Main Article Content

Driving forces for changes in geographic range of cattle ticks (Acari: Ixodidae) in Africa: A review


N Nyangiwe
M Yawa
V Muchenje

Abstract

Ticks are the most important external parasites of cattle and are known to transmit more pathogens than any other group of arthropods worldwide. About 80% of the world cattle population is at risk of ticks and tick-borne diseases, causing a global annual loss of $US22–30 billion. In Africa, the impact of ticks is ranked high, and they transmit diseases such as cowdriosis, anaplasmosis, bovine babesiosis and theileriosis. A range expansion of ixodid ticks has been observed in Africa, in particular for the genera Amblyomma and Rhipicephalus, which contribute greatly to cattle loss owing to morbidity and mortality. Distributional changes in ticks can lead to the emergence or re-emergence of infectious and parasitic diseases. Climate change is frequently invoked as the primary cause of tick distribution, but it is not the only factor. Human lifestyle changes, including transportation of livestock within countries, have promoted the introduction of new tick species and the diseases they transmit. One such example is the spread of the Asian cattle tick Rhipicephalus (Boophilus) microplus to West Africa. Rhipicephalus (Boophilus) microplus was recorded for the first time in Namibia and was probably introduced into Namibia from South Africa. Likewise, Amblyomma variegatum, the vector of heartwater disease, has the largest distribution in Africa. Its spread is outside its native range and it is considered the second most invasive tick species after R. (B.) microplus on the continent. Rhipicephalus (Boophilus) microplus is a one-host tick that is reported to be resistant to conventional acaricides and this contributes largely to its spread into non-endemic areas.

Keywords: Acaricide resistance, climate change, epidemiology, range expansion, tick ecology


Journal Identifiers


eISSN: 2221-4062
print ISSN: 0375-1589
 
empty cookie