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Abstract 
This study was conducted using the first-lactation records of 1092 Vrindavani crossbred cattle 

to compare the relative efficiency of an artificial neural network (ANN) versus multiple linear regression 

for predicting the first-lactation 305-day milk yield (FL305DMY). The two input sets used for predicting 

FL305DMY in the study were input set-1: first four monthly test-day milk yields, age at first calving, and 

peak milk yield; and input set-2: first four monthly milk yields, age at first calving, and peak milk yield. 

The ANN was trained using a backpropagation algorithm based on Bayesian regularisation, and the 

algorithm was tested using four sets of training and test data at ratios of 66.67:33.33, 75:25, 80:20, and 

90:10. The results revealed that the coefficient of determination showed no regular trend with decreasing 

the test dataset. Nevertheless, the observed values were highest for the 90:10 ratio of training-test data 

for both input sets, with the lowest root mean square error. The ANN model outperformed the multiple 

linear regression model when predicting FL305DMY, with an accuracy of 79.09% for input set-1 and 

83.67% for input set-2, with the lowest root mean square error values for both input sets. Therefore, the 

ANN model can be used as an alternative technique to predict FL305DMY in Vrindavani cows. 
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Introduction 
Early milk yield prediction is crucial for dairy cattle herd strength and breeding policy, as low-

producing cows can be identified early for judicious culling and economic benefits (Kominakis et al., 

2002; Abd El-Hack et al. 2018; Abdelnour et al., 2019; Raza et al., 2020a,b; Youssef et al., 2023). 

Conventional linear models based on single linear regression or multiple linear regression 

(MLR), stepwise multiple regression, projection pursuit regression, logistic regression, or partial least-

squares regression, have been used globally as prediction tools for predicting production parameters, 

but they carry some inherent drawbacks. For example, several variables involved in modelling various 

biological processes are not quantitative. It is therefore difficult to incorporate such models into 

conventional empirical or statistical models, and their practical application and prediction power are thus 

limited.  

Artificial neural networks (ANNs) are mathematical models of computational techniques inspired 

by biological neural networks, and are a component of machine learning (Gabriel, 2016). Artificial neural 

networks are sometimes called the sixth generation of computing, because they simulate neural 

networks, connectionist models, and parallel distributed processing. They are also adaptive and change 

their modelling based on internal or external information that flows through networks. Artificial neural 

networks have been used in fields like bioinformatics, economic prediction, medical diagnosis, and 

engineering, but less work has been done on their potential use in animal sciences. A backpropagation-

based neural network model was reported to be useful for predicting improved dairy yield (Salehi et al., 

1998; Grzesiak et al., 2003), and ANNs were successfully used in a study on dairy milk prediction and 

cow culling decisions (Lacroix et al., 1997). Artificial neural networks can also be used to decrease the 

interval between collecting records and computing animal breeding values (Nosrati et al., 2021). In 

addition, real-world data and ANN-predicted data from the first lactation can be used to compute 

estimated breeding values (Nosrati et al., 2021). 

This study aimed to predict the first-lactation milk yield early in lactation using test-day milk 

yields, monthly milk yields, age at first calving (AFC), and peak milk yield (PY) in crossbred cattle, using 

an ANN. 

 

Materials and methods 
For this study, records on the first-lactation traits of 1092 Vrindavani cows were collected. 

Vrindavani cows are a type of crossbred cattle that were developed by crossing exotic Holstein-Friesian, 

Brown Swiss, and Jersey cattle with indigenous Hariana cattle. 

A total of four test-day milk yields were collected at intervals of 30 days, on the 6th, 36th, 66th, 

and 96th days of lactation (TD6, TD36, TD66, and TD96, respectively). Each individual cow’s first four 

monthly milk yields, for the 1st, 2nd, 3rd, and 4th months of lactation (M1, M2, M3, and M4), were also 

collected. In addition, PY and AFC data were collected as input variables for predicting milk yield during 

the first 305 days of the first lactation (FL305DMY). Thus, in this study, 4368 test-day and 4368 monthly 

milk yields from the first-lactation records of 1092 animals were used for prediction. These datasets 

were partitioned randomly into four training and test sets: subsets A, B, C, and D (Table 1). The training 

sets were used to estimate the regression parameters, and the test sets were used to validate the 

estimated regression parameters in terms of the prediction accuracy of the training sets. 

The values of the input and target patterns were scaled to [-1, 1] prior to training. The input 

variables were divided into two input sets: input set-1 and input set-2. In input set-1, the first four test-

day milk yields (TD6, TD36, TD66, and TD96), along with the AFC and PY, were used, and in input set-

2, the first four monthly milk yields (M1, M2, M3, and M4), along with the AFC and PY, were used. 

The ANN, a multilayer feed-forward neural network with a backpropagation error learning 

mechanism, was developed using the Neural Network Toolbox (NNT) of MATLAB 7.8.0 (Matlab Users’ 

Guide, R2009a) to predict FL305DMY. The network was trained and simulated using a Bayesian 

regularisation (BR) backpropagation algorithm for up to 4000 epochs (where an epoch is a single pass 

through the sequence of all input vectors), or until the algorithm truly converged. The input and target 

data were processed to ensure that their mean was 0 and the standard deviation was 1, using the NNT 

feature as per the algorithm's requirements. Network parameters, such as learning rate (0.01), 

momentum (0.05), and error goal (0), were used as the default settings of the proposed algorithm. All 

parameters were kept at their default values, as enforced by the NNT in MATLAB (Ghedira et al., 2004). 

The artificial neural network plots were developed for both input sets using R-Studio 1.2.1335.0. 
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Table 1 Distribution of training and test data into four main subsets 

Subsets No. of records Division of data (%) 

    

Subset A 
Training 728 66.67 

Test 364 33.33 

Subset B 
Training 819 75.00 

Test 273 25.00 

Subset C 
Training 874 80.00 

Test 218 20.00 

Subset D 
Training 983 90.00 

Test 109 10.00 
    

 

The Levenberg–Marquardt algorithm with BR (Foresee et al., 1997) minimises the linear 

combination of weights and squared errors, resulting in good network generalisation qualities at the end 

of training. The BR algorithm does not require regularisation for the weight-decay method because it 

possesses an inbuilt regularisation feature. Backpropagation was used to estimate the Jacobian 

performance of the bias variables and weight (Foresee & Hagan, 1997). Each variable was adjusted 

using the Levenberg–Marquardt algorithm. Without computing the Hessian matrix, the Levenberg–

Marquardt training algorithm was designed to achieve second-order training speed (Hagan et al., 1994). 

The models’ performance and accuracy were tested based on each training function evaluated 

using the coefficient of determination (R2-value) and root mean square error (RMSE) values for the test 

data. The network was tested with one hidden layer containing 3, 5, 7, and 9 neurons and two hidden 

layers containing 2:5, 2:10, 3:5, 3:6, 3:7, 4:7, 4:10, 5:5, 5:7, and 10:5 neurons. The initial bias matrix 

and weights were randomly initialised between -1 and 1. The tangent sigmoid, which is based on a 

nonlinear transformation function, was used to determine the output from the summation of weighted 

neuron inputs in each hidden layer. The original linear transformation function was used in the output 

layer of the network response. The designed network was trained in supervisory mode using the BR 

variant of the backpropagation of the error learning algorithm. 

 

Results and discussion 
The average test-day milk yields for TD6, TD36, TD66, and TD96 were 7.72 ± 0.10 kg, 10.88 ± 

0.11 kg, 10.64 ± 0.10 kg, and 9.96 ± 0.10 kg, respectively, whereas the average monthly milk yields for 

M1, M2, M3, and M4 were 127.0 ± 3.00 kg, 322.04 ± 3.13 kg, 326.56 ± 3.12 kg, and 308.38 ± 3.94 kg, 

respectively. The PY and first-lactation 305-day milk yield were 14.44 ± 0.10 kg and 2555.40 ± 26.63 kg, 

respectively, while the AFC was 975.44 ± 4.59 days. 

The FL305DMY model was predicted from input set-1 and input set-2 by MLR using different 

training-test sets (Table 2). Input set-1 showed that subset D had the highest R2 (78.69%) and lowest 

RMSE (21.60%), while the lowest R2 (73.74%) was obtained from subset B, with an RMSE of 29.58%, 

and subsets A and C had intermediate values. For input set-2, subset D exhibited the highest R2 

(80.02%) and the lowest RMSE (23.06%). The lowest R2 (72.01%) was obtained from subset C, with an 

RMSE of 29.77%, and subsets A and B had intermediate values. The R2 and RMSE values for the MLR 

did not show a trend for input set-1 (Table 2). 

The FL305DMY prediction was performed by the ANN on different training-test sets. Various 

combinations of hidden layers with several neurons in a particular hidden layer were used to improve 

the R2 and RMSE values for both input sets. For input set-1, the highest R2 achievable for subset A was 

77.56%, and its RMSE was 27.00%, with one hidden layer having five neurons (Table 3). For subset B, 

the highest R2 achievable was 76.18%, and its RMSE was 27.82%, with one hidden layer containing 

three neurons. Subsets C and D showed the highest achievable R2 values (75.67% and 79.09%, 

respectively) and RMSE values (28.72% and 20.39%, respectively), with two hidden layers having 4:7 

neurons and one hidden layer having 9 neurons, respectively. Of the four subsets, subset D showed the 

highest R2 and lowest RMSE, and the best ANN model was thus developed for subset D (Figure 1). 
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Table 2 Optimal equations, along with their R2 and RMSE values, developed using MLR and an ANN 

on test data from input set-1 and input set-2 

Training-

test data 
MLR equations 

R2 (%) RMSE (%) 

MLR ANN MLR ANN 

      

Set-1      

Subset A 

(66.67:33.33) 

Y= −144.02 − 0.22TD1 + 19.03TD2 + 30.99TD3 + 

94.26TD4 + 0.05AFC + 81.66PY 
77.15 77.56 29.44 27.00 

Subset B 

(75:25) 

Y= −351.08 + 1.72TD1 + 24.14TD2 + 20.76TD3 + 

104.24TD4 + 0.24AFC + 78.38PY 
73.74 75.59 29.58 27.13 

Subset C 

(80:20) 

Y= −325.97 − 5.71TD1 + 27.64TD2 + 30.82TD3 + 

97.15TD4 + 0.32AFC + 75.76PY 
73.76 75.67 31.34 28.72 

Subset D 

(90:10) 

Y= −337.22 − 0.80TD1 + 24.47TD2 + 29.43TD3 + 

98.02TD4 + 0.21AFC + 78.64PY 
78.69 79.09 21.60 20.39 

      

Set-2      

Subset A 

(66.67:33.33) 

Y= (−378.32) + 0.16M1 + 0.96M2 + 3.50M3 + 0.47M4 + 

0.32AFC + 68.01PY 
72.50 76.43 30.57 25.79 

Subset B 

(75:25) 

Y= (−355.06) + 0.10M1 + 0.97M2 + 3.61M3 + 0.58M4 + 

0.30AFC + 63.89PY 
76.25 79.95 30.06 22.35 

Subset C 

(80:20) 

Y= (−313.75) + 0.18M1 + 0.59M2 + 4.01M3 + 0.61M4 + 

0.22AFC + 65.05PY 
72.01 77.77 29.77 24.91 

Subset D 

(90:10) 

Y= (−292.85) + 0.19M1 + 0.80M2 + 3.81M3 + 0.72M4 + 

0.22AFC + 60.38PY 
80.02 83.67 23.06 16.45 

      

R2: coefficient of determination, RMSE: root mean square error, MLR: multiple linear regression, ANN: artificial 
neural network 

 

For input set-2, subset A showed the highest achievable R2 of 76.43%, with an RMSE of 

25.79%, with one hidden layer with nine neurons, and subset B showed the highest  achievable R2 of 

79.95%, with an RMSE of 22.35%, with one hidden layer with nine neurons (Table 3). The highest 

achievable R2 (77.77%) and RMSE (24.91%) values were obtained for subset C, with one hidden layer 

having five neurons. For subset D, the highest achievable R2 (83.67%) and RMSE (16.45%) values 

were obtained with a hidden layer with five neurons. Of the four subsets, the highest R2 and lowest 

RMSE values were obtained for subset D, and the best ANN model was thus developed for subset D 

(Figure 2). The R2 and RMSE values showed no regular trend in decreasing the percentage of the test 

datasets for both input sets. 

The ANN model achieved higher R2 values and lower RMSE values than the MLR model for all 

subsets in both input sets for predicting FL305DMY in Vrindavani cows. For input set-1, the best ANN 

algorithm achieved an optimum level of accuracy of 79.09% and an RMSE of 20.39%, whereas the MLR 

model achieved 78.69% accuracy and an RMSE value of 21.60%. For input set-2, the best ANN 

algorithm achieved an optimum model accuracy of 83.67% and RMSE of 16.45%, whereas the MLR 

model achieved an optimum accuracy of 80.02% and RMSE of 23.06%. The R2 and RMSE values and 

the optimum equations for the ANN and MLR on the test dataset for the different subsets are listed in 

Table 2. 

Early prediction of the FL305DMY using the test-day milk yield and the first few monthly milk 

yields would be useful under field conditions in which infrastructure and recording facilities are limited. 

When predicting the FL305DMY using the ANN based on input set-1, the highest R2 and lowest RMSE 

values were observed in subset D. Similar findings were observed by Grzesiak et al. (2006), who used 

test-day milk yield to predict standardised and full-lactation milk yield, and obtained an R2 of 77% and 

an RMSE of 14.74%. 
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Table 3 R2 and RMSE values in different hidden layers and neurons of the Bayesian regularisation 

algorithm 

SUBSET 
Hidden 

layer 

 Input set-1  Input set-2 

 Neurons R2 (%) RMSE (%)  Neurons R2 (%) RMSE (%) 
          

Subset A 

(66.67:33.33) 

1  3 77.14 27.27  3 75.84 24.77 

1  5 77.56 27.00  5 75.68 25.75 

1  7 77.17 27.15  7 76.36 24.85 

1  9 77.50 27.04  9 76.43 25.79 

2  3:5 77.24 27.14  2:5 74.87 24.86 

2  4:7 76.58 26.93  3:5 76.23 24.49 

2  5:10 77.19 26.05  5:5 75.43 26.30 

2  7:9 76.19 27.44  5:7 75.65 25.77 
          

Subset B (75:25) 

1  3 76.18 27.82  3 79.46 22.39 

1  5 75.36 27.61  5 79.38 22.18 

1  7 75.09 27.89  7 79.49 22.74 

1  9 75.59 27.13  9 79.95 22.35 

2  3:5 75.10 27.93  3:5 79.02 22.41 

2  3:7 74.23 28.00  3:7 78.84 22.56 

2  5:5 74.82 27.34  4:5 79.51 21.97 

2  7:9 74.34 29.02  4:10 79.31 21.96 
          

Subset C (80:20) 

1  3 74.47 28.80  3 77.46 24.86 

1  5 74.94 29.66  5 77.77 24.91 

1  7 75.44 29.49  7 76.87 24.17 

1  9 75.50 29.35  9 76.20 25.23 

2  3:5 74.73 29.73  3:5 76.60 25.41 

2  4:7 75.67 28.72  5:5 74.48 26.72 

2  5:5 74.51 29.98  5:7 75.20 26.75 

2  5:7 74.82 29.63  10:5 75.21 26.25 
          

Subset D (90:10) 

1  3 78.27 20.38  3 83.30 15.94 

1  5 78.66 19.53  5 83.67 16.45 

1  7 78.79 18.94  7 83.00 16.38 

1  9 79.09 20.39  9 81.29 18.90 

2  3:5 78.78 21.26  3:5 82.91 16.64 

2  5:5 78.64 21.40  5:5 81.42 18.12 

2  5:7 78.86 19.04  5:7 82.50 20.26 

2  10:5 78.34 19.73  10:5 81.61 21.04 
          

R2: coefficient of determination, RMSE: root mean square error 

 

However, Lacroix et al. (1995) reported better predictive properties for ANNs, mainly because 

they used larger and more comprehensive datasets and more independent variables, including the stage 

of lactation, for ANN design. Dongre et al. (2012) reported an ANN that explained a higher R2 (86.08%) 

for predicting FL305DMY, using fortnightly test-day records of Sahiwal cows. Gorgulu (2012) also 

obtained higher R2 values (90%), using a few test-day records and some environmental factors, such 

as age, number of lactations, and season of calving, for predicting 305-day milk yield in Brown Swiss 

cattle using an ANN. 
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Figure 1 Best artificial neural network model for subset D of input set-1. AFC: age at first calving, PY: 

peak milk yield, TD6–TD96: test-day milk yields on days 6, 36, 66, and 96 of lactation, MY305DMY: 

first-lactation 305-day milk yield. 

 

 
Figure 2 Best artificial neural network model for subset D of input set-2. AFC: age at first calving, PY: 

peak milk yield, M1–M4: milk yields for months 1, 2, 3, and 4 of lactation, MY305DMY: first-lactation 

305-day milk yield. 

 

Bhosale & Singh (2015) used an ANN to predict milk yield in Frieswal cows using the first five 

test-day milk yields at monthly intervals, and obtained an accuracy of 85.07%. For input set-2, the ANN 

value for subset D obtained the highest R2 value (83.67%). However, Mundhe et al. (2014) reported that 

an ANN explained a higher R2 (89.29%) for predicting FL305DMY using monthly part lactation milk yield 

records for Sahiwal cattle. 

The higher accuracy obtained in these previous studies may have been because of their use of 

more input variables. Nonetheless, the results of our study indicate that FL305DMY can be predicted in 

Vrindavani cows early in the first lactation using the first four test-day milk yields and the first four monthly 

milk yields, along with the AFC and PY, using an ANN. The highest R2 and lowest RMSE values were 
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observed in subset D, and the lowest R2 was observed in subset C. The MLR models for both input sets 

showed that subset D explained the highest R2 and lowest RMSE values. Similar findings were reported 

by Saini et al. (2005), who observed that a prediction equation with three variables (1st, 2nd, and 7th 

monthly test-day milk yields) was adequately accurate (78.48%) when estimating the 300-day milk yield 

from test-day yields in Rathi cows. Njubi et al. (2010) similarly reported that a prediction equation using 

four test-day milk yields resulted in adequate accuracy (79.0%) when predicting the FL305DMY from 

test-day milk yields in Kenyan Holstein-Friesian cows. Chandrakar (2018) predicted FL305DMY using 

monthly milk yields in Vrindavani cows and observed that the highest R2 value was obtained for the fifth 

month (79.42%), and suggested that 5th month milk yield could be used as the most effective predictor 

for FL305DMY early in lactation. 

In this study, the R2 value was higher for the ANN than the MLR, and the RMSE values were 

lower for the ANN than the MLR. Sanzogni & Kerr (2001) compared the quantitative properties of MLR 

and an ANN, and reported that MLR was superior to the ANN and that the RMSE values for the ANN 

and MLR were similar. Sharma et al. (2006) predicted FL305DMY in Karan Fries cows comparing the 

RBFNN and MLR models. The RBFNN model had a slightly lower RMSE (9.44%) than MLR (9.46%). 

In another study, Sharma et al. (2007) predicted the first-lactation milk yield in Karan Fries cattle and 

reported that the ANN model had a slightly higher accuracy (92.03%) than the MLR model (91.38%). 

Gandhi et al. (2012) predicted FL305DMY using monthly test-day milk records in Sahiwal cows and 

found no significant differences between the ANN and MLR values, although the ANN achieved a slightly 

lower accuracy (93.18%) than MLR, which achieved an accuracy of 93.77%. Bhosale & Singh (2015) 

reported that an ANN model had a slightly higher accuracy (85.07%) than an MLR model (84.60%) in 

predicting FL305DMY using test-day milk records. Mundhe et al. (2014) reported a higher R2 (89.29%) 

for an ANN when predicting FL305DMY using monthly part lactation milk yield records in Sahiwal cattle. 

Gandhi et al. (2009) developed equations to predict lifetime milk production in Sahiwal cattle 

and found that ANN estimates were higher than MLR estimates. Similarly, the RMSE of the prediction 

was lower for the MLR than for the ANN. The prediction accuracy of lifetime milk production in Sahiwal 

cattle using MLR was lower than the accuracy of the ANN model, and the RMSE values were lower for 

the ANN than the MLR (Gandhi et al., 2010). 

While the results are promising, this study has certain limitations that warrant attention. Firstly, 

the dataset was restricted to Vrindavani crossbred cattle, which may limit the generalisability of the 

models to other breeds or populations. Future studies should incorporate data from diverse breeds and 

environmental conditions to enhance the robustness of the models. Additionally, the study focused 

solely on a few easily measurable traits, excluding other potential predictors such as health status, feed 

intake, and environmental factors. Incorporating these variables into future research could further 

improve prediction accuracy. The ANN model's reliance on extensive computational resources and its 

black-box nature also highlight the need for explainable artificial intelligence techniques to improve 

transparency and trust in its predictions. Finally, external validation using independent datasets is 

essential to confirm the applicability of the models in different contexts. Advanced machine-learning 

techniques, such as ensemble models and recurrent neural networks, can also be explored to further 

enhance predictive performance. 

 

Conclusion 
In the present study, the R2 was slightly higher for the ANN than MLR for the prediction of 

FL305DMY using the first four monthly test-day milk yields, AFC, and PY. The R2 was also higher for 

the ANN than MLR during the prediction of FL305DMY using the first four monthly milk yields, AFC, and 

PY. Hence, the ANN model can be effectively used as an alternative tool for predicting FL305DMY, 

using both test-day and monthly milk yields, along with the AFC and PY, in Vrindavani cattle. This study 

demonstrated the superiority of ANNs over MLR for predicting FL305DMY in crossbred cattle, 

emphasising the potential of machine-learning approaches in dairy science. Although ANN models offer 

significant advantages in capturing complex biological relationships, their adoption in practical settings 

requires addressing the challenges related to computational demand and interpretability. Future 

research should focus on expanding datasets, integrating additional predictors, and validating models 

across diverse populations and environments. 
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