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________________________________________________________________________________ 
Abstract 

Effects of the �-agonist, ractopamine-HCl (ractopamine), on skeletal muscle protein turnover were 
evaluated in 16 steers (512 kg) and 16 heifers (473 kg).  Treatments were arranged in a 2 × 2 factorial design 
and included gender (steer vs. heifer) and ractopamine (0 or 200 mg/d).  Steers were implanted with 120 mg 
trenbolone acetate and 24 mg estradiol-17�, heifers with 140 mg trenbolone acetate and 14 mg estradiol-17�.  
Cattle were fed a diet based on steam-flaked maize.  Muscle biopsy samples were collected from  
m. longissimus and m. biceps femoris on day 0 (prior to ractopamine feeding) and after 14 and 28 d of 
ractopamine feeding.  In vitro protein synthesis rates in m. longissimus tended to be greater for steers than for 
heifers, but no effect of gender was observed in m. biceps femoris.  Gender did not affect in vitro protein 
degradation rates for either muscle.  Ractopamine significantly decreased rates of in vitro protein degradation 
in m. longissimus, but rates in m. biceps femoris were not affected by ractopamine.  Ractopamine did not 
affect in vitro protein synthesis rates.  In general, there were no striking differences between steers and 
heifers in response to ractopamine, indicating that its effectiveness should be similar between genders.  
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Introduction 

Ractopamine-HCl (ractopamine) is a �-adrenergic agonist with primary affinity for �1-adrenergic 
receptors and lesser affinity for �2-adrenergic receptors (Moody et al., 2000).  When fed to cattle, 
ractopamine results in an increase in muscle mass (Mersmann, 1998). 

Ractopamine improves growth rate and feed efficiency in both steers and heifers, but responses in 
heifers have been less than in steers, suggesting there may be some difference between genders in how 
ractopamine affects growth.  Feeding 200 mg/d of ractopamine for 28 d increased hot carcass weights in 
steers (implanted with 120 mg trenbolone acetate and 24 mg estradiol) by 5.5 kg (Gruber et al., 2007) and 8 
kg (Winterholler et al., 2007), whereas improvements in hot carcass weights were 1 kg in implanted (140 mg 
trenbolone acetate and 14 mg estradiol) heifers and 4 kg in non-implanted heifers (Quinn et al., 2008) and 
2.3 and 5 kg in heifers receiving final implants containing 200 mg trenbolone acetate (Sissom et al., 2007). 

There is evidence that �-agonists increase protein deposition, at least in part, by decreasing protein 
degradation rates. Urinary excretion of N-methylhistidine by cattle was reduced by treatment with the  
�-agonist L644,969 (Wheeler & Koohmaraie, 1992).  Similarly, calpastatin is increased by the �-agonist L644,969, 
which also supports the idea that muscle protein degradation is reduced by �-agonists (Wheeler & 
Koohmaraie, 1992).  In contrast, techniques that calculate protein degradation as the difference between 
protein synthesis and protein accretion have at times led to the conclusion that protein degradation may be 
increased by �-agonists (Bergen et al., 1989; Nash et al., 1994).   

The increase in shear force of m. longissimus from cattle fed �-agonists suggests that muscle protein 
degradation is inhibited by �-agonists.  However, zilpaterol leads to a greater impact on shear force than does 
ractopamine (Avendano-Reyes et al., 2006), so it might be unwise to extrapolate among �-agonists.  Most 
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research on the impact of �-agonists on meat quality has been conducted with the m. longissimus, but 
differences in responsiveness to ractopamine exist among muscles (Gonzalez et al., 2009).   

Our objective was to determine the effects of feeding ractopamine to finishing steers and heifers at 200 
mg/d for 14 or 28 d on skeletal muscle protein turnover. 

 
Materials and Methods 

Procedures for this study were approved by the Kansas State University Institutional Animal Care and 
Use Committee (protocol #2508). 

Thirty-two Angus cattle were used.  The experiment used a randomised complete block design with 
treatments being gender (steer or heifer, 16 of each) and ractopamine (0 or 200 mg/d; Optaflexx; Elanco 
Animal Health, Greenfield, IN, USA).  At 90 to 97 d before the experiment, steers were implanted with 120 
mg trenbolone acetate and 24 mg estradiol (Component TE-S, Vet Life, West Des Moines, IA, USA), and 
heifers were implanted with 140 mg trenbolone acetate and 14 mg estradiol (Component TE-H, Vet Life).  
Management and performance of the cattle has been described (Walker et al., 2010).   

Eight blocks containing two steers and two heifers were generated according to body weight and pre-
trial average daily gain, and cattle were randomly assigned to ractopamine treatment within gender and 
block.  Cattle were fed and housed individually in 4.5 × 1.5 m pens and given ad libitum access to water and 
feed (75% steam-flaked maize, 10% lucerne hay; diet contained 145 g crude protein/kg; Walker et al., 2010).  
Fresh feed was provided once daily.   

The start of the experiment was staggered over time to ensure samples could be handled in a timely 
fashion.  Two blocks of cattle were started concurrently, with subsequent groups of two blocks starting 1, 7, 
and 8 d later.  Biopsy samples were collected before ractopamine feeding (day 0) and after 14 and 28 d of 
ractopamine feeding.  On each day of sample collection, muscle biopsy samples were collected from the  
m. biceps femoris and m. longissimus beginning at 06:30.  For two blocks, cattle assigned to the ractopamine 
treatment mistakenly received ractopamine on the day before the initial sampling; data from these day-0 
samples were not used for statistical analysis, and samples collected after 15 and 29 d of ractopamine feeding 
were considered equivalent to those collected after 14 and 28 d of ractopamine feeding. 

Biopsy samples were collected from the m. biceps femoris and m. longissimus using a 6-mm 
Bergstrom biopsy needle (Dunn et al., 2003; Pampusch et al., 2003) with lidocaine as a local anaesthetic; 
each insertion of the biopsy needle yielded approximately 2 g of tissue.  Biopsies on day 0 and 28 were 
collected from the left side, and biopsies on day 14 were collected from the right side.  The m. longissimus 
sampling sites initially were at the last rib and moved 5 cm anterior for the final sampling.  The m. biceps 
femoris sampling sites initially were midway between the trochanter major of the femur and the tuber ischii 
and moved 5 cm ventral for the final sampling.  

In vitro protein synthesis rates in biopsy samples were determined as described by Greig et al. (1986).  
Samples (150 to 300 mg) were blotted on sterile gauze and placed in pre-incubation medium for transport to 
the laboratory.  The pre-incubation medium contained Krebs-Ringer bicarbonate buffer, saturated with  
95% O2 : 5% CO2 by bubbling for 30 min, 10 mM glucose, 0.1 IU porcine insulin/mL, and 20 amino acids 
(mM; Ala 4.5, Arg 2.0, Asn 0.7, Asp 0.35, Cys 0.7, Glu 2.0, Gln 3.5, Gly 4.0, His 0.8, Ile 1.0, Leu 1.7, Lys 
4.0, Met 0.7, Phe 0.8, Pro 1.8, Ser 2.8, Thr 3.0, Trp 0.7, Tyr 0.7, and Val 2.0).  For each muscle from each 
animal, 20 to 40 mg of tissue was placed into each of five incubation tubes containing 3.0 mL of incubation 
medium, regassed with 95% O2 : 5% CO2, and incubated for 3 h at 37 °C in a metabolic shaker bath.  The 
incubation medium contained the pre-incubation media plus 1.8 µCi L-[3H]-tyrosine.  After incubation, 
tissue samples were removed from the media, blotted, weighed, frozen in liquid N2, and stored at -20 °C.  
The medium was frozen in liquid N2 and stored at -20 °C.    

Muscle samples were homogenised (Tissue Tearor; Biospec Products, Inc., Bartlesville, OK, USA) in 
2.5 mL of 10 mM potassium phosphate buffer (pH 7.4 at 0 to 5 °C).  Protein was precipitated from 2.0 mL of 
homogenate with 1 mL of 30% (wt/vol) trichloroacetic acid at 0 to 5 °C and centrifuged at 11 000 × g for 10 
min.  The protein pellet was washed twice with 10% (wt/vol) trichloroacetic acid and dissolved in 1.0 mL of 
tissue solubiliser (NCS-II Tissue Solubilizer, Amersham Biosciences, Little Chalfont Buckinghamshire, 
England) at 65 °C for 30 min.  The solution was poured into a scintillation vial with 15 mL of scintillation 
cocktail (ScintiSafe Plus 50%, Fisher Scientific, Hanover Park, IL, USA).  Samples were allowed to stand 
overnight in low lighting to reduce chemiluminescence before being counted in a scintillation counter.   

The medium (3.0 mL) was acidified with 1.0 mL of 40% (wt/vol) trichloroacetic acid at 0 to 5 °C and 
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centrifuged at 11 000 × g for 10 min.  An aliquot of the supernatant was analysed for tyrosine concentration 
as described by Waalkes & Udenfriend (1957), and a 1.0-mL aliquot was counted for radioactivity. 

Protein synthesis rates were estimated by 3H-Tyr incorporation into protein.  The equation used to 
calculate synthesis rates was: protein synthesis rate = [dpm in protein / specific activity of free Tyr, dpm/µg] 
/(wet tissue weight, g × 3 h).  Concentration of Tyr (0.7 mM) was 10 times that of bovine plasma; therefore, 
Tyr was assumed to equilibrate between the medium and intracellular precursor pool.  Consequently, specific 
activity of Tyr in the medium was used as the specific activity of the precursor pool.  

In vitro protein degradation rates in biopsy samples were determined as described by Greig et al. 
(1986).  Samples (150 to 300 mg) were blotted on sterile gauze and placed in pre-incubation medium for 
transport to the laboratory.  The pre-incubation medium contained Krebs-Ringer bicarbonate buffer with 10 
mM glucose.  For each muscle from each animal, 20 to 40 mg of tissue was placed into each of six 
incubation tubes containing 3.0 mL of incubation medium (pre-incubation media and 0.5 mM 
cycloheximide) and regassed with 95% O2 : 5% CO2. Three incubation tubes were immediately frozen in 
liquid N2 and used to measure background concentrations of free Tyr.  Three tubes were incubated for 3 h at 
37 °C in a metabolic shaker bath.  After incubation, samples were frozen in the medium in liquid N2 and 
stored at -20 °C.   

Muscle samples were homogenised in medium.  An aliquot of the homogenate was assayed for protein 
concentration via a Coomassie Blue Protein Assay Kit (Pierce, Rockford, IL, USA).  Protein was precipitated 
from 1.0 mL of homogenate with 0.5 mL of 30% (wt/vol) trichloroacetic acid at 0 to 5 °C and centrifuged at 
11,000 × g for 10 min.  A 1.0-mL aliquot of the supernatant was analyzed for Tyr concentration (Waalkes & 
Udenfriend, 1957). 

Protein degradation rates were estimated by Tyr release. Cycloheximide was included in the 
incubation media to inhibit protein synthesis, thereby preventing reutilization of released Tyr.  The equation 
used to calculate degradation rates was: protein degradation rate = [(Tyr in incubated samples/mg protein) – 
(Tyr in un-incubated samples/mg protein)] / 3 h, where 3 h is the incubation time.  

Concentrations of DNA, RNA, and protein were determined in m. longissimus and m. biceps femoris 
biopsy samples collected on day 28.  Approximately 300 mg of tissue was ground into powder with a mortar 
and pestle submerged in liquid N2.  One hundred milligrams of ground sample, in duplicate, was used to 
isolate total RNA from m. biceps femoris and m. longissimus samples as described by Dunn et al. (2003) and 
Pampusch et al. (2003).  Concentration of RNA was determined by absorbance at 260 nm.    

Twenty five milligrams of ground sample, in duplicate, was used to isolate DNA via a DNeasy Blood 
and Tissue Kit (Qiagen, Valencia, CA, USA; Blin & Stafford 1976).  To determine DNA concentration, 100 
µL of sample was mixed with phosphate buffer containing bisbenzimidazole (compound H 33258) to a final 
concentration of 1 µg/mL as described by Labarca & Paigen (1980).  Fluorescence was measured with a 
fluorimeter (HP 1046A Programmable Fluorescence Detector; Santa Clara, CA, USA; excitation, 356 nm; 
emission, 458 nm) within 16 h of mixing.  Concentration of DNA was determined by comparison to an 
external standard curve of bovine calf thymus DNA in a range to 5.0 µg/mL.  Analysis of muscle 
composition for the m. longissimus sample from one heifer fed ractopamine yielded unreasonable data, so 
observations for this sample were excluded from statistical analysis.   

Ten milligrams of ground sample was placed into 500 µL of phosphate buffer (0.05 M Na2HPO4, 2 M 
NaCl, adjusted to pH 7.4) and homogenised.  Protein concentration was determined from an aliquot of the 
homogenate with the Coomassie Blue Protein Assay Kit (Pierce).  

Data were analysed using the MIXED procedure of SAS System for Windows Release 9.1 (SAS Inst. 
Inc., Cary, NC, USA).  Data for RNA, DNA, and protein concentrations were analysed as a randomised 
complete block design with a model containing gender, ractopamine, and ractopamine × gender; block was a 
random effect.  Protein turnover data were analysed as a randomised complete block design with repeated 
measures, and day-0 values were used as covariates.  The model included the covariate, gender, ractopamine, 
ractopamine × gender, day, ractopamine × day, gender × day, and ractopamine × gender × day; block was a 
random effect.  Day was the repeated variable, and animal was the experimental unit; the covariance 
structure was unstructured.  Values were predicted for missing values from day 0 with the same model, but 
without the inclusion of the covariate.  Use of covariates removed much of the gender effect, so data were 
analysed for the main effect of gender using the model described above without covariates. 
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Results 
Effects of gender on in vitro protein synthesis and degradation rates are presented in Table 1.  This 

analysis (Table 1) included data from days 0, 14, and 28, and covariate analysis was not used for this analysis 
because gender was predetermined such that the use of covariates would remove much of the effect of 
gender. In m. longissimus, protein synthesis rates tended to be greater in steers than in heifers (P = 0.10).   
Gender did not affect protein synthesis rates in m. biceps femoris (P = 0.76) or protein degradation rates in 
m. biceps femoris and m. longissimus (P �0.42). 

 
 

Table 1  Effect of gender on protein turnover in finishing cattle 
 

Item Heifers Steers S.E.M.* P-value 

n 16 16   
Protein synthesis (µg Tyr/[g wet tissue × h])   

M. biceps femoris 0.313 0.309 0.011 0.76 
M. longissimus 0.291 0.304 0.0093 0.10 

Protein degradation (µg Tyr/[g protein × h])   
M. biceps femoris 92 86 6.0 0.42 
M. longissimus 68 66 4.0 0.64 
     

* Largest S.E.M. among treatments. 
 
 

Effects of gender on RNA, DNA, and protein concentrations as well as ratios of these components are 
presented in Table 2.  Gender did not affect RNA, DNA, and protein concentrations or protein : DNA, 
protein : RNA, and RNA : DNA ratios. 

 
 

Table 2  Effects of ractopamine and gender on RNA, DNA, and protein concentrations in the m. biceps 
femoris and m. longissimus on day 28 

 

 Ractopamine, mg/d   

 0  200  P-value 

Item Heifers Steers  Heifers Steers S.E.M.* G R G × R 

n 8 8 8 8     
M. biceps femoris         

RNA (mg/g) 0.199 0.206 0.200 0.209 0.017 0.62 0.90 0.94 
DNA (mg/g) 0.220 0.207 0.180 0.210 0.023 0.68 0.38 0.30 
Protein (mg/g) 103 102 103 101 4.2 0.65 0.91 0.85 
Protein:DNA 512 563 579 556 73 0.83 0.66 0.58 
Protein:RNA 535 531 529 513 46 0.82 0.77 0.88 
RNA:DNA 1.02 1.15 1.12 1.12 0.16 0.63 0.82 0.63 

M. longissimus         
RNA (mg/g) 0.193 0.193 0.186 0.203 0.013 0.42 0.84 0.41 
DNA (mg/g) 0.161 0.171 0.161 0.166 0.025 0.74 0.90 0.92 
Protein (mg/g) 100 107 97 101 3.2 0.11 0.11 0.62 
Protein:DNA 686 860 698 634 128 0.65 0.38 0.33 
Protein:RNA 529 598 525 508 50 0.55 0.29 0.33 
RNA:DNA 1.33 1.44 1.37 1.30 0.23 0.91 0.74 0.60 
         

G - gender;  R – ractopamine; * Largest S.E.M. among treatments. 
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In vitro skeletal muscle protein synthesis and degradation rates across gender, ractopamine treatment, 
and sampling day are presented in Table 3. It should be noted that the effects of gender cannot be determined 
from the data in Table 3 because gender was predetermined and covariate analysis therefore removes much 
of the effect of gender; however, the interaction of gender with other treatments can still be reliably 
compared. Ractopamine did not affect protein synthesis rates in either muscle (P ≥0.53).  Ractopamine 
decreased in vitro protein degradation rates in m. longissimus (P = 0.03) but did not influence them in  
m. biceps femoris (P = 0.19).  Ractopamine did not demonstrate two-way interactions with either sampling 
day or gender (P ≥0.38) for protein synthesis or degradation in either muscle. 

 
 

Table 3  Effect of ractopamine and gender on protein turnover in finishing steers and heifers fed 0 or 200 
mg/d of ractopamine for 14 or 28 d 

 
 Ractopamine (mg/d)       
 0  200       
 Heifers  Steers  Heifers  Steers  P-value 

Item 14 d 28 d 14 d 28 d 14 d 28 d 14 d 28 d S.E.M.* R R×D G×D G×
R 

G×R×
D 

n 8 8 8 8 8 8 8 8       
Protein synthesis (µg Tyr/[g wet tissue × h]) 

Mbf 0.319 0.276 0.333 0.270 0.329 0.291 0.323 0.287 0.017 0.53 0.41 0.64 0.71 0.56 
Ml 0.312 0.257 0.318 0.286 0.304 0.263 0.328 0.259 0.014 0.58 0.38 0.88 0.70 0.07 

Protein degradation (µg Tyr/[g protein × h]) 
Mbf 87 92 81 74 110 107 85 80 12 0.19 0.75 0.56 0.42 0.66 
Ml 66 73 74 68 62 56 59 64 6.8 0.03 0.85 0.88 0.96 0.13 
               
The use of day-0 data in covariate analysis removed much of the effect of gender.  The effects of gender should be 
evaluated using data presented in Table 1. 
D - day; R - ractopamine; G - gender; Mbf - m. biceps femoris; Ml - m. longissimus.  
* Largest S.E.M. among treatments. 
 
 

In m. longissimus, the decrease in protein synthesis between days 14 and 28 tended to be greater for 
heifers than for steers when no ractopamine was fed but tended to be greater for steers than for heifers when 
200 mg/d of ractopamine was fed (gender × ractopamine × day, P = 0.07).  Also in the m. longissimus, 
protein degradation demonstrated a trend (P = 0.13), with the gender × ractopamine × day interaction 
showing responses opposite those for protein synthesis.  Heifers fed no ractopamine and steers fed 200 mg/d 
of ractopamine had increases in protein degradation between days 14 and 28, whereas steers fed no 
ractopamine and heifers fed 200 mg/d of ractopamine had decreases between days 14 and 28.  Although the 
biological meaning of these interactions is unclear, the fact that protein degradation demonstrated 
movements opposite of those for protein synthesis might suggest these interactions were not randomly 
spawned.  

Effects of ractopamine and its interaction with gender for RNA, DNA, and protein concentrations as 
well as ratios of these components are presented in Table 2.  Ractopamine did not affect RNA, DNA, and 
protein concentrations or protein : DNA, protein : RNA, and RNA : DNA ratios. 

 
Discussion 

This study was conducted primarily to assess effects of ractopamine and determine if responses to 
ractopamine were similar for steers and heifers. In this trial, both steers and heifers received steroidal 
implants containing trenbolone acetate and estradiol, although in slightly different amounts (120 mg 
trenbolone acetate and 24 mg estradiol for steers vs. 140 mg trenbolone acetate and 14 mg estradiol for 
heifers).  Thus, the effects of gender in this study include effects of gender per se, of the minor differences in 
the steroid amounts in the implants, and of any differences between steers and heifers in how they responded 
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to the implantation.  Implants containing trenbolone acetate and estradiol increase growth performance of 
both genders, although implanted steers are still capable of greater growth rates than implanted heifers.  It is 
possible that the effects of ractopamine would differ in non-implanted cattle.  Nonetheless, cattle were 
implanted before their use in this experiment to simulate predominant practices of the cattle finishing 
industry of the United States.   

Greater serum concentrations of insulin-like growth factor-I were observed in the steers than in the 
heifers (Walker et al., 2010), and this could be partially responsible for the observed tendency for greater 
rates of protein synthesis in the m. longissimus of steers than of heifers.  Because steers generally gain body 
weight more rapidly and deposit more lean tissue than heifers, the observed difference in protein synthesis 
rate is not surprising.  

Wheeler & Koohmaraie (1992) demonstrated a 27% decrease in fractional protein degradation rates of 
skeletal muscle myofibrillar protein and a numerical increase in fractional protein synthesis rates of skeletal 
muscle myofibrillar protein after three weeks in steers fed 3 mg/kg of the �-agonist L644,969.  In the m. biceps 
femoris of lambs fed 4 mg/kg of L644,969 for six weeks, calpastatin activity was increased, whereas activities 
of µ-calpain and m-calpain were not affected, suggesting that the calpastatin activity may be the key effecter 
of decreased protein degradation (Koohmaraie et al., 1991).  Using a protocol with continuous infusion of 
label, Bergen et al. (1989) reported that fractional protein synthesis and degradation rates in the m. 
semitendinosus were 4.4%/d and 3.4%/d for control pigs and 6.1%/d and 4.9%/d for pigs fed 20 mg/kg 
ractopamine for 21 or 35 d, demonstrating increases in rates of both protein synthesis and degradation in 
response to ractopamine.  Using flooding dose methodology, Nash et al. (1994) observed that the �-agonist 
cimaterol led to increases in both protein synthesis and degradation rates in m. longissimus of sheep.  
Clearly, the use of different animal models, different �-agonists, and different research methodologies has 
contributed to divergent conclusions. 

In this study, ractopamine decreased rates of protein degradation in the m. longissimus, which supports 
data reported by Wheeler & Koohmaraie (1992).  In contrast to the effect of ractopamine on protein 
degradation in the m. longissimus, ractopamine did not affect protein degradation rates in the m. biceps 
femoris; differences between muscles in response to ractopamine feeding may be attributable to differences 
in fibre type.  Gonzalez et al. (2009) evaluated the impact of feeding 200 mg/d of ractopamine to finishing 
steers on the muscle fibre type in six muscles.  In four of the six muscles studied (including m. longissimus), 
ractopamine decreased the percentage of type I fibres and increased the percentage of type II fibres.  In 
contrast, ractopamine did not affect the percentage of fibre types in m. semimembranosus, and it increased 
type I fibres and decreased type II fibres in m. rectus femoris.  Similarly, Gonzalez et al. (2008) 
demonstrated differences among muscles in cull cows in response to ractopamine in terms of changes in fibre 
type.  Thus, ractopamine can convert slow-twitch fibres to fast-twitch fibres as demonstrated by changes in 
fibre type and the prevalence of different isoforms of myosin heavy chains.  In these cattle, mRNA 
expression of myosin heavy-chain IIA was reduced in m. biceps femoris but not m. longissimus (Walker  
et al., 2010), which suggests that ractopamine led to greater changes in fibre type in m. biceps femoris than in 
m. longissimus. This could account for the different effects of ractopamine on protein degradation in  
m. longissimus and m. biceps femoris.   

In this study, ractopamine did not affect calpastatin mRNA expression in m. biceps femoris, but it 
numerically (P = 0.17) increased calpastatin mRNA expression by 20% in m. longissimus (Walker et al., 
2010).  Although calpastatin activity may not perfectly match mRNA expression for calpastatin, the observed 
changes in calpastatin mRNA matched the expected response in protein degradation in both muscles.  
Calpastatin regulates the activity of m-calpain and µ-calpain, which are responsible for initiating myofibrillar 
protein disassembly and, therefore, changes in mRNA expression of calpastatin could reflect regulatory 
mechanisms that could have led to the observed changes in protein degradation in m. longissimus.   

Although the in vitro rates of protein synthesis and degradation are not reflective of in vivo rates 
because of the nature of the sample and assay, the goal was to assess changes due to ractopamine.  Samples 
were collected with a Bergstrom biopsy needle that produced small tissue pieces, which could limit the 
ability to measure true protein synthesis and degradation rates.  Additionally, the in vitro protein synthesis 
and degradation assays did not differentiate the myofibrillar protein fraction from total protein. Therefore, it 
is possible that differences may not reflect changes in myofibrillar protein turnover. 

Changes in protein, DNA or RNA concentrations were not observed in either muscle.  More 
aggressive treatments with �-agonists have increased protein : DNA and RNA : DNA ratios in muscle of 
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lambs.  O’Connor et al. (1991) demonstrated 42% and 25% reductions in DNA concentrations, 25% and 
12% increases in RNA concentrations, and 1% and 13% increases in protein concentrations in the 
semitendinosus of ram lambs fed 10 mg/kg cimaterol for three and six weeks, respectively.  Also in that 
study, the protein : DNA ratio increased by 76% and 51%, the protein : RNA ratio decreased by 21% and 
2%, and the RNA : DNA ratio increased by 109% and 52%.  Beermann et al. (1987) demonstrated a 22% 
decrease in DNA concentration in semitendinosus in lambs fed 10 mg/kg of cimaterol for seven weeks, and 
RNA and protein concentrations in semitendinosus were increased by 9% and 8.1%, respectively, when 
lambs were fed cimaterol for 12 weeks.  In addition, the protein : DNA ratio increased by 22% and 8%, the 
protein : RNA ratio decreased by 5% and 1%, and the RNA : DNA ratio increased by 29% and 10% after 
seven and 12 weeks, respectively, of cimaterol feeding.  These changes show that �-agonists increase 
hypertrophic growth (protein) with little impact on proliferation of satellite cells or their incorporation in 
muscle fibres (O’Connor et al., 1991).  No differences in muscle composition were observed among 
treatments in the present study, which may reflect no true difference or, more likely, the relatively modest 
effects of 200 mg/d of ractopamine fed to finishing cattle for 28 d, which might have led to an inability to 
detect differences. 
 
Conclusions 

The results indicate that ractopamine fed to steers and heifers implanted with trenbolone acetate and 
estradiol affects in vitro protein degradation rates of m. longissimus and m. biceps femoris differently.  There 
were no striking disparities to suggest the impact of ractopamine on protein turnover differs markedly 
between genders. 
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