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Abstract 

Total stations are used extensively for taking geodetic and engineering survey 

measurements. These measurements are made possible by accurate observation of targeted 

points. One example is deformation surveys, slope stability monitoring, in mines. Continuous 

monitoring necessitates sheltering or housing the instrument to protect it against harsh 

weather conditions that are characteristic of mining environments. Previous studies carried 

out by Afeni and Cawood (2012) revealed that the properties of the glass material matters 

when using a total station to take observations through a glass window of a structure that 

houses the total station at a mine. This study briefly discusses total station survey monitoring 

and developed systematic error correction formula to reduce the effect of glass properties, 

such as thickness and colour, on distance measurements through a shelter window glass in a 

surface mine environment. Each developed formula is combined with the atmospheric 

corrections formula given by Leica Geosystem, who is the manufacturer of the total station 

used in this research, to form a combined atmospheric and glass correction formula. The 

formula performed well when tested on two sets of observations. 

1. Introduction 

Survey monitoring, be it slope monitoring or structural monitoring for movement, is 

done to detect movement that could lead to failure and to allow for sufficient warning to 

successfully evacuate the area or structure. Wyllie and Mah (2004) declared that, “because of 

the unpredictability of slope behaviour, movement monitoring programmes can be of value in 

managing slope hazards, and they provide information that is useful for the design of 
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remedial work”. Slope movement is most common in open-pit mines, and many mines 

continue to operate safely for years with moving slopes that are carefully monitored to give 

warning of deteriorating stability conditions. The authors also described other human 

activities that can be detrimental to slope stability apart from open pit-mines, namely 

excavations of the base, and changing the ground water conditions by dam filling or 

irrigation. Total station monitoring survey techniques are common practice in many open-pit 

mines, in addition to other geodetic and geotechnical instrumentation. It has become the norm 

to use robotic total stations in a fully and automated way as part of the monitoring systems in 

mines (Duffy et al., 2001; Leung, 2001). 

The use of total station surveying instruments for monitoring structures’ movement 

with good results were reported by many authors including Radovanovic and Teskey (2001), 

Hill and Sippel (2002), Kuhlmann and Glaser (2002), Zahariadis and Tsakiri (2006), as well 

as Lange and Kippelen (2008). Continuous monitoring, as an important operation in an open- 

pit mine to ensure the safety and stability of the mine highwall, was described by Palazzo et 

al., (2006).  

Since continuous slope monitoring with a total station requires the machine to be left 

in the field, this necessitates housing the instrument inside an observation house, or office, as 

the case may be. Slope monitoring is always carried out through the window of such an 

observation house. The window is usually covered with glass material. The properties of the 

window glass, such as thickness and colour, are not always taken into consideration during 

the selection, installation and actual monitoring process. Even if this impact may be an 

additive constant, its magnitude needs to be known and adequately catered for during the 

analysis of the survey monitoring data.  

Systematic errors are not revealed by taking the same measurement again with the 

same instruments or method, such as taking total station distance measurements through an 

observation window glass. Taylor (1999) expressed that constant systematic errors are very 

difficult to deal with because their effects are only observable if they can be removed. Such 

an error cannot be removed by repeating measurements or averaging large numbers of results. 

The only way to check adequately for systematic error is to re-measure the quantity by an 

entirely different method, such as taking total station distance measurements without an 

observation window glass. It must be ensured that measurements are as accurate as required 

by removing the effects of all factors that, if neglected, would result in significant error. The 
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error caused by some factors can be eliminated with the correct observing procedure, and 

others can be countered by applying appropriate corrections (Bannister et al, 1998).  

This study examined the likely impact of the glass properties, namely thickness and colour, 

on distances measured through it with a total station and provides a possible way of 

mitigating the impact. 

2. Materials and Method 

The research was carried out to isolate atmospheric corrections formula from glass 

properties, such as thickness and colour impact on distances measured with total station. This 

case study examines the likely impact of such observation window glass properties on 

distance measurement and developed systematic error correction formulae to remove or 

reduce such impact. A new total station – TCR 1201 – was procured due to its high 

sensitivity and accuracy specifications by the school of Mining Engineering, University of 

the Witwatersrand, Johannesburg for a PhD research project on likely impacts of atmospheric 

variation when taking observations through a window glass on the accuracy of data generated 

using total station surveying instruments. The school also procured five (5) clear float glass 

panes of different thickness, namely 2mm, 3mm, 4mm, 5mm and 6.38mm respectively, and 

two (2) tinted 3.0mm glass panes that could easily be exchanged in a special window frame 

as shown in Figure 1 below: 

 

Figure 1: Instrument station set-up showing window frame, total station and beacon 
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The detail of materials and methods used to establish the importance of the impact of 

the glass properties, with regards to thickness and colour on distance measurements through 

instrument shelter window glass was explained by Afeni and Cawood (2012). The paper 

established that glass properties have an impact on the measured distances. It also established 

that the total station manufacturer-proposed atmospheric correction formulae work perfectly 

to cater for the effects of atmospheric variations on distances measured without glass. The 

formulae do not in any way remove or reduce the impact caused by the glass material on the 

distance measurements, because the formulae were not developed for glass impact correction. 

However, the authors noted that the glass material has little or no impact on vertical distance 

(VD) measurements and that the impact caused by 2.0mm and 3.0mm glass on horizontal 

distance (HD) measurements were within the accuracy limits of 1mm + 1.5 ppm, when using 

IR mode, as specified in the instrument manual regardless of different angles intersecting the 

glass (i.e. when the glass is at different angles to the line–of–sight of the total station). The 

data generated in Afeni and Cawood (2012) were subjected to linear regression to develop a 

model for removing the impact caused by the glass properties, such as glass thickness above 

3.0mm and glass colour – light and dark tinted 3.0mm glass, on HD measurements with total 

station. 

2.1 Development of Systematic Error Correction Formulae to Cater for the Impact of 

Glass Properties 

The least squares procedure for fitting a line through a set of ‘n’ data points is to ensure that 

the differences between the observed values and corresponding points on the fitted line is 

“small” in a overall sense. According to Wackerly et al., (2008), a convenient way to 

accomplish this, and one that yields estimators with good properties, is to minimise the sum 

of squares of the vertical deviations from the fitted line, as shown in Figure 2 below: 

                                  

Figure 2: Fitting a straight line through a set of data points (Source: Wackerly et al., 2008) 
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Thus, if: 
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Where:  

ŷ  is the predicted value of the ith y value (when ixx  ), then the deviation, also known as 
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Equations 3 and 4 above are called the least squares equations for estimating the parameters 

of a line. The least squares equations are linear in 0b̂  and 1b̂ , hence they can be solved 

simultaneously. By solving Equations 3 and 4 simultaneously (Rencher and Schaalje, 2007), 

we have: 
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where: 

 ix  is glass thickness (mm) or glass colour (% tint); 

 iy  is glass impact (m); 

 n  is number of observation; 

 x  is mean of ix
; 

and  

 y  is mean of iy
.
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In order to generate the regression equation, the average daily Horizontal Distance (HD) 

readings to the prism when testing glass thickness impact, as shown in Table 1, and the 

average daily HD readings to prism when testing glass colour impact, as shown in Table 2, 

were reduced to average daily HD readings per three days, as shown in Tables 3 and 4. Since 

the impact of the angular variations on the HD readings were negligible and still within the 

accuracy limits in all the glass properties and glass angles or position tested as established in 

Afeni and Cawood (2012). Therefore, all the HD readings were averaged without minding 

the glass angles. The HD readings without glass are kept constant as shown in Tables 5 and 6. 

Tables 5 and 6 show the average changes in HD readings per 3 days.   

Table 1: Average daily HD readings to prism 

Date Glass 

thickness 

(mm) 

HD to prism 

without glass 

 

HD to prism 

with glass 

@ 45° 

HD to prism 

with glass @ 

60° 

HD to prism 

with glass @ 

90° 

2009/10/06 2.00 626.5415 626.5425 626.5428 626.5427 

2009/10/07 2.00 626.5410 626.5419 626.5420 626.5419 

2009/10/08 2.00 626.5413 626.5424 626.5425 626.5423 

2009/10/09 3.00 626.5410 626.5424 626.5427 626.5425 

2009/10/10 3.00 626.5410 626.5428 626.5428 626.5429 

2009/10/11 3.00 626.5411 626.5427 626.5429 626.5429 

2009/10/12 4.00 626.5415 626.5439 626.5438 626.5436 

2009/10/13 4.00 626.5416 626.5439 626.5438 626.5437 

2009/10/14 4.00 626.5417 626.5441 626.5440 626.5438 

2009/10/15 5.00 626.5413 626.5448 626.5444 626.5442 

2009/10/16 5.00 626.5413 626.5447 626.5444 626.5442 

2009/10/17 5.00 626.5416 626.5453 626.5451 626.5449 

2009/10/18 6.38 626.5417 626.5457 626.5451 626.5450 

2009/10/19 6.38 626.5420 626.5460 626.5455 626.5454 

2009/10/20 6.38 626.5419 626.5461 626.5452 626.5452 

 

Table 2: Average daily HD readings to prism 

Date 3.0mm 

Glass 

colour 

(tinted) 

Ave HD 

to prism 

without 

glass  

Ave HD 

to prism 

with glass 

@ 30° 

Ave HD to 

prism with 

glass @ 45° 

 

Ave HD to 

prism with 

glass @ 60° 

 

Ave HD to 

prism with 

glass @ 90° 

 

2010/05/06 Dark 626.5417 626.5449 626.5451 626.5444 626.5441 

2010/05/07 Dark 626.5417 626.5447 626.5448 626.5443 626.5437 

2010/05/08 Dark 626.5418 626.5448 626.5451 626.5444 626.5441 

2010/05/09 Light 626.5417 626.5444 626.5441 626.5443 626.5440 

2010/05/10 Light 626.5415 626.5442 626.5438 626.5440 626.5438 

2010/05/11 Light 626.5416 626.5441 626.5442 626.5443 626.5441 

2010/05/12 Non 626.5417 626.5434 626.5433 626.5435 626.5434 

2010/05/13 Non 626.5416 626.5434 626.5433 626.5435 626.5432 

2010/05/14 Non 626.5416 626.5432 626.5433 626.5433 626.5432 
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Table 3: Average daily HD readings per 3 days - Glass thickness 

Glass thickness 

(mm) 

Average HD 

without glass 

Average HD with 

glass 

Difference (glass 

impact) 

2 626.5414 626.5424 0.0010 

3 626.5414 626.5431 0.0017 

4 626.5414 626.5438 0.0024 

5 626.5414 626.5447 0.0033 

6.38 626.5414 626.5455 0.0041 

 

 

Table 4: Average daily HD readings per 3 days - Glass colour 

Glass colour 

Glass 

thickness 

(mm) 

Average HD 

without glass 

 

Average HD 

with glass 

 

Difference (glass 

colour impact) 

 

None tinted (0%) 3.00 626.5416 626.5433 0.0017 

Light tinted (5%) 3.00 626.5416 626.5441 0.0025 

Dark tinted (50%) 3.00       626.5416 626.5445 0.0029 

 

Table 5: Average change in HD per glass thickness 

Glass thickness Without glass  With glass (glass thickness impact) 

2 0 0.0010 

3 0 0.0017 

4 0 0.0024 

5 0 0.0033 

6.38 0 0.0041 

 

Table 6: Average change in HD per glass colour 

Glass colour Without glass  With glass (glass colour impact) 

Non-tinted 0 0.0017 

Light-tinted (5% tint) 0 0.0025 

Dark-tinted (50% tint) 0 0.0029 

 

Tables 5 and 6 above are used to prepare tables for least squares regression model, as shown 

in Tables 7 and 8. 

Table 7: Average change in HD per glass thickness for least squares regression model 

S/No 
ix (Glass thickness, mm) iy (Glass impact, m) ii yx  

2

ix  

1 2 0.0010 0.0020 4.000 

2 3 0.0017 0.0051 9.000 

3 4 0.0024 0.0096 16.000 

4 5 0.0033 0.0165 25.000 

5 6.38 0.0041 0.02616 40.704 

Sum  20.38000 0.0125 0.05936 94.704 

Mean 4.076 0.0025   
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Table 8: Average change in HD per glass tint level or colour for least squares regression 

model 

S/No 
ix (Glass colour, i.e. % tint 

level) 

iy (Glass impact, m) ii yx  
2

ix  

1 0 0.0017 0.000 0 

2 5 0.0025 0.0125 25 

3 50 0.0029 0.1450 2500 

Sum  55 0.0071 0.1575 2525 

Mean 27.5 0.0024   

 

 Use Table 7 to substitute for values of parameters in Equations 5 and 6: 
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where: 

gtcŷ  is the error caused by the glass thickness or glass thickness impact formula. The 

subscript ‘gtc’ stands for glass thickness correction: 

x  is the glass thickness in mm. 

Therefore, the combined formula, namely atmospheric and glass thickness corrections will 

be: 
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Equation 8 above can be expressed as follows: 

]9......[....................................................................................................ˆ10. '6'

gtcydak  

where: 

k’ is the correction factor for atmospheric variation and glass thickness effect; 

a.10-6 is the atmospheric variation correction formula; 

d’ is the measured distance as it appears on the total station digital screen; and 

gtcŷ
 is the glass thickness impact formula. 
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Equation 7 is the model for removing the impact of glass thickness, 4.0mm and above, on HD 

readings when using a total station surveying instrument. 

Using the same procedure, Table 6 yields: 
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where:  

gccŷ is the error caused by the glass colour, m.The subscript “gcc” stands for glass colour 

correction; and 

'x is the tint level or colour of the glass (%). 

Therefore, the combined formula for both atmospheric and glass colour corrections will be: 
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Equation 11 above can be expressed as follows: 
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where: 

k” is the correction factor for atmospheric variation and glass colour effect; 

a.10-6 is the atmospheric variation correction formula; 

d’ is the measured distance as it appears on the total station digital screen; and 

gccŷ
is the glass colour impact formula. 

2.2 Comparison of the Regression Model Developed with the Physical Model 

The result of the comparison of the regression model developed for glass thickness 

impact correction with the physical model is presented in appendix A. 

2.3 Observation/Distance Measurement to Test the Model 

In order to test the effectiveness of the systematic error correction formulae developed 

in the field, two new target stations were chosen to resemble a surface mine environment. 

The line-of-sight to the two stations passed over a roofing sheet for varying heat generation, a 
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football pitch for dust generation and a highway for car exhaust and dust generation in order 

to simulate a mine environment. Dust, smoke and varying temperature reading are 

characteristics of mine environments and all these factors were experienced in these new 

target stations. The first set of HD readings was taken when the target was placed about  

468m horizontal distance before the target/prism station used to develop the model. The 

target was later placed beyond the target station used to develop the model, approximately 

697m in length, to generate the second set of HD readings for validation purposes. During the 

first set of HD measurements for the model tests, each glass material, namely glass thickness 

of 4.0mm, 5.0mm and 6.38mm for the thickness test, and light and dark-tinted glass were 

used for the glass colour test, was used for two days from 6.00 am to 6.00 pm daily. The data 

acquired was corrected for prism constant, scale factor and atmospheric corrections. The 

targets were later moved to the second station, and each glass material was used for only one 

day as opposed to two days in the first target station. The data acquired was also corrected for 

prism constant, scale factor and atmospheric corrections. The data was subjected to further 

analysis and tests to remove the glass impacts on the acquired HD readings.  

3. Results and Discussions  

3.1 Result and Discussions for Glass Thickness 

The result of the data analysis when monitoring to the Leica circular prism at the first 

target position during the glass-thickness model test is presented in Figure 3 below. The 

graph shows the average daily HD measurements corrected for prism constant, scale factor 

and atmospheric corrections, but not corrected for glass impact. The corresponding result 

after all corrections, such as the prism constant, scale factor, atmospheric and glass 

corrections, is presented in Figure 4. 
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Figure 3: Average HDs to circular prism corrected for prism constant, scale factor and 

atmospheric corrections, but not corrected for glass thickness impact, as seen in the first 

target station 

 

Figure 4: Average HDs to circular prism corrected for prism constant, scale factor, 

atmospheric and glass thickness, as seen in the first target station 

 

In Figure 3 above, the impact ranged between 1.8mm and 2.0mm when a 4.0mm glass was 

used. It ranged between 2.6mm and 2.9mm when a 5.0mm glass was used, while a 6.38mm 

glass caused 3.6mm and 4.0mm impacts. The situation changed after applying the glass-

thickness correction formula, as demonstrated in Figure 4. The impact range created by a 
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4.0mm glass was reduced to -0.1mm and 0.1mm, a 5.0mm glass impact range changed to  

-0.1mm and 0.2mm, while a 6.38mm glass impact changed to -0.1mm and 0.2mm after 

applying the glass-thickness correction formula to the HDs readings.  

The results of the data analysis when monitoring to the Leica circular prism at the second 

target position are presented in Figures 5 and 6. 

 

Figure 5: Average HDs to circular prism corrected for prism constant, scale factor and 

atmospheric corrections, but not corrected for glass thickness impact, as seen in the second 

target station 

 

Figure 6: Average HDs to circular prism corrected for prism constant, scale factor, 

atmospheric and glass thickness, as seen in the second target station 
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The impact when monitoring the Leica circular prism, as shown in Figure 5, ranged between 

1.8mm and 2.1mm when 4.0mm glass was used. It ranged between 2.6mm and 2.9mm when 

5.0mm glass was used, while the impact caused by 6.38mm glass ranged between 3.6mm and 

4.4mm. The impact also changed after applying the glass-thickness correction formula, as 

shown in Figure 6. The impact range caused by a 4.0mm glass thickness reduced to -0.1mm 

and 0.2mm. A 5.0mm glass impact changed to -0.1mm and 0.2mm, while a 6.38mm glass 

impact changed to -0.2mm and 0.6mm. 

3.2 Results and Discussions for Glass Colour (Glass Tint Level). 

The result of the data analysis when monitoring the Leica circular prism at the first 

target position during the glass-colour model test is presented in Figure 7. The graph shows 

the average daily HD measurements corrected for prism constant, scale factor and 

atmospheric corrections, but not corrected for glass impact. The result after all corrections, 

including prism constant, scale factor, atmospheric and glass corrections, is presented in 

Figure 8. 

 

Figure 7: Average HDs to circular prism corrected for prism constant, scale factor and 

atmospheric corrections, but not corrected for glass thickness impact, as seen in the first 

target station 
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Figure 8: Average HDs to circular prism corrected for prism constant, scale factor, 

atmospheric and glass thickness, as seen in the first target station 

 

Figure 7 shows the average daily HD measurements to the circular prisms during the glass 

colour test. In the graph only HD readings without glass fall within the accuracy limits, while 

all the other HD readings with 5% (light-tinted) and 50% (dark-tinted) tinted glass are outside 

the accuracy limits. The impact increases with increase in glass tint level. In Figure 7, the 

impact ranged between 1.8mm and 2.4mm when light-tinted glass was used. It also ranged 

between 2.1mm and 2.4mm when dark-tinted glass was used. In addition, the situation 

changed after applying the glass-colour impact correction formula, as shown in Figure 8. The 

impact caused by 3.0mm light-tinted glass was reduced to -0.7mm and 0.0mm, while the 

dark-tinted 3.0mm glass impact changed to -0.7mm and -0.4mm after applying the glass-

colour impact correction formula to the HD readings.  
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measurement was not achieved due to detection of multiple targets, targets moving, a break in 

the beam or air turbulence, when measurements were taken through dark-tinted glass. 

Therefore, only HDs with and without light-tinted glass were analysed. The results when 

monitoring the Leica circular prism at the second target station during the glass-colour model 

test are shown in Figures 9 and 10.  
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Figure 9: HDs to circular prism after prism constant, scale factor and atmospheric 

corrections, but before glass colour correction using light tinted 3.0mm glass, as seen in the 

second target station 

 

Figure 10: HDs to circular prism after prism constant scale factor, atmospheric and glass 

colour corrections using light tinted 3.0mm glass, as seen in the second target station 
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4. Conclusion and Recommendation 

The paper discussed total station survey monitoring and its associated errors. The 

graphs generated during the data analysis clearly reveal that the TCR 1201 total station used 

for this research is good for monitoring, since all the HDs measured without glass fell within 

the accuracy limits specified by the instrument manufacturer. However, distance 

measurement through glass has an impact on the performance of the total station and must 

therefore be catered for. The paper also discussed the steps taken to model the systematic 

error caused by the glass medium. The models generated performed well in reducing this 

error and ensured that all distances measured through the glass medium fall within the 

accuracy limits specified by the instrument manufacturer. However, there is a need for further 

research with regard to the colour aspect of the glass. The glass-colour impact model reveals 

that the angular positions of the glass have more of an impact on the HD readings when tinted 

glass panes were used, as opposed to the use of non-tinted glass. 
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Appendix A 

The effect of glass on beam of light 

The effect of the shelter glass on the beam generated by the total station during 

monitoring with RTS from transfer beacon shelter is called refractive effects and it is based 

on Snell’s law. This law expresses the relationship between the angles of incidence and 

refraction, when a light ray passes through a boundary between two different isotropic media, 

namely air and glass, as in regards to this study. Ostdiek and Bord (2008) simplified the 

whole process by saying, “a light ray is bent toward the normal when it enters a transparent 

medium (e.g. glass or water) in which light travels more slowly. It is bent away from the 

normal when it enters a medium in which light travels faster”. Based on Snell’s theory, the 

beam from the RTS passes through the air inside the total station shelter (transfer beacon 

shelter) and strikes the shelter glass window at an angle of incidence θ’ with respect to the 

surface normal. It refracts and passes through the glass at angle θg with respect to the surface 

normal. The beam is slowed down when passing through the glass, because the refractive 

index of the glass ng is greater than the refractive index of the air na. When the beam emerges 

from the glass, it refracts once more so that its angle with respect to the surface normal is 

again θ and also resumes its original speed. Figure A.1 below demonstrates the whole 

scenario.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Effect of plane glass on light beam 
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where: 

 TB is the transfer beacon upon which the RTS is mounted inside the shelter; 

 RB is the reference beacon (control point) for orientation; 

 θ' is the angle of incidence of the RTS with respect to the surface normal of the glass; 

 sdi is the slope distance between the RTS and the glass; 

 hdi is the horizontal distance between the RTS and the glass; 

 nai is the refractive index of air inside the shelter; 

 θg is the angle of refraction within the glass; 

 sdg is the slope distance within the glass or distance travelled by the RTS beam  

 through the glass; 

 sdgm is the slope distance that would be measured by the RTS through the glass; 

 tg is the thickness of the glass; 

 ng is the refractive index of the glass; 

 nao is the refractive index of air outside the shelter; 

sdo is the slope distance between the glass and the target, the prism, that is being 

monitored, while hdo is the corresponding horizontal distance; and 

Prismm is the measured prism position, while Prisma is the actual prism position. 

Mathematically, the total slope distance would be: 

 sdtotal = sdi + sdg + sdo  ……………………………………………………..[A1] 

(where
)cos( g
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)sin(sin 1  ) 

While horizontal distance would be: 

 hdtotal = hdi + tg + hdo ……………………………………………………… [A2] 

Consequently, the actual coordinate of the prism would be: 

Prisma (Ya) = (sdi + sdo).sin (θ) + sdg.sin (θg); and Prisma (Xa) = (sdi + sdo).cos (θ) +  

sdg.cos (θg).....................................................................................................[A3] 

However, all the above quantities are hardly taken into account, nor are their values known 

when computing the position of the prism relative to the RTS position. The measured 

coordinate values that are displayed on the RTS screen are usually computed from: 

Prismm (Ym)  = (sdi + sdgm + sdo).sin (θ); and Prismm (Xm)  = (sdi + sdgm + sdo).cos (θ)  

I.e. Prismm (Ym)  = sdtotal.sin (θ) and Prismm (Xm)  = sdtotal.cos (θ)  

   (where 
ao

g

ggm
n

n
sdsd  ) 

[A4] 
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If the join between the TB and RB is calculated, and the direction from TB to the prism is 

known by using RB for orientation, for instance αtb-p, the above equation A4, can be re-

written as: 

Prismm (Ym)  = [(hdi + t + hdo).sin (αtb-p)] + YTB; and Prismm (Xm)  = [(hdi + tg +    

hdo).cos (αtb-p) ] + XTB 

i.e. Prismm (Ym)  = [hdtotal.sin (αts-p)] + YTB]; and Prismm (Xm)  = [hdtotal.cos (αtb-p)] +  

XTB. 

  

 where: 

 αtb-p is the direction of prism from the instrument station TB; and 

 YTB and XTB are the coordinates of instrument station TB or the transfer beacon. 

The displayed coordinate on the screen of the RTS are based on equations A4 and A5. 

According to Lutes (2002), this is based on the assumptions that: 

a. the glass is perfectly flat on both sides; 

b. the inside and outside surfaces of the glass are parallel; 

c. the glass molecules are pure, i.e. without bubbles in the inner structure of the glass; 

d. the glass refractive index is uniform; 

e. the refractive index of air inside the shelter is identical to that outside of the shelter; 

and 

f. the refractive index of the air is uniform. 

Practically, the above assumptions are not attainable. Therefore, there is a need to examine 

the effect of the shelter glass on the quality of distances measured with a total station setup in 

a transfer beacon shelter. 
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Computation of Refractive Effects on Distance Measurements 

During distance measurement to the short monitoring target, the following were recorded: 

tg = 3.0 mm  Thickness of the glass 

θ' = 60°  Angle of incidence of total station beam with shelter glass   

nao = 1.00028   Refractive index of air (see Table 2.6 in chapter two) 

ng = 1.52  Refractive index of shelter glass (see sub-section 4.2.5 in chapter four) 

The angle of refraction of the total station beam 

Using equation A1 in chapter two: 

sdtotal = sdi + sdg + sdo  ………………………………………………[A1] 

(where
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θg is the angle of refraction within the glass; 

sdg is the actual distance within the glass that the beam is supposed to travel 

7.34
52.1

00028.1
60sinsin 1 








 

g  

mmsd g 65.3
7.34cos

3


 

The measured distance within the glass by the total station is sdgm (see equation A4 above): 

Prismm (Ym) = (sdi + sdgm + sdo).sin (θ); Prismm (Xm) = (sdi + sdgm + sdo).cos (θ); 

(where: 
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The difference between the actual distance sdg that the RTS is supposed to measure and the 

measured distance sdgm is the refractive effect caused by the glass material. 

Refractive effect of 3.0mm glass = 5.546 – 3.65 = 1.89mm 

Using the same procedures, the sdg for 4.0mm, 5.0mm and 6.38mm would be: 4.868mm,  

6.085mm and 7.764mm, while the corresponding sdgm would be: 7.3967mm, 9.246mm and 

11.798mm. 

Therefore, their refractive effects would be: 2.51mm, 3.2mm and 4.03mm. 

These can be summarised in the Table below: 

Difference between the physical model and the regression model results 

Glass thickness Physical model (mm) Regression model (mm) Difference (mm) 

3 1.89 1.70 0.19 

4 2.51 2.40 0.11 

5 3.20 3.10 0.10 

6.38 4.03 4.07 0.04 

 

The variation is very small (i.e. less than 0.2mm). This is an indication that the regression 

model developed is effective despite being a much simpler approach. However, the little 

variation may be as a result of non-attainability of the assumptions highlighted in Lutes (2002) 

as stated above.  


