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Abstract 

Accurate multi-source forest inventory attributes are necessary for estimating productivity and 
timber stock in commercial forest plantations. This study aims to uncover the effects of terrain 
variation on the growth of even aged Eucalyptus forest species using Light Detection and Ranging 
(LiDAR) topographical variables. Using 32 generated variables at 5 different spatial resolutions (1m, 
3m, 5m, 7m, 9m), the random forest (RF) regression successfully revealed variations for structural 
attributes such as volume (Vol/ha), dominant tree height (HtD), mean tree height (Htm), and diameter 
breast heights (DBH). Results indicate that smaller spatial resolutions performed better for younger 
stands while larger resolutions produced the best results for mature stands. Using the multi-
resolution approach results improved with variable selection. Incoming solar radiation and slope 
variables were among the most important terrain variables for modelling forest structural variability. 
The findings from this study demonstrates the value of stratifying forest productivity across the 
commercial forest landscapes of South Africa.  

 

1. Introduction 

Terrain derived variables such as slope (Wilson and Gallant, 2000), aspect (Grohmann, 2015) and 
local curvature (Freeman, 1991) impact productivity levels within forest plantations (Maack et al., 
2016). Modelling the variation of such variables across the plantation landscape then provides 
valuable information related to resource production such as forest structural attributes. Several studies 
have demonstrated the statistically significant relationship between variables derived from Light 
Detection and Ranging (LiDAR) and forest inventory measurements (Tesfamichael et al., 2010a, 
Tesfamichael et al., 2010b, Van Leeuwen and Nieuwenhuis, 2010, Järnstedt et al., 2012, Jakubowski 
et al., 2013). However, only a limited number of studies have investigated the benefits of terrain 
variables derived from LiDAR to assess forest productivity inventory measurements. An increase in 
the detail of the knowledge and the understanding of the role of terrain variability, specific to 
plantation sites would lead to the opportunity to effectively manipulate and homogenise stands 
(Ediriweera et al. 2014, Li et al. 2014), thereby increasing site productivity and decreasing the 
heterogeneity associated with large commercial plantations. 
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Recently, Ediriweera et al. (2016) aimed to characterise the variation in vegetation growth in 
relation to terrain. They calculated the Terrain Wetness Index (TWI), potential solar insolation, slope 
and elevation derived from LiDAR data for both an open canopy eucalypt forest and a closed 
subtropical rainforest within Australia. Using a general linear model approach, the results showed 
that maximum over story height decreased when there was an increase in potential solar radiation in 
the eucalypt forest (R2 = 0.45) and showed that eucalypt forests were more prone to topographical 
variations in terrain than subtropical rainforests (Ediriweera et al., 2016). Simlarly, Saremi et al. 
(2014a) employed the use of a mixed linear model to investigate the relationship between 
topographical factors (i.e. slope and aspect) derived from LiDAR against the mean tree height (Htm) 
of radiate pine (Pinus radiate. D.Don) aged at 9 and 34 years. The result was based on one continuous 
dependent variable with several explanatory variables and showed that the derived height estimates 
were highly correlated with field heights for the 9 year (R2 = 0.90 and RMSE = 0.66) and for the 34-
year-old site (R2 = 0.87 and RMSE = 1.49). The results obtained from this study also showed that 
taller trees were present in low slopes with southerly aspects, whilst short trees were found on steeper 
slopes with northerly aspects.  

In a subsequent study, they applied a mixed linear model to quantify the relationship between DBH 
and height classes coupled with slope and aspect variables (Saremi et al.  2014c). The outcome 
showed that greater diameter breast heights (DBH) was found in gentle slopes with southerly aspects 
(Saremi et al.  2014c) while further investigations found that micro-scale variations of DBH and mean 
tree height (Htm) could be quantified and based on incoming solar radiation (Saremi et al.  2014b). 
The results reported for height were R2 = 0.58 and for DBH were R2 = 0.60 in mature stands; and R2 

= 0.58 and R2 = 0.60 for young stands respectively. Trees that displayed larger measurements of DBH 
and which were taller were shown to be in areas with lower incoming solar radiation with high soil 
moisture, with variation existing within stands of the same age category (Saremi et al. 2014b). Since 
the benefits of utilizing LiDAR and its derivatives such as elevation, slope and aspect, within the 
forestry sector have previously proven successful (Popescu et al. 2003, González et al.  2008, Wulder 
et al.  2012), the challenge of choosing an appropriate statistical algorithm to fully exploit the 
information linked with LiDAR datasets becomes eminent. 

Regression techniques including Artificial Neural Networks (ANN) (Svetnik et al.  2003); 
Multiple Linear Regression (MLR) and k-nearest neighbour (KNN); Partial Least Squares 
(Duncanson et al.  2015); Support Vector Regression (Jakubowski et al.  2013); Bayesian Model 
Averaging (Verkerk et al.  2015); Generalized Addictive Model (Maack et al.  2016) and Random 
Forest (RF) (Aertsen et al.  2012) are examples of statistical techniques that have been utilised to 
explain the relationships between forest structural attributes and remotely sensed data. While the 
majority of methods provide successful prediction performances, the drawback is that they are not 
able to deal with high-dimensional data without performing dimension reduction (Svetnik et al.  
2003).  

RF for regression, however, has been a method consistently favoured by the remote sensing 
community. For example, Yu et al. (2011) utilised RF to model forest structural attributes using aerial 
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imagery and LiDAR data respectively within a boreal forest in Southern Finland. The results 
demonstrated that the 26 derived tree features showed high correlations between the observed and 
predicted tree height (R2=0.93 and RMSE=10.03%), DBH (R2=0.79 and RMSE=21.35%) and 
volume (R2=0.87 and RMSE=45.77%). Similarly, Nurminen et al. (2013) used a RF approach to 
predict Htm, DBH and volume for plots extracted from both LiDAR point clouds and aerial 
photography (Nurminen et al.  2013). These results show that LiDAR-derived forest attributes 
performed better than information derived from digital aerial photography. The results also showed 
high correlations for tree heights (R2=0.98 and RMSE=0.97), DBH (R2=0.94 and RMSE=2.16m) and 
volume (R2=0.93 and RMSE=37.58m3/ ha).  

In summary, LiDAR data provide valuable forest structural and terrain information, and machine 
learning statistical techniques such as RF can be used with highly accurate results for predictive 
modelling. Hence, in this study RF is adopted to effectively uncover the effect terrain has on forest 
structural attributes within the Eucalyptus plantation environment. Thus, the aim of this study is 
therefore to explain the variability in forest structural attributes such as height, pulpwood volumes 
and DBH across commercial forestry terrains when using LiDAR-derived terrain variables. 

 

2. Methods and Materials 

2.1. Study Area 

The study was conducted in Sappi’s Riverdale plantation that extents over 2503 ha near the town 
of Richmond, in the Midlands region of KwaZulu-Natal, South Africa (Figure 1). The average altitude 
for the plantation is 1190 m and the terrain is characterised by low mountains and undulating hills. 
The geology of the region is dominated by mudstones, sandstones, tillite, amphobilite and basalts. 
The average air temperature is 16.1oC with mean annual precipitation reported at 916 mm and the 
mean annual runoff for the plantation is 143 mm. The Riverdale plantation comprises of areas that 
are dominated by the Ngongeni veld of Natal (40%), Highveld Sourveld (30%) and Southern Tall 
Grassland (20%) veld types. The soils found in the plantation are composed mostly of sandy-clay and 
sandy-clay loams. Commercial Eucalyptus  species (E. grandis and E. dunni) provides affordable 
direct raw materials for industries producing pulp for paper and packing, and timber for commercial 
processing and for the production of wood chips  (Hassan  1999). The Eucalyptus stands in the study 
area are aged between 2 and 10 years in the plantation and is the main species grown due to its growth 
rate being favourable in KwaZulu-Natal province (Godsmark  2013). These stands are established at 
1667 trees per hectare as per the pulpwood regime, and are harvested on average between 6 and 7 
years ( Duncanson et al.  2015).   
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Figure 1. The location of Sappi’s Riverdale plantation. 

 

2.2. Field Surveys 

Field surveys were conducted from the 12th to the 22nd May 2014 whereby a total of 502 plots 
spanning over 27 compartments at the Riverdale plantation were covered. The following productivity 
tree attributes were included from the inventory surveys: volume (Vol/ha), mean dominant height 
(HtD), mean height (Htm) and diameter at breast height (DBH). A Global Positioning System (GPS) 
Device with sub-meter accuracy (10 cm) was used in the field to survey circular plots at a 10 m radius 
using a grid-based systematic sampling technique. DBH was measured using a Haglof Digitech 
Calliper instrument while tree heights were measured using a Vertex IV Ultrasonic Hypsometer. To 
consider the species and age variation in this study, the plots were partitioned into datasets based on 
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the available species compartments and respective age. Eucalyptus grandis was separated into age 
categories of young (3 – 6 year, n = 151) and mature stands (7 – 10 years, n = 137), while Eucalyptus 
dunnii also included young (2 – 5 years, n = 104) and mature stands (6 – 9 years, n = 110). 

 

2.3. LiDAR Data Acquisition  

The LiDAR data was acquired by a competent aerial survey vendor, Land Resources International 
(LRI) who is based in South Africa. The LiDAR surveys were conducted between the 15th and the 
22nd of March 2014 at the Riverdale plantation to coincide with the field sampling assessment. The 
surveyed point cloud data was regularised and filtered for noise before being released in LAS format. 
Subsequently, a very high resolution digital terrain model (DTM) was generated having a cell size of 
1 m using LAS tools and predefined filters for generating ground and non-ground returns (ArcGIS 
2016). The data was then projected to the Transverse Mercator with a Gauss Conformal projection. 
The central meridian was 31 and the datum used was Hartebeeshoek 94. The flight and sensor 
instrument parameters used for the collection of the LiDAR data are presented in table 1. The LiDAR 
system used a Riegl Q560 laser with a minimum measurement range of 50 m, a ranging accuracy of 
20 mm and an angle measurement resolution of 0.001o. 

Table 1: LiDAR flight and sensor instrument parameters 

LiDAR Survey Parameters    Unit                                               Measurement 

Altitude  m AGL  800 

Flight speed  kt  100 

Scan angle  o  25 

Scan swath width  M  324.3 

Scan overlap  %  50 

Scan rate  Hz                                           52 

Laser pulse rate  Hz  128000 

Laser pulse density  pulses/ m2  5 

 

2.4. Extracted Terrain Variables  

Terrain variables were calculated using the nearest neighbour re-sampling technique and at the 
following spatial resolutions: 3 m x 3 m, 5 m x 5 m, 7 m x 7 m and 9 m by 9 m. A complete list of 
terrain variables that were calculated is provided in table 2 below. Spatial analysis and map algebra 
tools (ArcGIS  2016) were then used to extract the zonal statistics for each of the terrain variables (n 
= 32) at a plot level. 
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Table 2: Terrain variables modelled in this study 
Variable  Description Reference  
Direct Insulation DIRECT Direct solar radiation received  Lukovic et al. (2015) 
Diffuse Insulation  DIFFUSE Solar radiation received after scattering  Saremi et al. (2014b) 
Curvature Classification 
 

CC Planimetric curvature ratio Drăguţ and Blaschke (2006) 

Convergence Index CI Uses aspect to determine flow convergence 
and divergence 
 

Wilson and Gallant (2000) 

Down Slope Distance 
Gradient 

DDG Quantifies local drainage patterns on 
topography 

Hjerdt (2004) 

Flow Accumulation FA Measures upstream catchment area for a cell  Navarro-Cerrillo et al. (2014) 
LS Factor LSF Determines slope length based on the 

Universal Soil Loss Equation 
Boehner (2006) 

Mass Balance Index MBI Measures geomorphographic relief Möller et al. (2008) 
Melton Ruggedness 
Number 

MRN Measures basin relief Melton (1965) 

Slope Length  SL Determines effects of erosion on slope Navarro-Cerrillo et al. (2014) 
Slope Variability  SV Measures difference in relief (Popit and Verbovšek, 2013) 
Slope SLP Measure of steepness Wilson and Gallant (2000) 
Aspect ASP Direction of slope Grohmann (2015) 
Profile Curvature PC Rate at which slope changes  Wilson and Gallant (2000) 
Surface Specific Points SSP Detects specific points from parallel 

processing of elevation  
Hutchinson (1989) 

Standard Deviation of 
Elevation 

SDELV Standard deviation of elevation from the 
mean 

Grohmann et al. (2011) 

Standard Deviation of 
Slope 

SDSLP Standard deviation of slope from the mean Grohmann et al. (2011) 

Terrain Surface 
Convexity 

TSC Measures cells having positive convexity   Iwahashi and Pike (2007) 

Morphometric 
Protection Index 

MPI Determines immediate surrounding and how 
relief is protected 

Olaya and Conrad (2009) 

Real Surface Area RSA Calculates real area of slope Olaya and Conrad (2009) 
Topographic Position 
Index 

TPI Measures relative topographic slope position Guisan et al. (1999) 

Terrain Ruggedness 
Index 

TRI Represents a change in the sum of elevation  Riley et al. (1999) 

Topographic Wetness 
Index 

TWI Measures hydrological conditions within a 
site relatively 

Sørensen and Seibert (2007) 

Local Curvature LC Calculates sum of the gradients to its 
neighbouring cells 
Distance of weighted average of local 
curvature 
Local curvature on flow direction as a sum 
of neighbour cells that are facing upwards  
Local curvature on flow direction as a sum 
of neighbour cells facing downslope 
Calculates local curvature as a sum of 
neighbour cells 

Freeman (1991) 
 
Freeman (1991) 
 
Freeman (1991) 
 
Freeman (1991) 
Freeman (1991) 

 
Upslope Curvature 

 
UC 

 
Local Upslope Curvature 

 
LUC 

Downslope Curvature DC 
 
Local Downslope 
Curvature  

 
LDC 

Vector Ruggedness 
Measure 

VRM Measures roughness around a 
neighbourhood  

Sappington et al. (2007) 

Midslope MS Position of slope Florinsky et al. (2002) 
Valley Depth  VD Vertical distance to channel base Schmidt and Hewitt (2004) 
Terrain Curvature Index TCI Measure of terrain shape Park et al. (2001) 
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2.5. Regression Analysis 

2.5.1. Random Forest 

RF was implemented in this study using libraries found in R statistical software (R Development 
Core Team  2008). RF has been described as a method that is easy to implement as the user is required 
to input only the number of trees to be split (ntree) and the number of variables (mtry) to be used in 
the process. Each decision tree in the algorithm is then responsible for casting a unit vote for the class 
that is the most popular at unit x (Breiman  2001). In order to increase the diversification of decision 
trees, random forest makes use of a bootstrap aggregating method using one third of the data to ensure 
the trees grow from different subsets within the training data  (Rodriguez-Galiano et al.  2012).  These 
bootstrap samples are referred to as out-of-bag (OOB) samples. The OOB data that were not used 
during the training process is then used for prediction, as it provides an unbiased assessment of 
accuracy as outlined by Breiman (2001), Rodriguez-Galiano et al. (2012) and Kulkarni and Sinha 
(2013). The coefficient of determination (R2) was used to assess the relationship between the field 
data and the LiDAR-derived DTM variables under study, whereby values closer to 1 predict better 
results. Model assessment was based on test data which constituted 30%, while the training data 
comprised of the remaining 70%. 

 

2.5.2. Multi-resolution analysis  

In this section, the following was examined: 

i. The terrain variables (n = 32) that were calculated at the various spatial resolutions were 
aggregated and used in 8 RF models to predict the forest structural attributes of the two 
Eucalypt species. 

ii. To determine the optimal set of variables that could best explain forest structural attributes 
for young and mature Eucalyptus species, a backward feature selection approach was used 
to reduce the number of input terrain variables to enhance the quality of the terrain variables 
that best explain the variation among the attributes 

 

2.5.3. Random Forest Variable Importance 

Variable Importance can be described as a measurement used to decide how much of an influence 
a variable has on the predictive accuracy of a model (Treeratpituk and Giles  2009). In RF, two types 
of variable importance measures are often used, a Gini importance and a permutation importance 
(Treeratpituk and Giles  2009). According to Grömping (2012) the Gini importance method may 
result in bias due to the average impurity reduction associated with this technique for regression trees. 
Breiman (2001) suggests the permutation method, which has been widely adopted. In this method, 
for each tree t in the RF, the OOB  mean squared error (MSE) is computed by averaging the squared 
deviations of the OOB responses for the predictor variables (Breiman  2001, Grömping  2012). 
Therefore in this study, RF variable importance is based on the permutation accuracy method.  
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2.5.4. Random Forest Variable Selection 

Variable selection becomes important when dealing with multiple input variables for a prediction 
model, as many predictors may lead to a decrease in model performance. A variable selection method 
based on a RF-recursive feature elimination was adopted. In this method, variables are selected based 
on their variable importance ranking. All variables are first iterated through the algorithm. The 
algorithm then drops any variables that does not contribute to the predictive accuracy of the model 
(Granitto et al.  2006). The algorithm runs until all unnecessary variables are progressively dropped. 
The permutation measure of variable importance, determines the percentage increase in mean square 
error (MSE) when the OOB samples for each variable is permuted, while the others remain 
unchanged.  

 

3. Results 

The descriptive statistics of the plots categorised by species and age from the field inventory 
assessment are illustrated in table 3 below. 

Table 3: Descriptive statistics for the field inventory assessment, sample size n = 502 
  HtD 

(m/ha) 
Htm 
(m) 

Vol 
(m3/ ha) 

DBH 
(cm/ ha) 

Young E. Grandis Mean 24.15 20.14 228.16 14.42 
Standard Deviation 3.73 3.02 83.56 2.29 
Minimum 17.46 14.59 77.42 9.55 
Maximum 29.07 25.20 366.49 18.80 

      
Mature E. Grandis 
 

Mean 30.95 25.14 321.02 17.55 
Standard Deviation 
Minimum 
Maximum 

3.33 
26.9 
40.03 

2.40 
20.27 
31.37 

76.35 
221.73 
590.52 

2.19 
13.50 
23.02 

Young E. Dunni Mean 14.65 13.27 74.93 10.49 
Standard Deviation 3.01 2.70 32.35 1062 
Minimum 8.18 6.42 13.05 4.24 
Maximum 19.23 17.69 141.69 14.3 

      
Mature E. Dunni 
 

Mean 23.23 19.37 195.62 13.70 
Standard Deviation 
Minimum 
Maximum 

4.74 
15.53 
32.78 

3.40 
13.54 
27.17 

71.14 
54.91 

344.47 

1.96 
9.30 

19.28 
 

3.1. Spatial Resolution Analysis using LiDAR DTM variables 

In this section, the results of the various spatial resolutions are reported separately to determine if 
a specific spatial resolution (i.e. 1 m x 1 m, 3 m x 3 m, 5 m x 5 m, 7 m x 7 m or 9 m x 9 m) could best 
explain the variation in the forest structural attributes for the young and mature Eucalyptus species. 
In total, 80 RF models were developed for the two Eucalypt species that were considered in this study. 
A graphical representation of three selected terrain variables re-sampled to the various spatial 
resolutions is to be found in figure 2 below. 



South African Journal of Geomatics, Vol. 9. No. 2, September 2020 

126 

 
Figure 2: The effect of different spatial resolutions for diffuse, standard deviation of slope, and local 

curvature terrain variables. 

 

3.2. Predicating Eucalyptus grandis attributes using LiDAR terrain variables 

Results indicate successful regressions for the young (a) and mature (b) E. grandis stands (figure 
3). Noticeable for the young stands, is that the best predictive accuracy was produced at 1 m spatial 
resolution with a R2 value of 0.68 and a RMSE of 1.22 m for HtD. For Htm, a 3 m spatial resolution 
produced the best accuracy (R2 = 0.70, RMSE of 0.97 m) while for DBH, the best accuracy was 
obtained at 5 m spatial resolution with a R2 value of 0.71 and a RMSE of 0.81 cm. With regards to 
Vol/ha, a 9 m spatial resolution produced the best R2 value of 0.60 with a RMSE of 32.11 m3/ha.  
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Figure 3: Random forest predictive accuracies (R2) obtained for (a) young and (b) mature E. grandis 
stands. 

When assessing the results for mature E. grandis stands, a 7 m spatial resolution performed best 
for HtD and produced a R2 of 0.71 with a RMSE of 1.04 m. For Htm, a 9 m spatial resolution yielded 
the highest accuracy at with a R2 value of 0.68 and a RMSE of 1.15 m. The DBH model yielded the 
highest results using a 5 m spatial resolution with a R2 value of 0.67 and a RMSE of 0.82 cm. Vol/ha 
yielded the best accuracy also at a 5 m spatial resolution with a reported R2 value of 0.68 and a RMSE 
of 22.56 m3/ha.  

 

3.3. Predicting Eucalyptus dunnii attributes using LiDAR terrain variables 

Figure 4 depicts the results for young (a) and mature (b) E.dunnii stands. For young stands, a 3 m 
spatial resolution obtained the best accuracy for HtD with a R2 value of 0.72 and a RMSE of 1.33 m. 
A 1 m spatial resolution produced the best accuracy for Htm with a R2 of 0.69 and a RMSE of 1.15 
m. For DBH, the best R2 of 0.70 and a RMSE value of 1.88 cm using a 7 m resolution. Finally, the 
highest accuracy for volume was obtained using a 5 m resolution with an R2 value of 0.61 and a 
RMSE of 19.36 m3/ha.  

 

Figure 4: Random forest predictive accuracies (R2) obtained for (a) young and (b) mature E.dunnii 
stands. 
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When investigating the results for mature E.dunnii stands using the LiDAR terrain variables, HtD 
was predicted with the best R2 of 0.69 with a RMSE value of 2.73 m using a 5 m spatial resolution. 
Htm yielded a high R2 of 0.73 with a RMSE of 1.48 m and only when using a 9 m resolution. The 
DBH model yielded the best R2 value of 0.69 and a RMSE of 0.88 cm and occurred at a 7 m spatial 
resolution. For volume, the best model was produced at a 5 m spatial resolution with a reported R2 of 
0.59 and a RMSE of 41.08 m3/ha. 

 

3.4. Predicting Eucalyptus structural attributes using multi-resolution LiDAR  

When combining the resolutions for each LiDAR variable, RF results were successful for young 
E. grandis stands (Figure 5a) when assessing HtD (R2 = 0.71, RMSE = 0.96 m) and Htm (R2 = 0.70, 
RMSE = 0.71 m) respectively. The RF model yielded an R2 of 0.69 and a RMSE of 1.93 cm for DBH, 
while Vol/ha was predicted with an R2 of 0.64 and a RMSE value of 47.80 m3/ha. Nonetheless, when 
dealing with mature E. grandis stands, RF models produced comparative results. The highest 
predictive accuracy was produced for HtD (R2 = 0.74, RMSE = 1.22 m) followed by Htm (R2 = 0.72, 
RMSE of 0.99 m) and Vol/ha (R2 value of 0.68, RMSE = 50.97 m3/ha. DBH displayed reasonable 
accuracies (R2 = 0.66, RMSE = 1.32 cm). 

For young E. dunni stands (Figure 5b), the multi-resolution RF model performed well for HtD (R2 
= 0.72, RMSE = 0.89 m) and Htm (R2 = 0.71, RMSE = 0.66 m). DBH (R2 = 0.73, RMSE = 1.93 cm) 
and Vol/ha (R2 = 0.61, RMSE = 27.78 m3/ha) also produced relative accuracies. In the case of mature 
E. dunnii stands, the RF model produced successful for HtD (R2 = 0.70, RMSE = 2.03 m) and Htm 
(R2 = 0.70, RMSE = 1.17 m) with reasonable accuracies obtained for DBH (R2 = 0.69, RMSE = 1.39 
cm) and Vol/ha (R2 = 0.62, RMSE = 55.67 cm3/ha).  

Figure 5: Coefficient of determination (R2) for (a) young and mature E. grandis and (b) young and 
mature E. dunnii. 

 

3.5. RF Variable Importance of Terrain Variables 

In young E. grandis, diffuse solar radiation was returned as one of the most important terrain 
variable for estimating forest structural attributes. Direct solar radiation was highly important for 
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both, young and mature E. grandis stands, as it appeared in the top five ranking predictor variables 
for HtD, Htm and Volume, to which DBH is the exception. For young and mature E. dunnii stands, 
diffuse solar radiation was also one of the most important terrain variables, as it provided the highest-
ranking variable for all structural models in these categories with certain slope variables also 
contributing towards each model (Figure 6).  

 

Figure 6: Variable Importance for young and mature E. grandis and E. dunnii for (a) HtD (b) Htm 
(c) Volume and (d) DBH. 

 

3.6. Random Forest Variable Selection 

In efforts to maximise the information provided when utilising multi-resolution LiDAR, a variable 
selection based on a RF-recursive feature elimination was implemented. In young E. grandis stands 
using variable selection improved the R2 results for HtD, DBH and Vol/ha models at certain spatial 
resolutions (Table 4). For Htm, improvements in accuracy were evident, however no resolution 
produced better results that the optimal spatial resolution. Nonetheless, when modelling mature E. 
grandis, the majority of spatial resolutions displayed better R2 values, to which the exception was for 
the DBH and Vol/ha. When assessing the performance of variable selection on young E. dunnii 
stands, all structural attributes produced some improvement in R2 values and at different spatial 
resolutions. The same can be noticed when assessing accuracies for mature E. dunnii stands after 
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variable selection.  Results values that do not indicate an improved result after variable selection 
either decreased or remained the same.  

Table 4: Coefficient of determination (R2) for young and mature E. grandis and E. dunnii using RF 
variable selection. Values in bold indicate an increase in predictive accuracy after variable 

selection. 

    E. grandis E. dunnii 

    1m 3m 5m 7m 9m 1m 3m 5m 7m 9m 

HtD 
Young 0.69 0.67 0.60 0.65 0.58 0.68 0.7 0.67 0.58 0.6 

Mature 0.62 0.63 0.66 0.73 0.70 0.64 0.63 0.73 0.65 0.64 

Htm 
Young 0.56 0.64 0.58 0.6 0.63 0.65 0.59 0.61 0.63 0.63 

Mature 0.65 0.63 0.59 0.62 0.66 0.7 0.67 0.67 0.66 0.71 

DBH 
Young 0.63 0.67 0.72 0.63 0.68 0.65 0.68 0.64 0.7 0.69 

Mature 0.54 0.62 0.64 0.51 0.62 0.63 0.63 0.6 0.68 0.67 

Vol 
Young 0.5 0.55 0.58 0.57 0.62 0.53 0.52 0.62 0.55 0.58 

Mature 0.56 0.55 0.64 0.62 0.58 0.53 0.56 0.61 0.57 0.51 

 

4. Discussion 

This study investigated the effects of terrain variability on forest structural attributes within young 
and mature commercial eucalypt plantation species using LiDAR derives variables. Pulpwood 
volume, HtD, Htm and DBH were modelled in relation to variations in topography by using a 
machine-learning RF statistical technique. The results obtained from this study indicate that the RF 
ensemble technique is useful for explaining the difference that exists between explanatory forest 
structural attributes and terrain-based predictor variables.  It was also evident that variations in 
structural attributes can be primarily attributed to response variables that are associated with solar 
radiation and slope. 

 

4.1. Individual spatial resolution versus multi-resolution analysis 

The results indicated that young and mature E.grandis stands may require different spatial 
resolutions for accurately predicting variations in terrain for forest structural attributes. More 
specifically, better accuracies were produced for HtD and Htm when using smaller (1 m and 3 m, 
respectively) spatial resolutions for young stands while in mature stands larger resolutions (7 m and 
9 m, respectively) yielded the best results. Similar results were shown for DBH in younger stands (5 
m) compared to mature stands (7 m) for producing the best predictive accuracies. While a larger 
spatial resolution (9 m) worked best for predicting volume for younger stands compared to mature 
stands (5 m) reasonable results were produced with accuracies greater than an R2 of 0.60. For 
E.dunnii, HtD and Htm in younger stands were predicted most accurately using 3 m and 1 m spatial 
resolutions respectively with an optimal resolution of 7 m for DBH and 5 m for Vol/ha. In mature 
stands, 5 m and 9 m resolutions were ideal for HtD and Htm while 7 m and 5 m worked best for DBH 
and Vol/ha. These results confirm that micro-scale terrain variability does occur within commercial 
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Eucalypt plantations and that terrain heterogeneity can be dominated by different spatial scales 
(Navarro-Cerrillo et al. 2014).  

Overall individual spatial resolution analysis indicated that there was no one spatial resolution that 
was consistent and the most accurate for predicating all forest attributes successfully in both eucalypt 
species. In addition, Vol/ha was the least accurate forest attribute predicted in both young and mature 
forest species. When assessing the utility of a multi-resolution analysis, results improved with greater 
consistency among all variables, besides for DBH which slightly reduced for E. grandis stands. In 
young stands, the multi-resolution approached provided improved results for HtD (3%) and Vol/ha 
(4%) while Htm remained the same (R2 = 0.70). In mature stands, better results were obtained for 
HtD (3%) and Htm (4%), while Vol/ha showed no improvement. In young E. dunnii stands, HtD 
(2%), Htm (3%) and DBH (3%) produced better accuracies while Vol/ha remained the same. HtD 
(1%) and Vol/ha (3%) were the only two attributes with improved predictive accuracies for mature 
E. dunnii stands while DBH showed no improvement and Htm reduced in accuracy from an R2 of 
0.73 to 0.70. Overall, using a multi-resolution approach yielded successful results than an individual 
spatial resolution approach. The results obtained can be explained, since terrain details are often 
refined when DTMs are coarsened into larger spatial scales. Therefore, site-specific regions such as 
in commercial plantation forests, where variations in terrain can be affected by spatial variability in 
topography, may therefore require a multi-resolution analysis for forest structural attribute modelling.  

 

4.2. Variable Selection of key LiDAR terrain variables  

Reducing the variables within each multi-resolution model for both young and mature E. grandis 
and E. dunnii species, produced the highest predictive accuracies. This in particular for young and 
mature E. grandis stands for HtD (1% and 2% respectively) when using 11 and 16 terrain variables. 
Vol/ha showed best accuracies for young E. grandis (2%) using only 23 respectively while DBH 
(1%) also only improved for the younger stands using 15 variables. Htm produced a slight reduction 
in results for young (6%) and mature stands (2%) when using 28 variables only.  

After performing variable selection on E. dunnii stands, the predictive accuracy for HtD reduced 
by 2% (R2 = 0.70) using only 19 variables for young stands while improved for mature stand by 4% 
using 21 predictors. For DBH results were maintained (R2 = 0.70) with a reduction in variables (22) 
in young stands while in mature stands an accuracy reduction of 1% was reported using 13 variables. 
Vol/ha improved by 1% and 2% in young and mature stands respectively using 24 and 27 variables. 
Those structural attributes that have improved or maintained accuracy with a reduced number if 
variables coincide with other studies that show improvements in the predictive accuracies obtained 
for forest structural attributes using variable selection methods (Treeratpituk and Giles  2009, Ismail 
et al.  2010, Genuer et al.  2010).  In this regard, variable importance analysis showed that that not 
all predictor variables were important in each RF analysis. The diffuse and direct incoming solar 
radiation predictor variables displayed evidence pertaining to the height, DBH and Vol/ha 
stratification for both eucalypt species since the competition for light has been found to impact tree 
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growth (Saremi et al. 2014b). For example, larger diameters, height and pulpwood volume yields are 
found in areas with lower intensities of radiation (Saremi et al.  2014b). It has therefore been shown 
that solar radiation can impact the variation in tree heights. Further variation can be seen between 
young and mature eucalypt species. The results also show that slope predictor variables had some 
contribution of importance in each predictive model and successfully captured the variations within 
the forest structural attributes under study. Further research is therefore required to quantify the effect 
and interaction between tree growth and variation in terrain.   

 

4.3. Young and mature stand effects on terrain variation  

This research has also shown that age categories between young, open canopies and mature closed 
canopies eucalyptus trees, display different degrees of structural variability. Younger stands of E. 
grandis displayed more variation in height, pulpwood volume and DBH than mature E. grandis stands 
in the plantation.  This result is comparable with that obtained in the study conducted by Saremi et 
al. (2014a) in which mixed linear modelling explained a 90% variation in height stratification for 
young sites and only a 87% variation for mature radiata pine plantations. Edirirweera et al. (2014) 
also produced similar results, with an 80% variation  found for younger (more open canopies) E. 
propinqua and E. siderophloia forest stands as compared with a 60% variation in mature (more closed 
canopies) conditions.  

Different results were found for E. dunnii in this study, as higher variations were found for mature 
stands than for young stands. These results indicated that subspecies variations do occur in eucalypt 
plantation forests and for different terrain conditions. According to Arnold et al. (2004) E. dunni is 
considered as an excellent alternative to E. grandis as it is more adaptable to dry or frost-prone areas 
and demonstrates faster growth rates. The results from this study therefore support those in the 
literature and show that E. dunni is able to adapt better to variations in terrain than E. grandis. In 
commercial plantation forests, the heterogeneity of height and volume within stands is important to 
ascertain, as these characteristics affect the overall profitability and quality of target deliverables. 
This study therefore shows that whilst plantations contain similar climatic, topographic, soil, 
precipitation and silvicultural regimes, micro-scale variations within stands of even-aged plantations 
still do exist. Nonetheless, the accuracies of this study between structural attributes could have been 
influenced by anomalies within the LiDAR dataset since errors in topography may be propagated due 
to a lower solar angle when slopes face away from the sun (Rahlf et al.  2014). Additionally, mature 
stands are bigger and a considerable part of the Laser beam is blocked by the canopy before reaching 
the ground surface. On the contrary, with younger stands, a better penetration of the Laser Beam is 
allowed and therefore the DTM resolution may be higher. This inconsistency could affect the 
accuracy of the LiDAR derived datasets for younger and older stands and subsequently the results of 
this study.  Future work may investigate the impact of forest canopy age on the accuracy and 
resolutions of DTM’s. Whilst the cost associated with LiDAR is becoming feasible for forest 
industries to practice, DTM’s could readily be utilised and used for future inventories within the 
forest, as it is expected that the terrain will remain relatively unchanged (Järnstedt et al. 2012). 



South African Journal of Geomatics, Vol. 9. No. 2, September 2020 

133 

5. Conclusion 

For many decades forest managers have known the intrinsic value of attaining accurate forest 
productivity attributes at stand level in commercial plantation forests. The main aim of this study was 
to examine the topographical effect on forest structural attributes such as height (Htm and HtD), 
volume and DBH using variables derived from LiDAR data. Whilst the results have produced the 
level of accuracy necessary for operational use, they also do indicate that there is a great potential for 
LiDAR-derived DTM as a tool to determine the impacts of terrain on volume and tree structure 
estimates, especially on height metrics which show greatest variation in stands associated with 
different terrains. For this reason, this study provides a framework for use as a tool in forest inventory 
decision making by forest managers. Given accurate forest inventories and spatial datasets, forest 
managers would be able to make informed decisions to regularise stands due to the variations that 
exist within stands of even-aged species.  
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