Main Article Content

A method for connecting traverses to GNSS controls eliminating troublesome short GNSS orientation lines


Akajiaku C. Chukwuocha

Abstract

Global Navigation Satellite System (GNSS) surveys are used to establish long baseline control networks. Further breaking down of the controls are accomplished using total station traversing connected to the GNSS networks. Auxiliary stations are established at relatively short distances to each GNSS main station for traverse azimuth orientation. If the GNSS azimuth reference lines are short, the allowable uncertainties in the GNSS determined coordinates heavily encumber the accuracies of the azimuths derived from them. This is the problem with connecting traverses to GNSS controls via azimuth reference lines that are short. Reorientation traversing can solve the short GNSS azimuth reference line problem by running control traverses linked to GNSS controls without referencing the short GNSS azimuth lines. Four reorientation traverses of total traverse lengths of 1.4Km to 5.1Km were run between GNSS network stations to demonstrate the validity of the new method. A corresponding traditional traverse was run to compare with each of the reorientation traverse cases. Some t-distribution tests established that there were no statistical differences between the coordinates determined by the reorientation traverses and the corresponding traditional traverses coordinates at the 99% confidence level. P-value tests revealed that there were no significant probabilities of an extreme occurrence in which the coordinates from the two methods of traversing may be statistically different at the P < 0.01 confidence level. The research results thus show that reorientation traversing is a valid procedure that may be used to avoid the use of short GNSS reference lines.

Keywords: Global Navigation Satellite Systems (GNSS), Reorientation Traversing, Azimuth, Controls


Journal Identifiers


eISSN: 2225-8531