Main Article Content
Genetic parameter estimation of 16-month live weight and objectively measured wool traits in the Tygerhoek Merino flock
Abstract
Genetic evaluation systems require the accurate estimation of genetic parameters. The genetic, phenotypic and environmental parameters for live weight and objectively measured wool traits were estimated for a South African Merino flock. Records of the Tygerhoek Merino resource flock were used to estimate these parameters. The database consisted of records of 4 495 animals, the progeny of 449 sires and 1 831 dams born in the period 1989 to 2004. The pedigree records used have been collected between 1969 and 2004. Direct heritability estimates (h²a) for 16-month live weight (LW) and objectively measured wool traits ranged from 0.20 for staple strength (SS) to 0.68 for fibre diameter (FD). Maternal heritability estimates ranged from 0.05 for LW and FD, to 0.10 for clean fleece weight (CFW). The proportion of the total phenotypic variance due to the maternal permanent environment variance (c²pe) amounted to 5% for fleece weights. The genetic correlation between animal effects for LW, greasy fleece weight (GFW) and CFW were -0.28, -0.65 and -0.70 respectively. The genetic correlation between LW and CFW was positive, but low at 0.14. The other important genetic correlations among the wool traits ranged from low to high, and were variable in sign ((for GFW with CFW (0.87) and with staple length (SL – 0.18); CFW with clean yield (CY – 0.33) and with SL (0.29); FD with CY (-0.09), with SL (0.15), with SS (0.40) and with standard deviation of FD (SDFD – 0.38): CY with SL (0.33) and with SDFD (0.10); SS with coefficient of variation of FD (CVFD – -0.57) and with SDFD (-0.28); CVFD with SDFD (0.87)). These results suggested that worthwhile responses in the objectively measured traits can be achieved through direct and indirect selection.