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ABSTRACT

The trace element content of clinkers (and possibly of cements) can be used to identify the manufacturing factory. The Mg, Sr, Ba,
Mn, Ti, Zr, Zn and V content of clinkers give detailed information for the determination of the origin of clinkers produced in
different factories. However, for the analysis of such complex data there is a need for algorithmic tools for the visualization and
clustering of the samples. This paper proposes a new approach for this purpose. The analytical data are transformed into a two-
dimensional latent space by factor analysis (probabilistic principal component analysis) and dendograms are constructed for
cluster formation. The classification of South African clinkers is used as an illustrative example for the approach.

KEY WORDS

Clinker, trace elements, factor analysis, principal component analysis, clustering, dendogram.

1. Introduction
The trace element content of clinkers is of significant scientific

interest, and can be used to solve practical problems too, e.g. to
determine the origin of the clinker (i.e. the manufacturing
works). The first paper on a similar topic was published in 1993
by Goguel and St John,1 and showed the Ba, Sr and Mn concen-
tration of different Portland cements in New Zealand concretes.
This first attempt suggests that advanced statistical methods,
so-called ‘pattern recognition’ or ‘fingerprinting’, can help with
qualitative identification.2

However, the qualitative identification obviously requires a
database to compare the trace element content of unknown
clinkers/cements with characteristic known samples. Data
describing trace element content of clinkers and cements have
been published previously.3,4,5 In these papers it was shown that
not all trace elements could be used for fingerprinting; the selec-
tion of particular elements for identification purposes must
follow certain principles. The most important criteria of selection
is that trace elements of ‘dactylogrammatic value’ should come
from the main raw materials (limestone, marl, clay) and not from
the fuel, the furnace lining or from grinding media wear. Some
other principles should be observed as well. More recently, six
elements were used to characterize clinkers: besides those used
by Goguel and St John,1 the Mg, Ti and Zr contents of clinkers
were also employed.4,5 Zn and V have no dactylogrammatic
value because they come from the fuel, e.g. when waste tyres or
special sorts of heavy fuel oil are used, respectively.

In a previous paper6 the dactylogrammatic value of trace
elements was described, together with detailed data on sample
preparation, analysis, averages and standard deviations of
eight trace elements (Mg, Sr, Ba, Mn, Ti, Zr, Zn and V). Based
on more than 200 samples, a ‘standard’ trace element content
was calculated and, in order to facilitate the visualization of the
trace element content, a graphic method (‘Star Plotting’) was

presented, where every clinker is compared to the proposed
standard.

This paper explored the next step in the presentation of the
data analysis of the trace element content of clinkers, by trying to
establish whether a useful structure based on distinct simple
groups could be discerned. Furthermore, if a clinker sample
could be classified into one of these groups would it be possible
to predict some of its properties from it. The first issue is
addressed using principal component analysis (PCA) or cluster
analysis, whereas the second one is investigated through the use
of pattern recognition methods.7

PCA is the most widely used multivariate analysis technique in
science and engineering. It is a method for transforming the
original measurement variables into new variables called princi-
pal components. By plotting the data in a coordinate system
defined by the two or three largest principal components it is
possible to identify the key relationships in the data, that is, find
similarities and differences among objects (such as different
clinkers) in a data set. In previous papers the analytical data were
transformed by principal component analysis and dendograms
were constructed for cluster formation.3,4,5

A persistent weakness of PCA in chemical applications has
been its inability to handle measurement uncertainty. In a
previous paper8 a new technique was described which is
referred to as ‘maximum likelihood principal component
analysis’ because of the incorporation of measurement variance
information in the model estimation. Unfortunately, the success-
ful implementation of this algorithm requires estimate of the
error covariance and this hampers the application of the
method. Furthermore, the iterative algorithm requires much
computation, e.g. results obtained in previous work9 required
computational times ranging from one hour to more than a day.

Tipping & Bishop have developed another approach for the
determination of principal axes of a set of observed data vectors
through maximum-likelihood estimation of parameters in a
latent variable model that is closely related to factor analysis.10
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This technique has been successfully applied to many problems
in computer science11, but its chemometrics relevant applica-
tions have been not studied yet. The aim of this paper is to
show how this tool can be effectively used in the problem of
the qualitative identification of clinkers produced in different
factories.

In the next section of this paper a short description of the
project launched for the collection and chemical analysis of
clinkers is given. Then the theoretical background of the data
visualization (projection) and clustering tools is presented and
in the final part, before the conclusions, the results of a factual
example of the clustering and classification of South African
clinkers are given. This example illustrates that the proposed
method is useful to visualize the samples, and to identify
compact models that are able to determine the origin of the
clinker.

2. Experimental

2.1 Materials
For the qualitative ‘fingerprinting’ of clinkers, obviously a set

of well-defined clinker samples is necessary. To obtain such an
informative database, a Technical Committee (TC 180/QIC)
(Qualitative Identification of Clinkers and Cements) was estab-
lished in 1996, under the auspices of RILEM (Réunion
Internationale des Laboratoires d’Essais et de Recherches sur les
Matériaux et les Constructions). This project was aimed at the
collection of composite average samples from eight countries
(Austria, Portugal, South Africa, Slovakia, Slovenia, Spain,
Switzerland and the United Kingdom). Over 200 samples were
collected and analysed. This paper focuses only on the South
African clinkers collected during the project. Approximately
twenty clinker samples have been collected from five South
African cement factories and their Mg, Sr, Ba, Mn, Ti, Zr, Zn and
V contents determined. The results of the chemical analysis are
given in Table 1.

2.2. Methods
The mass of each clinker sample that arrived at the Veszprém

laboratory (Hungary) was approx. 2–3 kg. It was usually in the

form of uncrushed nodules. This was then crushed and a smaller
average sample was taken according to sampling standards.
This smaller amount was ground in a centrifugal mill. The final
size reduction (smaller than a sieve size of 63 µm) was done by
hand in an agate mortar. A preliminary experiment with pure
quartz showed that the abrasion of grinding media or mill lining
did not cause any significant pollution of the sample for
the elements analysed. An exactly weighed sample (ca. 1 g) was
dissolved in hydrochloric acid. The precipitated SiO2 was
filtered off, washed and the filtrate analysed by ICP-ES (Induc-
tively Coupled Plasma Optical Emission Spectrography). Dupli-
cate samples were prepared of all clinkers for analysis, and if the
difference was >10%, the sample preparation and analysis was
repeated.

Initially a ARL-3410 ICP employing a 27 MHz radio frequency
at a power of 650 W was used. It was later replaced with a
GBC-Integra-XM-type ICP spectrometer, which was equipped
with a mini-plasma torch and had a 40 MHz radio-frequency
generator of 2 kW power. The spectral range investigated
covered 165–800 nm. Computations were performed using EPIC
(Evolutionary Program for Instrument Control) software on an
IBM PS/2 computer. The wavelengths used in this study were (in
nm): Mn = 257.610, Mg = 279.553, Sr = 407.771, Ba = 455.403,
Ti = 336.121, Zr = 349.621, Zn = 213,856 V = 310.230.

The measured trace element contents of the South African
clinkers are shown in Table  1.

3. Probabilistic PCA and Clustering

3.1. Probabilistic PCA for Factor Analysis
In our research work, the visualization and the clustering of

the trace element content of clinkers is considered. Hence, the
data are the measurements (observations) of the trace element
contents of the clinkers. Each observation consists of n measured
variables, grouped into an n-dimensional column vector
x xk k x

T
kx

nk
= [ ],...,1 , �Â

n. A set of N observations is denoted by
X=[z1,...,zN]T and represented as a N × n matrix. In pattern recog-
nition terminology, the rows of X are called patterns or objects,
the columns are called the features or attributes, and X is called
the pattern matrix.
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Table 1 Trace element content of South African clinkers (mg/kg).

Code Ba Mn Sr Ti Zr Mg V Zn Factory

SA 1 146 428 1024 853 18 2693 20 9 1
SA 10 155 451 1192 943 30 3165 20 9 1
SA 16 168 444 1168 893 0 3298 22 19 1
SA 23 235 386 2110 1061 54 5241 23 106 1
SA 2 569 3003 49 1178 32 15265 47 39 2
SA 9 604 2933 19 1242 63 15838 44 13 2
SA 3 485 7020 213 1052 41 24292 29 12 3
SA 8 558 6566 179 1126 73 23225 26 11 3
SA 17 407 6638 164 1136 33 24125 26 18 3
SA 20 449 4519 168 957 68 20973 29 29 3
SA 4 207 584 2090 25 30 5356 27 26 4
SA 5 210 610 2126 1176 9 5358 26 25 4
SA 12 195 509 2296 1224 18 5659 24 26 4
SA 13 193 490 2298 1252 45 5420 24 28 4
SA 15 191 497 2274 1208 32 5523 24 30 4
SA 21 176 379 2142 1102 56 5039 23 29 4
SA 22 174 434 1058 880 50 3126 19 21 4
SA 6 122 264 2934 804 15 5680 17 40 5
SA 11 136 210 3107 903 47 6723 19 14 5
SA 19 165 491 3484 805 31 6314 20 40 5



The q principal components of the observed data vector xk are
given by the vector zk=WT(xk – µ), where µ represents the mean
of the data, and WT=[w1,K,wq]

T the transformation matrix,
where wj j = 1,K,q are principal component axes. It can be shown
that these ortho-normal axes are given by the q eigenvectors of

the sample covariance matrixS x=1 / (N k
k

N

=
∑

1

– µ)(xk– µ)T such that

Sw wj j j= λ .
A latent variable mode seeks to relate the set of n-dimensional

observed data vector, xk, to a corresponding set of q-dimensional
latent variables, z x Wzk , = + µ + � where the latent variables
have a unit isotropic Gaussian distribution, z 0,I≈ N( )

The error, or noise model is also Gaussian, � » N(0,�) with
diagonal �. For the case of isotropic noise, � » N(0,�2I) , the
probability distribution over the data space for a given z is

Given this formulation, the model for x is also a normal
distribution x = N(µC), where the C variance is C = � + WWT,

Using Bayes’ rule, the posterior distribution of the latent
variable z given by the observed x may be calculated:

where M I W W= +2σ T .
Thus the intention is that the dependencies between the data

variables x are explained by a smaller number of latent variables
z while � represents the independent noise. This is in contrast
with PCA that treats the inter-variable dependecies and the
independent noise identically. In factor analysis the columns of
W will generally not correspond to the principal subspace of the
data and their values must be determined together with � by
maximizing the log-likelihood of the data. In was previously
shown10 that the solution of W is

where the q column vectors in Uq are the eigenvectors of S, with
corresponding eigenvalues in the�q diagonal matrix, and R is an
arbitrary q × q rotation matrix. Note that because of the use of the
W WT term, the likelihood (and the model) is invariant with
respect to R.

The variance of the model can be calculated and interpreted as
the variance lost in the projection averaged over the lost
dimensions

3.2. Hierarchical Clustering of the Latent Variables
Plotting the data in a coordinate system defined by the first

two or three columns of W often provides more than enough
information about the overall structure of the data. However, for
the automatic detection of groups of the objects (clinkers) the
application of clustering algorithm can be used, where cluster-
ing attempts to find clusters of patterns (i.e data points) in the

latent space. Although several clustering algorithms exist, e.g.
K-means, Fuzzy C-variaties12, hierarchical clustering is by far the
most widely used clustering method7. The starting point for a
hierarchical clustering experiment is the similarity matrix which
is formed by first computing the distances between all pairs of
points in the data set. The distance in space between the points is
determined by some distance function. In this case the Euclidian

distance function was used, whereby EDik = ( ), ,x xi j k j
j

n

−










=
∑ 2

1

1
2

,

where xi,j and xk,j are the measured values of the jth parameter of
object i and k and n = number of parameters of space dimen-

sions. The similarity value is given by S
ED

EDik
i k= −1
,

max.

and gives a

measure of the similarity between objects. The similarity values
are organized in the form of a table or matrix. The similarity
matrix is then scanned for the largest value, which corresponds
to the most similar data pair. The two samples constituting the
pair are combined to form a new point, which is located midway
between the two original points. The rows and columns corre-
sponding to the old data points are then removed from the
matrix. The similarity matrix for the data set is then recomputed.
This process is repeated until all points have been linked. There
are a variety of ways to compute the distances between data
points and clusters in hierarchical clustering. The utilized
single-linkage method assesses similarity by measuring the
distance to the farthest point in the cluster.

The results of a hierarchical clustering are usually displayed as
a dendogram, which is a tree-shaped map of the inter-sample
distances in the data set. The dendogram shows the merging of
samples into clusters at various stages of the analysis and the
similarities at which the clusters merge, which the clustering
displayed hierarchically. Interpretation of the results is intuitive,
which is the major foundation of these methods.

4. Results
Hierarchical clustering methods attempt to uncover the

intrinsic structure of a multivariate data set without making
prior assumption about the data. Hence during the identifica-
tion of the model the class labels (factories, last column of Table
1) were assumed to be unknown. The presented probabilistic
latent variable model and the hierarchical clustering method
have been implemented in MATLAB©. The program can be
downloaded from http://www.fmt.vein.hu/softcomp.

As an illustration of the complexity of the problem, the eight
dimensional space of the trace element content has been
projected to all of the possible combinations of the trace
elements in Fig. 1, where every rows and columns represent one
trace element, in such a way that the first subfigure in each row
defines the histogram of the given trace element.

To illustrate the advantages of the probabilistic PCA model,
three different models were identified:

Model 1. Hierarchical clustering of the observed data
Model 2. PCA projection of the data into a two-dimensional
space and hierarchical clustering of the projected data
Model 3. Application of two-dimensional probabilistic PCA,
and hierarchical clustering of the latent variables

4.1. Model 1
The clustering algorithm is sensitive to variations in the

numerical ranges of different features. Hence, the obtained
clusters can be negatively influenced by the different magnitude
of the trace element contents. Therefore, the clustering was
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performed based on normalized data, where all transformed
features have zero mean and unit variance,

where x j represents the mean, σ j the variance of the jth feature
(trace element).

The dendogram that was constructed based on this data, is
shown in Fig. 2. The separation of clinkers produced in different
factories is not fully satisfactory, as Factory 4 forms no compact
group. This can be explained by the fact that the noisy measure-
ments are analysed in a high (eight) dimensional space.

4.2 Model 2
The second model firstly projects the data into the two-dimen-

sional space of the first principal components and then applies
the clustering algorithm. The projected data is shown in Fig. 3.
Because of this projection, the structure of the data can also be vi-
sually inspected. It can be seen that the clinkers produced in fac-
tory SA1 and SA4, and SA2 and SA3 are difficult to separate. The
conclusion of this visual inspection is reflected from the analysis
of the dendogram depicted in Fig. 4.
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Figure 1 Histogram and covariance of the trace element content of South African clinkers given in mg/kg.

Figure 2 Dendogram of South African clinkers constructed from normal-
ized data. The y-axis shows the distances between clusters. Numbers at
the bottom are the factory codes, while numbers within the dendrogram
are the sample codes.



4.3. Model 3
The third model projects the data by the presented probabilistic

latent variable model. The two-dimensional space of the latent
variables is shown in Fig. 5. It can be seen that the data of the ob-
jects (trace element content of clinkers) form five clusters related
to different factories. Because of this advantageous mapping,
the constructed dendogram perfectly clusters the data (Fig. 6).

5. Conclusions
The trace element content of clinkers (and possibly of cements)

can be used for the qualitative identification of the manufactur-
ing factory. Hierarchical clustering have been used to achieve
this aim. It turned out that normalization of the data is not
enough to obtain reliable clustering. To reduce the uncertainty
due to the measurement noise and the small number of samples,
an advanced projection algorithm has to be used to map the data
into a smaller dimensional space. For this purpose standard
principal component analysis can be used. However, this
method also gave unsatisfactory results, due to the complexity of
the PCA compared to the small number of data. The presented
probabilistic factor analysis model has the capacity to control the

model complexity through the choice of the number of latent
variables by limiting the number of parameters used to define
the covariance structure of the data. This enables models to
be constructed in high-dimensional spaces where fully
parameterized covariance matrices would be hopelessly under-
constrained. The good performance of this approach empha-
sizes that the latent variable model has considerable potential for
the analysis of trace element content of clinkers and the
proposed method is useful to determine the origin of the clinker.
A detailed description of the data analysis tools presented in the
paper helps with the implementation of the algorithms and a
still easier program has been written for this purpose, which can
be downloaded (http://www.fmt.vein.hu/softcomp).
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Figure 4 Dendogram of South African clinkers constructed from data
projected into the first two principal components. The y-axis shows the
distances between clusters. Numbers at the bottom are the factory codes,
while numbers within the dendrogram are the sample codes.

Figure 5 Latent variable projection of the data. The numbers denote the
code of the manufacturing factory.

Figure 6 Dendogram of South African clinkers constructed from the
two-dimensional latent variables. The y-axis shows the distances be-
tween clusters. Numbers at the bottom are the factory codes, while num-
bers within the dendrogram are the sample codes.

Figure 3 Principal component projection of the data. The numbers
denote the code of the manufacturing factory.
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