of 80 

water extent polygons and 80 non-water polygons was taken from each size class. The percentage 

of pixels correctly classified in each polygon was calculated and a threshold was set to determine 

whether the polygon was detected as a waterbody or not. This percentage was termed the detection 

rate of the dam. If the detection rate was above 30%, that polygon was considered a successfully 

detected waterbody. Polygons in the water extents dataset that were not detected were regarded as 

false negatives and polygons in the non-water dataset that were detected were regarded as false 

positives. 

Second, using the 30% detection rate threshold, each polygon in the water extents dataset was 

marked as either detected or undetected. The smallest size class where more than 70% of the 

waterbodies in that class were detected, was considered the smallest class that could be successfully 

detected. 

Third, error matrices were constructed for each size class to give more insight into false positive 

and negative rates within each size class. Since the number of samples per class was imbalanced, a 

random sample of 80 water extent polygons and 80 non-water polygons was taken from each class, 

and a confusion matrix was generated. This was repeated three times and the results averaged, so 

that a larger number of samples could be used without having an error matrix affected by the 

imbalanced class sizes (Sokolova & Lapalme, 2009). This yielded the final per-class accuracy 

metrics. 

 

3. Results 

The error matrices for steep incidence angles and shallow incidence angles can be seen in Table 

4 and Table 5 respectively. The Overall Accuracy (OA), False Positive Rate (FPR) and False 

Negative Rate (FNR), from the error matrices can be seen in Table 6.  

 

Table 4. Error matrix for classification produced from steep incidence angles (relative orbit 131). 
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  Classification 

  Not Dam Dam Totals 

Reference Not Dam 390 10 400 

Dam 146 254 400 

Totals 536 264 800 

 

Table 5. Error matrix for classification produced from shallow incidence angles (relative orbit 29). 

  Classification 

  Not Dam Dam Totals 

Reference Not Dam 386 14 400 

Dam 164 236 400 

Totals 550 250 800 

 

Table 6. Accuracies of the classifications produced from shallow and steep incidence angles. 

 Shallow (29) Steep (131) 

OA (%) 77.80 80.50 

FPR (%) 3.50 2.50 

FNR (%) 41.00 36.50 

 

The classification of imagery taken at a steep incidence angle (relative orbit 131) performed 

better overall, and it didn’t under-classify as much as the shallow incidence angle (relative orbit 29) 

did. Highlighted by the lower FPR and FNR, it produced fewer misclassifications. The 

classification of imagery from a shallow incidence angle did in fact produce marginally more false 

positives, however, the main contributor to the difference in OA was the much higher FNR. 

Figure 3 provides more insight regarding the detection rate of each dam in the reference dataset 

for steep incidence angles. 
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Figure 3. Correlation between per dam detection rate and surface area for the steep incidence angle. 

Only dams with a surface area of less than six (6) ha are shown here. The 30% detection rate 

threshold line is shown in bold. The dotted line shows the ordinary least squares regression line. 

 

Despite a very weak positive correlation between detection rate and surface area (R2 = 0.1976), 

most of the dams larger than one ha were found to exhibit a detection rate of above 30%. Dams 

lying below the 30% detection rate threshold were considered false negatives. Thirty percent (30%) 

was shown to be a suitable detection threshold since this is the point where the low correlation 

would cause detection rates to drop unnecessarily.  

Dams that have no pixels classified as water lie on the 0% line and can be seen mainly between 0 

and 0.5ha. Under-classification of smaller dams is an issue, as shown by the high FNRs in Table 6 

and Table 7. However, as the surface area increases, fewer dams remain undetected. This can be 

seen by comparing the results for the different size classes. The difference in percentage dams 

detected per size class between the classifications from the two incidence angles is shown in Figure 

4.  



South African Journal of Geomatics, Vol. 11. No. 2, August 2022 

 

300 

 

 

Figure 4. Percentage of dams detected in each size class for the two incidence angles. The 70% 

detection threshold is shown in bold. 

 

The percentage of dams successfully detected per size class is comparable for the two incidence 

angles, up until the L class, where the steep incidence angles start to perform better. The only 

classes above the 70% threshold on both incidence angles are the L and XL classes. However, the 

M class is approaching that threshold. In the XL class, almost all the dams were successfully 

detected. A further breakdown of the results for steep incidence angles can be seen in Table 7 and 

Figure 5. 

Table 7. Accuracies, FPR's and FNR's per size class for steep incidence angles. 

Class XS S M L XL 

OA (%) 57.27 68.37 81.27 94.80 98.77 

FPR (%) 6.67 5.83 3.33 0.00 0.00 

FNR (%) 78.75 57.50 34.17 10.42 2.50 
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Figure 5. Accuracies, FPR's and FNR's per size class for steep incidence angles. 

 

The effect of the under-classification is evident for the smaller classes, but it decreases as the 

surface area increases, as shown by the rapidly decreasing FNR. For the smaller classes, the FNR is 

very high (78.75% for the XS class), thereby contributing to lower OAs for those classes. The FPRs 

also decrease slightly, further leading to the OA increasing for each class. The M, L and XL classes 

all have overall accuracies above 80%. From the L class and above, almost all the dams are detected 

and there are no false positives. 

Nine different areas of interest from the study area are shown in Figure 6. The red areas are 

pixels that were classified as water only on imagery taken at a steep incidence angle, the yellow 

areas are pixels that were classified as water only on imagery taken at a shallow incidence angle and 

the blue areas are pixels that were classified as water on imagery from both incidence angles (steep 

∩ shallow).  

Figure 6 B, E and G show dams of the L class that were classified sufficiently by each, although 

B and G were classified more successfully using steep incidence angles, as highlighted by the red 

pixels on the borders. Figure 6 A, C and F show dams that were classified more effectively by using 

steep incidence angles. Figure 6 H shows some false positives in fields that would have been 

covered in dense crop during the time period of the study and Figure 6 I shows a runway that was 

misclassified as water. Figure 6 F and D are examples of dams, from the XS and S classes 

respectively, that were not entirely classified and could be examples of dams where the water level 

is lower than that in the reference aerial imagery. 
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Figure 6. Examples of dam classifications in nine different areas in the study area. Note that the 

scale differs for each block. 

 

4. Discussion 

In this section, the results of the previous section are discussed. 

 

4.1. The effect of vegetation on edge pixels 

The main issue experienced with classifying small waterbodies in the current study was that the 

edge pixels of the dams were often misclassified. This negative effect becomes more pronounced as 

the surface area of the waterbody gets smaller. The edge pixels are either mixed pixels or are 

influenced by the vegetation on the edges of the waterbody. Mixed pixels occur when the 

boundaries of mapping units lie within a single pixel (Fisher, 1997). Pixels that cover both land and 

water would contain an aggregated backscatter value for both the land and the water, leading to a 

pixel that is darker than the surrounding LC, but lighter than water.  

The second factor influencing edge pixels would be that, since SAR can penetrate vegetation 

cover, backscatter values would have a higher variability along the edges or margins of the 

waterbodies. This is due to the different scattering mechanisms caused by reeds, trees or submerged 

vegetation (Cazals et al., 2016). Vegetation would also cause volume scattering and would, 

therefore, appear brighter, causing the edge pixels that overlap the vegetation surrounding the 
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waterbody and the water’s edge to be misclassified (Amitrano, Ciervo, et al., 2014; Heine et al., 

2014).  

Since the proportion of edge pixels to pure pixels for a waterbody increases as the surface area of 

the waterbody decreases, classifications of smaller waterbodies would tend to exhibit a lower 

detection rate than larger dams, as can be seen in Figure 6 D and Figure 6 F. This would also 

explain the lack of correlation in the smaller sized waterbodies in Figure 3. The FNR decreases 

rapidly as the size classes get larger (Figure 5) since the larger classes would have a larger 

proportion of pure pixels. As the FNR is much higher than the FPR, it can be assumed that the 

decrease in the FNR is responsible for the increase in the OA and therefore that the OA is more 

dependent on the FNR than on the FPR. This would suggest that the ratio of edge pixels to pure 

pixels directly influences the OA. 

 

4.2. The effect of incidence angle on waterbody classification  

It can be observed from Figure 4 that steeper incidence angles performed more effectively across 

all size classes. Incidence angle plays a role in vegetation penetration, with steeper incidence angles 

penetrating vegetation more effectively (Lang, Townsend & Kasischke, 2008). Backscattered 

intensity from vegetation decreases as incidence angle increases since energy is lost from double 

bounce and volume scattering (Brisco et al., 1992) which would also cause a greater contrast 

between water and vegetation for steeper incidence angles (Xu et al., 2019). This would enable the 

classifier to better separate waterbodies from the surrounding LC classes. Shallow incidence angles 

also produced more false positives, often in lushly cropped wheat or canola fields. This is due to the 

lower backscatter experienced in vegetation when compared to that produced under steeper 

incidence angles.  

The difference between the steep and shallow incidence angles becomes even more apparent for 

the L and XL classes. This could be explained by the presence of waves on larger waterbodies 

(Pôssa & Maillard, 2018). Large waterbodies are often influenced by wind-induced waves and these 

waves cause the backscatter to be higher than expected (Hahmann & Wessel, 2010). Since pulses 

are more likely to be reflected away from the sensor than back to it, steeper incidence angles are not 

as affected by waves as shallower incidence angles are (Martinis & Rieke, 2015). This would 

explain why the classification performed on imagery taken at a steeper incidence angle detected 

more dams in the two largest classes (L and XL). The dam shown in Figure 6 A is situated in an 

opening between two mountains causing wind to funnel through this gap, and it is noted how much 

better the steeper incidence angle performed. These observations illustrate the effect that wind and 

incidence angle have on waterbody classification using SAR imagery.  
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Unlike other studies, the study area is large, and therefore varying incidence angles over the area 

would also affect the classification of waterbodies. This is because changing incidence angles 

would cause a variety of backscatter intensities within the LC classes (Bioresita et al., 2018). 

4.3. Changes in the false positive rate 

The steady decrease in the FPR as the size classes increased can be attributed to the use of a 

pixel-based classifier. Pixel-based classifiers often produce salt-and-pepper classifications, since 

individual pixels are used as mapping units (Manaf et al., 2015).  

In addition to water, other LC classes that exhibited low backscatter values were hard, man-made 

surfaces, such as wide expanses of tar or cement, which cause specular reflection (Li & Wang, 

2015), and densely cropped maize or wheat fields which, owing to the intense attenuation of energy 

from volume scattering, produce low backscatter (Brisco et al., 1992).  

Apart from the small, often single-pixel false positives experienced in these classes, radar 

shadow was also misclassified. Radar shadow is intrinsic in SAR imagery captured in areas of 

topographic relief. The misclassification of radar shadow as water is a common occurrence when 

classifying SAR imagery (López-Caloca, Tapia-Silva & Rivera, 2017; Santoro et al., 2015). The 

amount of radar shadow in the images was limited by the masking process, yet there were still areas 

of radar shadow in the unmasked areas. This could have been caused by using a DEM of a lower 

resolution than that of the Sentinel-1 imagery for the generation of the projected local incidence 

angle raster.  

 

4.4. Determining the minimum surface area for a successful detection 

The L class was the smallest class where more than 70% of the dams were detected. Note in 

Figure 3 that most of the waterbodies with a surface area of one ha and above were detected, but 

that from 1.5ha, almost all the waterbodies, apart from a few anomalies, were detected. This 

accuracy for such small waterbodies is on par with, if not slightly higher than what has been 

reported in the literature. Brisco et al. (2009) used 12m resolution Radarsat-1 imagery to map 

waterbodies, but to avoid misclassifications, ignored all waterbodies with a surface area below one 

ha. While the present study did use slightly higher resolution imagery, a large percentage of 

waterbodies in the M class were detected as well, emphasising that lower resolution SAR sensors 

can be used to detect and map small waterbodies. High-resolution TerraSAR-X imagery has been 

used to classify waterbodies of up to 0.7ha to very high accuracies (Heine et al. 2014), yet there 

were no waterbodies with a surface area smaller than that in the study area of that particular study. 

Limited research has been done to assess the accuracy of classifications of small waterbodies using 

Sentinel-1 imagery. In general, the dams in the study area of this study are very small, with even the 

larger classes being small compared to those of other studies (Li & Wang, 2015; López-Caloca, 

Tapia-Silva & Rivera, 2017).  
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This study focused on detecting dams over a very large area, and it was therefore challenging to 

determine parameters and training data that suited all the different regions within the study area. 

This is novel, as often in the literature a single large dam or a few large dams are chosen as study 

areas, and then the classification boundary delineation is tested. Most significantly, this study 

detected more dams than what were known to be in the study area. As of November 2019, DWS’s 

database contains only 142 dams (DWS, 2019), whereas this study detected more than 900 

waterbodies in the study area.   

 

4.5. Limitations of this study 

One drawback of SAR imagery is its lack of spectral resolution, making it difficult to separate 

some LC classes and waterbodies. Cement often produces the same dark return that water does and 

therefore often results in false positives. This is the nature of SAR imagery, and is, therefore, a 

limitation if only SAR is used to detect waterbodies. Topographic relief causes radar shadow, 

layover and foreshortening which are distorted during terrain correction. Man-made dams that fall 

into these geometrically distorted areas would not then be classified successfully and shadow could 

also be misclassified as a waterbody.  

SAR is also sensitive to water level fluctuations and this study was therefore limited by the fact 

that high-resolution optical reference imagery, used to create water extent polygons for detection, 

could not be attained for the same time period as the Sentinel-1 imagery. It was found that owing to 

the effects of edge pixels, the accuracy assessment techniques of this study also disadvantaged the 

smaller classes.  

 

5. Conclusion 

Water is a scarce resource in South Africa. Thus, it is necessary that improved monitoring and 

management systems should be developed to ensure that the limited water supply is used most 

optimally. More dams are being built as a result of pressure on the agricultural sector, but, if not 

managed correctly, could have a negative effect on the catchment system. 

This study used a pixel-based RF classifier to detect waterbodies in the Western Cape. The 

classifier was run on SAR imagery from six different dates and two different incidence angles. The 

results indicate that the steep incidence angle outperformed the shallow, especially as the surface 

area of the dams increased. It was determined that waterbodies with an area greater than one ha 

could be successfully detected, with almost 90% of dams between the sizes of one ha and 2.1ha 

being detected. 

The findings from this study could allow for a system to be developed to easily determine, to a 

high level of certainty, the number of dams in the Western Cape. Knowing how many dams lie in a 
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given catchment allows for better management and the more effective use of the water in that 

catchment. Further studies could create systems to extract dam properties and characteristics from 

these classifications and these details could be used to create databases, and to monitor the 

construction of new dams. The effects of these small dams could then be further studied, 

specifically in the South African context. 

Future research could include an initial segmentation using SAR and optical imagery, followed 

by classification on fused SAR and optical image features. While the aim of this study was to test 

the limits of using only one SAR sensor, an operational waterbody mapping system would likely 

benefit from a multi-modal approach. This would mitigate the salt-and-pepper classification 

problem, create more homogenous waterbody classifications and potentially lower the FPR. 

Alternately, performing a logical AND of the classifications from both steep and shallow incidence 

angles (steep ∩ shallow) and lowering the 30% detection rate threshold would also provide a robust 

classification as it would eliminate most false positives. If only one relative orbit could be used, the 

orbit with steeper incidence angles should be chosen. This result is the first step to creating an 

effective monitoring and management system using remote sensing. 
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