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Abstract 
Heat stress has been identified as one of the major challenges for livestock production. Global 

temperatures are steadily increasing, with South African temperatures increasing at nearly twice the 

global rate. Of the livestock used for food production, dairy cows are the most sensitive to thermal 

changes, which have detrimental effects on their health, welfare, and overall productivity. Several abiotic 

factors that influence the heat load experienced by the cow are not commonly included in thermal indices 

used to measure heat stress; these include solar radiation, wind speed, and soil quality. Furthermore, 

the thermal comfort zone of cows has been altered by years of intense selection for increased milk yield, 

causing cows to become heat stressed at lower temperatures. Considering the abiotic and biotic factors 

affecting the cow’s heat load, it can be argued that dairy cows in tropical and subtropical climates are 

experiencing constant heat stress. In this review, the abiotic and biotic factors influencing the heat load 

experienced by dairy cows are reviewed, along with the available thermal indices that can be utilised at 

farm level. 
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Introduction 
Dairy cows are homeotherms that strive to maintain their body temperature by regulating their 

thermal energy balance, and this can be threatened during periods of high temperatures (Ouellet et al., 

2021). Heat stress is a physiologically driven response that occurs when an animal produces more heat 

than it can dissipate (Cartwright et al., 2023). Of the livestock species used for food production, dairy 

cows are the most sensitive to thermal changes (Herbut et al., 2018; Cheruiyot et al., 2022). Exposure 

to either short- or long-term high ambient temperatures will thus have detrimental consequences for the 

health and production of dairy cows (Schüller et al., 2016; Amamou et al., 2019).  

The consequences of climate change are multifactorial, with heat stress highlighted as one of 

the major burdens on livestock production (Lees et al., 2019). Even regions known for more temperate 

climates, such as Ireland and Scotland, are experiencing periods of heat stress (Haskell et al., 2023). 

The Southern African region is experiencing intensified heat conditions, with temperatures increasing at 

nearly twice the global rate (Scholes & Engelbrecht, 2021). South Africa is regarded as a semi-arid 
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country with a unique blend of climates, biomes, and rainfall patterns, and has been identified as one of 

the sectors of the world that will be most affected by climate change, with an estimated average 

temperature increase of 1.5 to 2.0 °C (Williams et al., 2016). This increase in temperature will be 

characterised by an increase in the occurrence of droughts, coupled with exposure to extreme summer 

temperatures, which may be as high as 40 to 45 °C (Roffe et al., 2021).  

A number of abiotic factors can influence the degree of heat stress experienced by dairy cows, 

with ambient temperature and relative humidity being among the most important because of their 

significant impact on the heat abatement abilities of cattle (Ji et al., 2020). In addition, biotic factors such 

as size, production potential, and stage of lactation influence the cow’s ability to respond to heat stress 

(Polsky & von Keyserlingk, 2017). Several studies have highlighted the billions in financial losses 

resulting from the direct and indirect effects of heat stress on the dairy production industry (Moore et al., 

2024). Unwanted physiological responses triggered by exposure to heat stress contribute to reduced 

quality of life, behavioural changes, and, in severe cases, death (Oliveira et al., 2019; Godde et al., 

2021).  

Dairy farming is a highly intensive industry, producing more than 965 million tonnes of milk 

annually (FAO, 2023) and employing an estimated 240 million people worldwide (Bojovic & McGregor, 

2023). In addition, this industry plays a vital role in the livelihood of communities in developing regions, 

– such as Africa, India, Brazil, and Pakistan – where a wide spectrum of production systems are 

employed, ranging from subsistence and small holder farmers to intensive production systems (Bang et 

al., 2022). In sub-Saharan Africa, indoor housing is limited and 75% of milk is produced using extensive 

production systems (Hernández-Castellano et al., 2019). In South Africa specifically, 70% of dairy 

production systems are pasture-based, with the remaining 30% defined as total mixed ration systems, 

which entail dirt lots with shade and/or open-sided houses (Williams et al., 2016). The effect of heat 

stress is expected to be more severe for extensively managed, pasture-based cows because of the 

higher temperatures and increased exposure to radiation (Veissier et al., 2018). Heat stress will also be 

exacerbated by the long walking distances often required for grazing in extensive systems, which can 

cause an increase in body temperature (Saizi et al., 2019).  

Heat stress poses a threat to the sustainability of dairy production. The global dairy industry is 

already expected to increase milk yield without utilising any additional resources, such as land and water 

(Cartwright et al., 2023). However, sustainability may decrease because of the pressures of heat stress 

on production efficiency, health, and welfare (Polsky & von Keyserlingk, 2017). A major concern is the 

prolonged effects of heat stress on the physiology and overall well-being of dairy cows (Perano et al., 

2015). In this review, abiotic and biotic factors influencing heat stress in dairy cows are reviewed, with 

reference to the available thermal indices that can be applied as monitoring tools. 

 

Abiotic factors and heat stress 
The abiotic environment includes a range of factors, as shown in Figure 1; these factors interact 

and contribute, either directly or indirectly, to the potential heat abatement and overall comfort of dairy 

cows.  

Ambient temperature affects relative humidity, and vice versa, so these two factors should be 

considered together (Herbut et al., 2018; Islam et al., 2021). However, several other abiotic factors that 

are not included in the temperature-humidity index (THI) model also play a key role in the heat load 

carried by the cow (Lees et al., 2019). 

Solar radiation affects the severity of heat stress experienced by cows (Ji et al., 2020), and 

several consequences of dairy cows’ exposure to solar radiation have been reported. These include an 

increase in respiration rate (Becker et al., 2020), increased panting score (Veissier et al., 2018), 

increased occurrence of DNA damage due to chromosome dissociation and fragmentation and altered 

DNA-repair signalling (De Abreu et al., 2020), increased metabolic rate (Broucek et al., 2020), 

decreased feeding behaviour and increased shade-seeking behaviour (Oliveira et al., 2019), increased 

body temperature (Tucker et al., 2008), increased rectal temperature (Shephard & Maloney, 2023), and 

decreased fertility and follicular activity (Sesay, 2023). Research has shown that access to shade and 

shelter can alleviate some heat stress by decreasing the heat load and improving heat dissipation 

capabilities (Zhou et al., 2022). 
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Figure 1 Abiotic factors affecting heat dissipation in dairy cows (adapted from Bonsma, 1983). 

 

Wind speed may have a positive effect by reducing the ambient temperature experienced by 

the animal, and may thus provide some short-term relief. Wind improves heat loss through convection 

by replacing hot air near the surface of the cow’s skin with cooler air, whether the cow is standing or 

lying down (Wang et al., 2018; Becker et al., 2020). Studies have found that moderate wind speeds 

(0.2–0.5 m/s) are preferable (Hill & Wall, 2015), and can play a major role in the thermoregulation of 

dairy cows. Researchers have thus argued for the inclusion of wind into the THI model, and housing 

systems try to imitate wind through the incorporation of airflow and ventilation (Zhou et al., 2022). Wind 

can assist in alleviating the heat load of cows, and thereby decrease rectal temperature, improve feed 

intake, and increase the display of normal behaviour, resulting in improved milk yields and animal 

welfare (Dikmen & Hansen, 2009; Haskell et al., 2023).  

The geographical locations of cows determine several environmental factors that can influence 

heat load (Figure 2), including photoperiod, atmospheric pressure, and rainfall patterns. Photoperiod is 

generally defined as the duration of time that an animal is exposed to light within a 24-hour cycle, and 

this changes seasonally (Hut & Beersma, 2011). A shorter day length is associated with cooler 

temperatures and decreased incidences of heat stress (Velasco et al., 2008). A short-day photoperiod 

also increases the secretion of melatonin, which is known to improve heat dissipation methods and 

lower internal heat production (Collier et al., 2006). Melatonin, in turn, influences the secretion of several 

other hormones, including cortisol, prolactin, and gonadotropin-releasing hormone (Pal et al., 2022). 

Studies have found that cows require exposure to long-day photoperiods to increase their dry matter 

intake and water intake, with this being correlated with weight gain and improved production (Macmillan 

et al., 2018; Tang et al., 2022). Cows therefore require a balance of short and long days for adequate 
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growth and development, and individuals that are underweight or underdeveloped will be at risk of heat 

stress (Suarez-Trujillo et al., 2020). 

 

 

Figure 2 Geographical locations of milk-producing countries worldwide. The cow symbol indicates the 

average milk production, in million tonnes, for 2023, whereas the thermometer symbol indicates the 

highest recorded temperature for 2023. India is the highest milk-producing country worldwide and faces 

extreme temperatures, causing severe heat stress in dairy cows. 

 

Areas with higher altitudes are characterised by lower atmospheric pressures, and therefore 

cooler temperatures and lower incidences of heat stress (Martí-Herrero et al., 2015). The evaporative 

cooling abilities of cows are improved at lower atmospheric pressures, as the moisture-holding capacity 

of the air increases (Schüller et al., 2016; Broucek et al., 2020). Tropical and subtropical areas are 

primarily found at low to moderate altitudes, and are characterised by high temperatures and minimal 

relief from heat (Jeelani et al., 2019).  

Rainfall patterns are dependent primarily on geographical location, including aspects such as 

latitude, altitude, and ocean proximity (Oettli & Camberlin, 2005). Rainfall can decrease the ambient 

temperature and therefore the heat load of the cow, with the added benefit of cloud cover, which 

decreases the amount of solar radiation (Tucker et al., 2008). 

It is well known that South African soils are deficient in phosphorus, but several of the highest 

milk-producing tropical countries, including India and Brazil, also have soils that are deficient in 

phosphorus (Balemi & Negisho, 2012; Magnone et al., 2022). This phosphorus-poor soil can aggravate 

the effects of heat stress in cows by impairing energy metabolism, further increasing their energy 

requirements and making it even harder for them to cope under heat stress conditions (Goselink et al., 

2015). Phosphorus deficiencies can also lead to poor bone growth and development, resulting in weaker 

animals that are unable to survive under heat stress conditions (Hill et al., 2008), and can reduce feed 

intake, impair digestion, and increase fluid loss, further exacerbating the effects of heat stress (Keanthao 

et al., 2021). 

Plants grown in poor-quality soils are of inferior nutritional quality because of the limited 

absorption of nutrients (El-Ramady et al., 2014). The composition of ingested feed plays a vital role as 

it determines the amount of internal heat generated by the animal; providing an appropriate diet will thus 

support improved production during episodes of heat stress (Herbut et al., 2021). Diets containing large 

quantities of concentrates will increase the risk of ruminal acidosis during heat stress (Cartwright et al., 
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2023). Feed and water intake, along with the composition of the feed and expected rumination time, will 

influence the risk of heat stress occurrence in cows (Herbut et al., 2018).  

Considering these abiotic factors – with temperature being a major factor – it can be argued that 

dairy cows in subtropical regions are under constant heat stress, especially with warmer average 

temperatures being recorded over the past decade (Hernández-Castellano et al., 2019).  

 

Biotic factors and heat stress sensitivity 
The thermoneutral zone (TNZ) is the range of ambient environmental temperatures at which the 

cow is not required to expend energy to maintain her normal body temperature (Shephard & Maloney, 

2023). The TNZ of a lactating dairy cow is reported as ranging from −5 to 22 °C, with some researchers 

reporting a discrepancy of ± 5 °C (Müschner-Siemens et al., 2020). Each individual cow has a heat 

stress threshold beyond which a decline in performance will be observed (Saizi et al., 2020; Herbut et 

al., 2021). As a result, upper and lower critical limits are identified, which are temperatures beyond which 

the cow’s ability to thermoregulate will become challenged (Pinto et al., 2020; Ouellet et al., 2021). The 

ideal habitat for cows is defined as one with suitable air flow, temperatures below 25 °C, and relative 

humidity values of 50% to 80% (Herbut et al., 2018). However, this perfect habitat, based on data from 

Dragovich (1979), does not account for the effects of production-focused breeding objectives or intense 

climate change (Kadzere et al., 2002; Sesay, 2023). Decades of intense selection for cows with 

increased milk yield have resulted in an altered TNZ, causing cows to experience heat stress at lower 

ambient temperatures (Cartwright et al., 2023). Several individual and breed-based factors can influence 

the sensitivity of the dairy cow to heat stress, as shown in Figure 3. 

 

Genetic factors 

A cow’s genetic production potential has a direct impact on her ability to tolerate hot climates 

(Becker et al., 2020). The TNZ shifts to lower temperatures for higher-producing cows (Hill & Wall, 2015), 

because of the inverse relationship that exists between the metabolic production of internal heat and 

heat tolerance (Cartwright et al., 2023). Once the upper critical limit has been exceeded, the cow has to 

use more energy to cool down, thereby depleting the energy reserves needed for milk production 

(Williams et al., 2016; Archer et al., 2021). 

Breed plays a significant role in determining the heat dissipation capacity of cows (Hoffmann et 

al., 2020; Ji et al., 2020). Some breeds simply dissipate heat more effectively, allowing them to have a 

higher critical limit (Correa-Calderon et al., 2004; Fabris et al., 2019). Bos taurus breeds are typically 

less tolerant of hot climates than their Bos indicus and Zebu conspecifics (Kadzere et al., 2002; Polsky 

& von Keyserlingk, 2017). Holstein cows are particularly sensitive to heat stress and exhibit a significant 

decrease in production performance under conditions of moderate (THI = 72–75) heat stress (Liang et 

al., 2013; Amamou et al., 2019). In contrast, Jersey cows only experienced a decrease in production 

performance during severe (THI = 75–80) heat stress, and remain unaffected during moderate heat 

stress (Smith et al., 2013). Breed can also affect basal body temperature, as demonstrated by the lower 

reticulorumen temperatures exhibited by Jersey cows under heat stress conditions (Liang et al., 2013). 

Research has found that some milk breeds (Jersey and Brown Swiss) and cross-breeds (Holstein-Gyr 

and Holstein-Boran) have a higher rate of cutaneous evaporation than the Holstein breed, supporting a 

lower internal temperature (da Cruz et al., 2016; Galán et al., 2018).  

Several breed-specific factors affect the rate of energy exchange, including the type of hair coat 

(length and thickness), hair colour, and skin pigmentation (Anzures-Olvera et al., 2019). Cattle breeds 

with short hair have a higher tolerance to heat stress than those with long hair, mainly due to their 

increased evaporative ability (Galán et al., 2018). The thickness of a cow’s hair is positively correlated 

with rectal temperature (Hansen, 2020), with thick hair acting as a layer of insulation that reduces the 

ability of the cow to dissipate heat (Dikmen et al., 2014).  

Cows with dark-coloured coats experience higher rates of solar absorption, which compromise 

their ability to lose heat through convection or evaporation (Tucker et al., 2008). Consequently, these 

dark-coloured breeds often exhibit higher respiratory rates, panting scores, and skin surface 

temperatures (Kadzere et al., 2002; Becker et al., 2020). Holsteins typically have thicker and darker 

coats, and, as a result, they tend to experience a greater degree of thermal discomfort (Anzures-Olvera 

et al., 2019).  



15 Erasmus et al., 2025. S. Afr. J. Anim. Sci. vol. 55 

 

 

Cattle have apocrine sweat glands (one sweat gland per hair fibre), and hair density thus directly 

affects the number of active sweat glands and the cow’s ability to lose heat evaporatively (Collier et al., 

2008). Sweating is the primary mode of heat loss for cattle (Hansen, 2020). The sweating response of 

Bos indicus cattle is triggered at temperatures 8 °C higher than in other breeds, making them less 

efficient at dissipating heat (Islam et al., 2021). Evaporative heat loss is facilitated by sweating until heat 

stress becomes too severe, at which point heat loss through respiratory mechanisms is needed (Dahl 

et al., 2020).  

 

 

Figure 3 Abiotic and biotics factors affecting a dairy cow's heat dissipation capabilities. Red arrows 

indicate factors that increase the heat load of the cow, blue arrows indicate factors that help alleviate 

the heat load of the cow, and black arrows indicate factors that may increase or alleviate the heat load 

of the cow. For example, black hair colour increases the absorption of solar radiation, whereas lighter 

hair colour decreases the amount of solar radiation absorbed by the cow. 

 

A frameshift mutation in the bovine prolactin receptor gene has been associated with a short, 

sleek coat (Hansen, 2020). This mutation, called the SLICK1 mutation, has been mapped to 

chromosome 20 (Scheffler, 2022). SLICK1 is a dominant allele and, therefore, for progeny to exhibit the 

associated phenotype, only a single parent needs to be a homozygous carrier (Dikmen et al., 2014). 

This specific mutation has caught the attention of researchers because of its improvement of the 

thermoregulatory abilities of cows, including enhanced heat dissipation from reduced coat thickness, 

increased sweating rates, and an improved ability to regulate core body temperature (Cheruiyot et al., 

2022). Dairy cows with the SLICK1 allele exhibit lower vaginal temperatures, lower skin temperatures, 

and increased sweating, enabling them to cope with higher thermal temperatures (Carmickle et al., 

2022). Therefore, the introduction of the SLICK1 allele has the potential to improve efficiency by 

minimising the reduction in milk yield in warm climates, as well as enhancing welfare through reduced 

discomfort and suffering (Pozzebon et al., 2024). The SLICK1 allele has already been introduced into 

the Senepol, Red Angus, and United States Holstein cattle breeds (Hansen, 2020). 
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The breed of cow genetically dictates the size of the animal (Godde et al., 2021). Cow frame 

size is positively correlated with intake capacity and, as a result, larger cows have higher feed intakes 

and higher maintenance energy requirements, which impacts their ability to regulate their body 

temperature (Walker et al., 2015). Larger cows also have a higher metabolic rate and produce a larger 

amount of internal heat (Ji et al., 2020). The heat load of large cows is exacerbated further when they 

need to walk long distances while grazing to fulfil their maintenance requirements (Polsky & von 

Keyserlingk, 2017; Pontiggia et al., 2023). Smaller cows also have greater sweating rates and a higher 

surface area-to-volume ratio, making them lose heat more efficiently through evaporation (Saizi et al., 

2019; Zhou et al., 2022). Moreover, smaller cows can increase their respiratory rate more efficiently 

than larger cows can (Scharf et al., 2012). 

 

Physiological factors 

Several factors influence the thermoregulatory abilities of cattle (Herbut et al., 2018). Previous 

exposure to heat stress will affect the cow’s susceptibility to subsequent heat stress exposure, with the 

extent of this effect depending on the intensity and duration of the exposure, as well as the 

acclimatisation ability of the cow (Godde et al., 2021). The ability of a cow to adapt to extreme weather 

conditions depends on her specific endocrine, metabolic, and immune system, all of which are directly 

related to the mechanisms of heat loss in dairy cows (Aggarwal et al., 2013; Tang et al., 2022). Cows 

have an increase in core body temperature mid-oestrus, limiting their ability to thermoregulate efficiently, 

and this is further exacerbated by the increase in physical activity associated with the onset of oestrus 

(Suthar et al., 2011). The circadian and seasonal rhythms of cows become altered during episodes of 

heat stress, causing variation in the production and metabolism of glucose, non-esterified fatty acids, 

urea, and cholesterol, thereby decreasing the energy available to dissipate heat (Shehab-El-Deen et 

al., 2010). Seasonal fluctuations can also disrupt the autonomic nervous systems of cows, resulting in 

altered internal signalling and cardiac fluctuations (Kovács et al., 2016).  

A higher body condition score is indicative of a higher amount of body fat. Cows with high body 

condition scores have an increased rate of metabolic activity, which generates a larger amount of 

internal heat and places them at risk of experiencing heat stress (Shephard & Maloney, 2023). Not only 

do these cows produce more internal heat, but they also have a reduced ability to dissipate heat (Lees 

et al., 2019). Fat is an insulator that traps heat within the cow’s body, making it more difficult for the cow 

to regulate her internal temperature (Kadzere et al., 2002). Furthermore, fat cows become insulin-

resistant, which is correlated with a reduced ability to regulate body temperature, further restricting the 

cow’s ability to dissipate heat through panting and altered blood flow (Dunshea et al., 2013; Zeng et al., 

2023). Heat stress alters the pattern of blood flow in cattle, increasing cutaneous blood flow that carries 

heat from the core to the periphery, and thereby facilitating heat loss (Dahl et al., 2020). In addition, 

under heat stress conditions, blood flow to the epithelium decreases, hindering reticular motility and 

rumination (Sesay, 2023), and blood flow to the skin increases, enhancing the sweating rate (Dunshea 

et al., 2013). 

Cow age plays a significant role in determining susceptibility to heat stress – determining not 

only the upper critical limit, but also the thermoneutral range (Becker et al., 2020). The parity of a cow 

is normally closely linked to her age because of the intensive breeding practices used in dairy production 

systems. In South Africa, for instance, heifers are bred when they reach 60% of their mature body 

weight, and this typically occurs at approximately 14–16 months of age (Muller, 2017). Most studies thus 

prefer to describe cow age in terms of parity number, as it allows for easier classification. Multiparous 

cows (cows that have calved more than once) are significantly more susceptible to heat stress than their 

primiparous counterparts (Ji et al., 2020). This susceptibility is evident through a larger decrease in milk 

production (Adriaens et al., 2021), lower quality colostrum due to decreased concentrations of 

immunoglobulin G, solid non-fat, protein and fat (Avendaño-Reyes et al., 2023), and a higher increase 

in the somatic cell count (Smith et al., 2013). Heat-stressed multiparous cows also tend to have a greater 

decrease in the time spent ruminating (Müschner-Siemens et al., 2020), a lower threshold for respiration 

rate and rectal temperatures (Yan et al., 2021), and a higher proportion of cows that have to be re-bred 

because of failed insemination (Biffani et al., 2016). 

The physiological state of a cow will determine the severity of heat stress that she experiences 

(Pontiggia et al., 2023). Pregnant cows have higher energy demands than dry cows and, as a result, 

they have higher metabolic heat production (Becker et al., 2020). The stage of lactation will also affect 

the cow’s heat dissipation rate, as lactating cows have more heat to dissipate than non-lactating cows 
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do (Ji et al., 2020). A study by Calamari et al. (2007) found that mid-lactation cows experienced heat 

stress more severely than cows in early- or late-lactation stages, which Galán et al. (2018) supported 

with the observation that early-lactation cows produce less metabolic heat per kilogram of milk yield 

because of the mobilisation of stored tissue. Even though dry cows are more tolerant of heat, exposure 

to heat stress will affect their subsequent lactation period, primarily by decreasing milk production 

(Fabris et al., 2019). 

 

Thermal indices  
The temperature-humidity index (THI) was developed to quantify the intensity of heat stress 

experienced by dairy cows (Hoffmann et al., 2020). Initially designed for humans, the THI model was 

adapted by Berry et al. (1964) for cows and is still accepted as the global standard (Ji et al., 2020). The 

most important abiotic factors influencing heat stress are relative humidity and air temperature, or a 

combined effect thereof (Islam et al., 2021). The THI has been utilised to assess the degree of heat 

stress experienced by dairy cows under various conditions, including in indoor and outdoor housing, 

and in different climates and production systems (Hill & Wall, 2015). However, the THI has some 

limitations that must be considered.  

Several studies have reported that THI predictions underestimate the severity of heat stress 

experienced by dairy cows (Pinto et al., 2020). For many years, a THI of 68 was accepted as the point 

of heat stress in both lactating and dry cows, but this has recently been described as outdated (Perano 

et al., 2015; Ouellet et al., 2021). The THI values for different degrees of heat stress reported by different 

researchers (listed chronologically) are summarised in Figure 4. Unfortunately, these values do not 

correspond to the most recent literature, which indicates that cows experience heat stress at lower 

temperatures and thus lower THI values (Pontiggia et al., 2023). Researchers agree that the higher the 

THI value, the larger the extent of stress and discomfort experienced by the cow (Herbut et al., 2018). 

However, there is no consensus on the THI value at which production and behaviour will become 

altered.  

 

 

Figure 4 Spectrum of temperature-humidity index (THI) values assigned to different degrees of heat 

stress by various studies, compiled from Dikmen & Hansen (2009), Pinto et al. (2015), Archer et al. 

(2019), Yan et al. (2021), and Moore et al. (2024). 

 

The THI simplifies complex environmental factors but omits vital abiotic and biotic elements that 

impact the effect of heat stress on dairy cows (Dikmen & Hansen, 2009; Moore et al., 2024). Individual 

cow factors vary significantly and, as a result, biotic factors should be the focal point of heat stress 

measurements in order to obtain accurate and reliable results (Pontiggia et al., 2023). Numerous thermal 

indices have been developed to evaluate the degree of heat stress experienced by cows during hot 

weather, as alternatives to the inadequate THI system, and these are summarised in Table 1 (Wang et 

al., 2018; Cheruiyot et al., 2022). These modern indices are not commonly employed at farm level 
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because of their complexity, the need for specialised equipment to measure the necessary variables, 

and the unwillingness of dairy producers to use alternative measurements (Polsky & von Keyserlingk, 

2017; Dado-Senn et al., 2023). The THI therefore remains the thermal evaluation method of choice for 

dairy farmers, despite its limitations. Archer et al. (2021) thus suggested that the THI be used as a 

management tool to guide mitigation strategies and thereby ensure the optimal production of dairy cows.  

 

Table 1 Different thermal indices designed to measure the degree of heat stress experienced by 
dairy cows, based on abiotic and biotic factors 

Developed by Abiotic factors included Biotic factors included 

 

Black globe-humidity index (BGHI) 

Buffington in 1981 

Dry-bulb temperature  

None Solar radiation 

Air movement 
 

Equivalent temperature index (ETI) 

Baeta in 1987  

Air temperature and relative humidity,  

None Air velocity  

Solar radiation 
 

Respiration rate index (RRI) 

Eigenberg in 2005 

Air temperature Skin temperature 

Relative humidity Respiration rate 

Solar irradiance  
    

Heat load index (HLI) 

Gaughan in 2008 

Black globe temperature 

None Relative humidity 

Wind speed   
    

Comprehensive climate index (CCI) 

Mader in 2010 

Ambient temperature adjusted for relative humidity 

None Wind speed 

Solar radiation 
    

Index of thermal stress for cows (ITSC) 

Da Silva in 2015 

Solar radiation Rectal temperature  

Air temperature Respiratory rate  

Wind speed Convective heat load  

Air partial vapour pressure Skin surface evaporation 
    

Equivalent temperature index for cattle 

Wang in 2018 

Air temperature Respiratory evaporation  

Relative humidity Radiation heat gain 

Air velocity Skin temperature 

Solar radiation Core temperature 

 Respiration rate 
    

 

The health, welfare, and overall productivity of dairy cows is severely affected by heat stress 

and, as a result, short-term amelioration strategies are employed to modify cows’ microclimates through 

mechanical means (Ji et al., 2020). However, dairy farms worldwide employ pasture-based systems, 

and many of the suggested mitigation strategies (both physical and nutritional) are regarded as 
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impractical for these systems. Long-term, holistic strategies should thus be considered (Sesay, 2023). 

Nevertheless, dairy production systems remain focused on increasing production, despite the negative 

association between the level of production and heat tolerance and, as a result, researchers are striving 

to develop breeding values for heat tolerance that can be incorporated into selection indices (Cheruiyot 

et al., 2022). Future research should focus on improving heat tolerance, to provide dairy cows with the 

greatest chance of surviving under increasingly harsh conditions. 

 

Conclusion 

Heat stress has become a focal point of research endeavours, livestock production industries, 

humanitarian organisations, animal welfare and conservation groups, and even broadcasting and media 

agencies. Even though heat stress is not a new challenge, it has become a severe threat to the future 

livelihood of Africa and its residents. Dairy cows are the most susceptible of livestock species to heat 

stress and, as a result, it is essential to consider and address the abiotic and biotic factors influencing 

the susceptibility of dairy cows to heat stress. Because of the large variation that exists within the use 

of thermal indices based on abiotic factors, it is essential to focus on cow-based factors to ensure 

accurate heat stress assessments. 
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