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________________________________________________________________________________ 
Abstract 

The major advancements in molecular technology over the past decades led to the discovery of DNA-
markers, sequencing and genome mapping of farm animal species. New avenues were created for identifying 
major genes, genetic defects, quantitative trait loci (QTL) and ultimately applying genomic selection (GS) in 
livestock. The identification of specific regions of interest that affect quantitative traits aimed to incorporate 
markers linked to QTL into breeding programs by using marker assisted selection (MAS).  Most QTL 
explained only a small proportion of the genetic variation for a trait with limited impact on genetic 
improvement. Single nucleotide polymorphism (SNP) markers created the possibility to genotype cattle in a 
single assay with hundreds of thousands of SNPs, providing sufficient genomic information to incorporate 
into breeding value estimation. Genomic selection is based on the principle of associating many genetic 
markers with phenotypic performance. A large database of genotyped animals with relevant phenotypes 
pertinent to a production system is therefore required. South Africa has a long history of animal recording for 
dairy and beef cattle. The challenge for implementation of GS would be the establishment of breed-specific 
training populations. Training populations should be genotyped using a high density SNP panel, and the most 
appropriate genomic prediction algorithm determined. The suitability of commercially available genotyping 
platforms to South African populations should be established. The aim of this review is to provide an 
overview of the developments that occurred over the past two decades to lay the foundation for genomic 
selection with special reference to application in the South African beef and dairy cattle industry.   
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Introduction 

The past three decades were characterized by a number of major discoveries and technological 
developments in the field of molecular genetics. On a technological level the development of polymerase 
chain reaction (PCR) technology by Mullis (Fore et al., 2006) was a major advancement for molecular 
research, followed by automated sequencing during the late ninety nineties. The discovery of the 
hypervariable region in the human genome (Tautz, 1989) paved the way for the discovery and mapping of 
different DNA markers (Dodgson et al., 1997; Beuzen et al., 2000), and these have been applied widely in 
several livestock species (Dekkers & Hospital, 2002; Dekkers, 2004; Pollak, 2005; Womack, 2005; Jeon  
et al., 2006). The human genome was the first genome to be sequenced and contributed to improving 
sequencing and high throughput technologies (Adams, 2008; Eggen, 2012). Since the completion of the 
Human Genome project most farm animal species have been sequenced and mapped (Fan et al., 2010) 
creating new opportunities for genetic improvement in livestock that was previously beyond researchers’ 
reach.  
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Using DNA technology to perform genome mapping and sequencing, a number of useful single genes 
was mapped in small livestock (Montgomery & Kinghorn, 1997; Davis, 2004; Van der Werf, 2007) and in 
beef and dairy cattle (Anderson, 2001; Dekkers & Hospital, 2002). Diagnostic tests for genetic diseases such 
as bovine leukocyte adhesion deficiency (BLAD), deficiency of uridine monophospate synthase (DUMPS) 
and complex vertebral malformation (CVM) in dairy cattle have been applied to ensure that seed stock bulls 
can be identified as non-carriers or carriers of these autosomal recessive mutations (Robinson et al., 1984; 
Schuster et al., 1992; Thomsen et al., 2006). In sheep, the Prp gene associated with scrapie has also been 
identified for individual testing (Belt et al., 1995). Major genes affecting quantitative traits have been 
commercialized for application in the livestock industry, for example the CAST and CAPN1 genes for meat 
tenderness and the GDF8 gene for double muscling in beef cattle, as well as the RYR and PRKAG3 genes 
affecting pork quality (Jeon et al., 2006). 

The identification of specific genomic regions of interest that affect economically important traits in 
farm animals held great interest for the livestock industry as it aims at incorporating genomic markers linked 
to quantitative trait loci (QTL) into breeding programs, by making use of marker assisted selection (MAS) 
(Anderson, 2001). In the search of QTL and major genes, different approaches have been investigated 
including genome wide scans using relatively high density panels of microsatellites or single nucleotide 
polymorphism (SNP) markers across the genome together with genome wide association studies or candidate 
gene approaches (Ron & Weller, 2007; Hayes & Goddard, 2010). However, it was found that most of the 
identified QTL explained only a small proportion of the genetic variation for a quantitative trait and was not 
expected to result in a significant increase in the rate of genetic improvement (Nicholas, 2006). It was 
postulated that DNA-markers and genomic information held the most potential for increasing genetic 
progress in quantitative traits with low heritability, traits that are difficult and/or costly to measure, and sex-
limited traits (Dodds et al., 2007; Hayes & Goddard, 2010). 

Currently the possibility exists to genotype cattle in a single assay with up to 777 962 SNP markers 
with marker intervals of less than 3 kb, providing sufficient genomic information to be incorporated in 
breeding value estimation procedures as well as providing useful information for performing genome-wide 
association analyses. The aim of this review is to provide an overview of the developments that took place 
over the past two decades to lay the foundation for genomic selection with special reference to application in 
the South African beef and dairy cattle industry.  
    
The bovine genome and the search for quantitative trait loci 

To appreciate the molecular information currently available in cattle, it is first necessary to briefly 
summarise the first efforts to compile DNA marker maps of the bovine genome. The first genetic maps for 
cattle were constructed with 746 and 1250 microsatellite markers by Barendse et al. (1997) and Kappes et al. 
(1997), respectively. The map compiled by Kappes et al. (1997) had a genome coverage of 2990 cM with an 
average marker interval of 3.0 cM. This map was further improved by adding more than a thousand markers 
with improved coverage and decreased intervals between microsatellites (on average 1.4 cM) that resulted in 
a high density map with 3802 microsatellite markers (Ihara et al., 2004). From this effort 880 000 genotypes 
were generated from the USDA MARC cattle reference families. The development of these high density 
linkage maps was essential for studying and fine mapping QTL and regions of interest.    

In combination with molecular technology, software has been developed to incorporate large and 
complex pedigrees in the statistical analyses for identification of QTL (Seaton et al., 2002; 2006). QTL 
identification studies have resulted in the identification of causative mutations such as DGAT for milk fat 
content in dairy cattle (Grisart et al., 2002) and MSTN for double muscling in beef cattle (Charlier et al., 
1995). Genome scans were conducted for QTL associated with milk production, health and conformation 
traits in dairy cattle using granddaughter designs and outbred families (Zhang et al., 1998; Heyen et al., 
1999; Schrooten et al., 2000).  

Potential advantages from incorporating QTL information in dairy breeding programs varied between 
studies. The French dairy industry genotyped more than 70 000 bulls for 14 chromosomal regions over a 
seven year period and the impact was sufficient to reduce the number of bulls for progeny testing by 15% 
(Boichard et al., 2006). The putative QTL could, however, explain only a relatively small proportion of the 
genetic variance (0.1% to 13.5%) for most of the traits in the study.  This limitation was even more obvious 
in a genome-wide association study (GWAS) performed in dairy cattle using approximately 43 000 SNP 
associated with feeding level and response in milk production to heat stress (Hayes & Goddard, 2010) which 
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only explained 1.5% and 2.0% of the genetic variance for the two traits. This phenomenon of unexplained 
genetic variation, termed the “missing heritability” (Maher, 2008), is not only confined to livestock, but is 
also present in human GWAS (Visscher, 2008). 

Despite the efforts of performing GWAS, the effects of the individual putative QTL identified for the 
desired traits were small and MAS in livestock was much less effective than was initially expected (Hayes & 
Goddard, 2010). Furthermore, experiments with sufficient statistical power to detect QTL required several 
hundred or even thousands of individuals with both genotypic and phenotypic data (Van der Werf et al., 
2007). It was thought that the uptake of this technology would increase if the costs could be shared by other 
applications (e.g. parentage testing, traceability). Nevertheless, it became clear that QTL identification would 
not be a feasible option for explaining a sizeable proportion of the genetic variance in complex traits. An 
alternative approach was therefore needed to exploit the information from a large number of genetic markers 
simultaneously.    

The bovine genome sequence, completed in 2004, was the first genome with high SNP coverage of the 
Cetartiodactyla mammals (family Bovidae) to be sequenced. Single nucleotide polymorphisms are abundant, 
bi-allelic, single-locus markers located at approximately 3 kb intervals in the Bos taurus genome with an 
estimated total of nearly 40 million SNP which were identified during sequencing (Seidel, 2010). The 
frequency of more than 37 000 SNP markers were analyzed in 497 cattle by the Bovine HapMap Consortium 
and this set the scene for further expansion of SNP discoveries (Eck et al., 2009; Seidel, 2010). Van Tassel  
et al. (2008) added an additional 23 000 SNPs to the bovine collection, studying 66 cattle that included 
breeds such as the Holstein, Angus, Red Angus, Gelbvieh, Hereford, Limousin and Simmental. This resulted 
in the compilation of a commercial 54 001 SNP array that resulted in an additional tool for animal breeders 
that could be applied in genomic selection (Eck et al., 2009; Matukumali et al., 2009). The newly developed 
BovineHD beadchip from Illumina (http://www.illumina.com) features 777 962 relatively evenly spaced 
SNP over the entire bovine genome including the mitochondrial DNA.  
 
Genomic selection  

The potential use of genome-wide genetic marker information for use in animal breeding was 
originally proposed by Meuwissen et al. (2001). The principles of traditional MAS were to include a 
relatively small number of genetic markers in genetic evaluations (Fernando & Grossman, 1989). These 
markers originated from information generated in research studies, primarily meta-analyses of controlled 
experiments (Georges et al., 1995). Modern-day genomic selection, which is essentially a larger scale 
version of MAS, includes a considerably larger number of genetic markers; the “effects” of each marker are 
simultaneously estimated in the genomic selection process. The number of markers included in the genomic 
evaluations is dependent on the methodology used (discussed later) but the original set of genetic markers 
considered for inclusion is in the order of many thousands. Genomic selection generally assumes that all the 
genetic variation for a trait should be explained by markers. Polygenic effects are, however, sometimes 
included in the model to account for genetic variation that is unexplained by the genetic markers (Hayes  
et al., 2009). Genomic selection should ultimately lead to using genotypes defined by a set of polymorphisms 
to select for preferred phenotypes (Seidel, 2010).   

Implementation of genomic selection in any population requires: 1) genotypes of a large population of 
animals that have, 2) pertinent phenotypes for the system of production where the genetic/genomic 
evaluations will be used, and 3) statistical methodologies for implementing efficient and accurate genomic 
predictions. This is based on the assumption that the breeding program in place is already optimal and 
includes a) an accurate genetic evaluation system based on access to relevant and heritable phenotypes, b) a 
pertinent breeding objective encompassing, as far as possible, all relevant traits optimally weighted within a 
breeding goal, and c) a breeding scheme to ensure long-term sustainable genetic gain.  
 
Genotype information 

Many genotyping platforms (commonly referred to as “SNP chips”) are now commercially available, 
ranging in number of genetic markers from several SNPs to 777 962 SNPs (Illumina Inc., San Diego, CA), 
including copy number variants (CNVs) and indels. The editing of genotypes for inclusion in genomic 
evaluations (or genome-wide association studies) has been described in detail elsewhere (Wiggans et al., 
2009; 2010; Berry & Kearney, 2011). A short summary is provided here: Firstly, samples with low genotype 
call rate (e.g. <90% [Wiggans et al., 2009] to <95% [Berry & Kearney, 2011]) are discarded as are parent-
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offspring pairs with an unacceptable high (e.g. >0.5% [Berry & Kearney, 2011] to >0.7% [Wiggans et al., 
2009]) level of autosomal SNP genotypes that do not adhere to Mendelian inheritance.  

Monomorphic SNPs do not contribute any information to genomic predictions and may therefore be 
discarded to reduce future computational requirements, as can SNPs with low minor allele frequency (i.e. 
<2% [Wiggans et al., 2010; Berry & Kearney, 2011] to <2.5% [Hayes et al., 2009]). Restrictions on the 
extent of deviations of SNP frequency from Hardy-Weinberg equilibrium can also be imposed (Hayes et al., 
2009; Wiggans et al., 2010; Berry & Kearney, 2011); care should, however, be taken if imposing these 
criteria in multi-breed or multi-strain populations. Even within breed, strict restrictions on the Hardy-
Weinberg equilibrium statistic should be undertaken with caution since selection can cause departures from 
Hardy-Weinberg equilibrium, for example, loci harbouring lethal recessive genetic defects (Berry & 
Kearney, 2011).  

The cost of generating the genotype of an animal has reduced considerably in recent years with 
advances in technologies. Improvement in accuracy of genomic predictions can be achieved with increased 
marker density (VanRaden et al., 2009) especially for across-breed evaluations (De Roos et al., 2008). The 
number of SNP necessary to achieve accurate genomic predictions depends on the extent of linkage 
disequilibrium in the species or breed, the length of the genome (L), and the effective population size (Ne) 
(Hayes & Goddard, 2010). It has been shown that approximately 50 000 SNPs are sufficient to obtain 
accurate genomic predictions (assuming a relatively large training population of genotyped and phenotyped 
animals) within the Holstein (Berry et al., 2009; VanRaden et al., 2009), but at least 300 000 SNP are 
required for reliable prediction in Jersey cattle, using a Holstein reference data of genotyped and phenotyped 
animals (De Roos et al., 2008). Improved accuracy of prediction with greater marker density is expected 
since the success of genomic selection is based on exploiting genetic markers in linkage disequilibrium with 
the causative mutations and therefore the greater the marker density the greater the likelihood of tighter 
linkage disequilibrium between the functional mutation and the genotyped markers. Nonetheless, 
improvements in the accuracy of genomic prediction from greater marker density are likely to be dependent 
on the algorithm used in the genomic predictions.  

In addition to the ever-reducing cost of genotyping, the lower the number of genetic markers 
genotyped, the lower the likely cost. Imputation is a method of exploiting linkage analysis and/or linkage 
disequilibrium by deducing a higher density genotype from a lower density (and therefore lower cost) 
genotype. Current algorithms for imputation exploit linkage (findhap; VanRaden et al., 2011), population 
wide linkage disequilibrium (Beagle; Browning & Browning, 2007; 2009) or combined linkage analysis and 
linkage disequilibrium (FImpute; Sargolzaei et al., 2011). Berry & Kearney (2011) reported an average 
accuracy of imputation from 2 909 SNPs to 54 001 SNPs of 98% in Holstein-Friesian dairy cattle; similar 
imputation accuracies were reported elsewhere (Weigel et al., 2010). Therefore lower density genotyping, 
coupled with imputation, can be used to reduce the cost of genomic selection. Imputation approaches may 
also be used to impute the genotype of a un-genotyped ancestor with several genotyped progeny.  

Several international initiatives in dairy cattle are underway to share genotypes thereby reducing the 
cost of genomic selection for each country (Cromie et al., 2010; Jorjani et al., 2011). The success of these 
initiatives in dairy cattle is due to the international nature of semen trade, and aided by international genetic 
evaluations undertaken by INTERBULL. Increased accuracy of prediction is achieved when the genomic 
selection reference population is closely related to the selection candidates (Habier et al., 2007); therefore 
providing genotyped back-pedigree (with phenotypes from INTERBULL) to the importing country can be 
beneficial to the exporting country.  
 
Phenotypic information 

Genomic selection is based on the principle of relating genetic markers to phenotypic performance. A 
large database is therefore required of genotyped animals with all relevant phenotypes pertinent to the system 
of production where the genomic predictions will be applied. This large database of phenotyped and 
genotyped animals is generally referred to as the reference population or training population and is used to 
estimate the genetic marker effects. Within breeds, the improvement in the accuracy of genomic predictions 
with increasing size of the reference population is non-linear and is dependent on how accurately the 
phenotypic measures reflect the true breeding value (i.e. heritability) of the animals (Daetwyler et al., 2008; 
Goddard, 2008) and the relatedness of the reference population of animals to the animals where the genomic 
prediction equations will be applied (Habier et al., 2007). The lower the accuracy of the phenotypes, as is, on 
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average, the case for lower heritable traits such as fertility (Veerkamp & Beerda, 2007) and health (Berry  
et al., 2011), the lower the accuracy of genomic predictions for the same reference population size 
(Daetwyler et al., 2008; Goddard, 2009). For the same reference population size, the greater the relatedness 
of the reference population to the population where the prediction equations will be applied, the greater will 
be the accuracy of the genomic predictions (Habier et al., 2007).  

Artificial insemination (AI) bulls constitute the majority of international dairy cattle training 
populations. This is because they generally have more accurate predictions of genetic merit and therefore 
fewer animals need to be genotyped to achieve the same accuracy of genomic predictions (Daetwyler et al., 
2008; Goddard, 2009). The disadvantage of using only AI sires is that the traits included in the genomic 
predictions are limited to those available nationally and used to estimate the sire breeding values. Facilitated 
by multiple trait-across country genetic evaluations (MACE; Schaeffer, 1994) undertaken by INTERBULL 
for dairy cattle, predictions of genetic merit of all international male AI animals on the scale of each member 
country are obtainable. Therefore, even though a male animal may have no progeny in a given country its 
MACE evaluation may be used as a phenotype for inclusion in genomic predictions (Berry & Kearney, 
2011) weighted by a function of the MACE reliability. Nonetheless, the number of AI sires is limited and 
therefore natural mating bulls or cows must also be considered for inclusion in genomic selection reference 
populations. Cows are currently included in the genomic selection reference population in the United States 
(Wiggans et al., 2011) while natural mating bulls are included in the dairy cattle genomic selection reference 
population in Ireland (Andrew Cromie, personal communication); the latter is particularly relevant for 
populations (e.g. some beef populations) where AI is used less frequently. 

The phenotype included in all genomic evaluations of dairy cattle are either daughter yield deviations 
or deregressed estimated breeding values (Berry & Kearney, 2011) that remove pedigree contributions and 
reverse the effect of shrinkage during the BLUP evaluations. For some populations and traits (e.g. feed 
intake), however, a sufficiently large reference population may not be available for accurate genomic 
prediction. Intergenomics (Jorjani et al., 2011) is an international collaboration to undertake international 
genomic evaluations in Brown Swiss cattle by pooling of international phenotypes (and genotypes). 
Veerkamp et al. (2012) combined data on Holstein-Friesian dairy cows from research herds in four countries 
to generate genomic predictions; a similar initiative was undertaken for genomic predictions for residual feed 
intake in growing dairy heifers in Austral-Asia (Pryce et al., 2012).  
 
Genomic prediction algorithms 

The main challenge in genomic predictions is to estimate genetic marker effects because the number of 
genetic markers available exceeds the number of phenotypes available by several factors, although this 
phenomenon is changing in some countries (Wiggans et al., 2011). Genetic markers may include SNPs, 
CNVs, indels but may also include haplotypes. Using simulations, Calus et al. (2007), however, documented 
that the advantage of using haplotypes over SNPs decreased as the linkage disequilibrium between adjacent 
SNPs increased, with an r2 (i.e. measure of linkage disequilibrium) of 0.215 being where both gave similar 
accuracy. Within Holstein-Friesian cattle the average r2 between adjacent SNPs with approximately 40,000 
SNPs is expected to be >0.19 (Khatkar et al., 2008) thus suggesting that with the Illumina Bovine50 
beadchip, using SNPs rather than haplotypes is most sensible. SNPs are generally the marker of choice in 
national genomic predictions (Berry et al., 2009; Hayes et al., 2009; VanRaden et al., 2009). 
Irrespective of the genomic prediction algorithm, the general model used to estimate SNP effects is: 

∑
=

++=
n

1i
iijji egXμY  

where Yi is the phenotypic value of animal i for the trait under investigation, μ is the mean effect for the trait 
under investigation, Xj is the effect of locus j, gij is the genotype of animal i at locus j, and ei is the residual 
term for animal i; a polygenic effect may also be included in the model (Calus, 2010). 

Different approaches exist to estimate the SNP effects. Due to the number of parameters usually being 
considerably larger than the number of phenotypic records, simple multiple regression methods cannot be 
used, mainly because of a lack of degrees of freedom, but also because of other concerns such as high levels 
of multi-collinearity among SNPs. Several algorithms have been proposed for genomic selection and a 
summary of the assumptions for the different algorithms as described by Hayes & Goddard (2010) is shown 
in Table 1. 
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Table 1 Summary of assumptions for methods based on SNP markers for genomic EBV estimations 
(adapted from Hayes & Goddard, 2010) 
 

Name Assumed distribution of SNP 
effects Implication  

   
BLUP Normal A very large number of QTL of small effect each 

BayesA t distribution A large number of QTL of small effect and a small 
proportion with moderate to large effect 

BayesB Mixture distribution of zero effects 
and t distribution of effects 

A large number of genome regions with zero effect, a 
small proportion of QTL with moderate effects 

Bayesian 
LASSO 

Double exponential distribution of 
effects 

Very large proportion of SNP with effect of close to 
zero, small proportion of moderate to large effect 

BayesSSVS* Mixture distribution of zero effects 
and t distribution of effects 

A large number of genome regions with almost zero 
effect, a small proportion of QTL with moderate effects 

* Stochastic search variable selection. 
 
 
One approach for genomic predictions is to use least squares regression but on a considerably reduced 

number of SNPs that have passed certain criteria such as very strongly associated with the trait under 
investigation from a series of univariate analyses; machine learning techniques as well as many other 
approaches may also be used to select a subset of informative SNPs. The final set of SNPs included in the 
multiple regression model may be obtained using a stepwise algorithm. Dimension reduction techniques 
have also been proposed such as 1) principal component analyses of the SNPs and subsequent inclusion of 
the main principal components in a regression analysis, or 2) partial least squares analysis which is similar to 
principal component analysis but where the latent variables generated take cognizance of their ability to also 
capture variation in the dependent variable. Other dimension reduction techniques also exist.  

Rather than include SNPs individually as fixed effects, SNPs may also be included as random effects. 
This approach was suggested by the original genomic selection paper (Meuwissen et al., 2001) and is now 
commonly referred to as GBLUP. The GBLUP model assumes that each SNP contributes equally to the 
additive genetic variance of the phenotype under investigation and a normal distribution of the SNP effects is 
usually assumed. Treating each SNP simultaneously as a random effect is equivalent to constructing a 
genomic relationship matrix from the genotypes (VanRaden, 2008) and replacing the traditional numerator 
relationship matrix in the mixed model equations for genetic evaluations with the genomic relationship 
matrix. It is the latter description of GBLUP that is the commonly used GBLUP approach in national 
genomic evaluations (Berry & Kearney, 2011). However, the contribution of each SNP to the genomic 
relationship matrix can be weighted differently to account for different variances per SNP and differences in 
surrounding marker density (VanRaden, 2008). 

Two Bayesian approaches were originally proposed by Meuwissen et al. (2001) which they termed 
BayesA and BayesB, although Gianola et al. (2006) questioned whether they were truly Bayesian 
approaches. In the BayesA approach of Meuwissen et al. (2001) the prior distribution of the variance of the 
SNP effects was chosen to represent a few SNPs with large effects and many SNPs with small effects (i.e. an 
inverted chi-square distribution). The SNP effects are sampled from a normal or t-distribution. BayesB, as 
proposed by Meuwissen et al. (2001), was largely similar to BayesA with the exception that, a priori, the 
proportion of SNPs not associated with the phenotype of interest was set and SNPs not entering the model 
within a Gibbs sampling chain were set to zero. Other Bayesian approaches have since been described (for 
example Habier et al., 2011). BayesCπ (Habier et al., 2011) as well as other modifications compared to 
BayesB (e.g. use of a multivariate t-distribution to describe the SNP effects) samples the proportion of SNPs 
that are associated with the phenotype, rather than this statistic having to be decided on prior to the analysis. 
Such mixture models, combining two or more distributions of SNP effects, can accommodate SNPs with a 
distribution of large effects and a distribution of small effects (Calus et al., 2008). This approach is similar to 
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BayesB but avoids the requirement for the Metropolis-Hastings step thereby reducing computational 
requirements, but still facilitates the inclusion of many SNPs each with small effects (unlike BayesB where 
such effects were set to zero) thereby capturing any remaining unexplained genetic variance (Calus, 2010). 
Non-parametric kernel methods have also been proposed for genomic predictions (for review, see Calus, 
2010).  

Several studies have compared the efficiencies and accuracies of the different algorithms using either 
real data (Hayes et al., 2009; VanRaden et al., 2009) or simulated data (Calus et al., 2008; Gredler et al., 
2009; Meuwissen & Goddard, 2010a; b; Meuwissen et al., 2001; Pszczola et al., 2011). Although not always 
consistent across studies, the Bayesian approaches described are generally more accurate for traits where 
large QTL exist (Hayes et al., 2009; VanRaden et al., 2009; Meuwissen & Goddard, 2010a). Genomic 
predictions of milk fat and protein composition generally perform better with a Bayesian approach assuming 
a t-distribution of SNP effects (Gredler et al., 2009; Hayes et al., 2009) and this is likely due to the large 
impact of the DGAT1 gene on milk fat and protein composition (Berry et al., 2010).  
 
Breeding scheme 

The ability to accurately estimate the genetic merit of an individual from its DNA through genomic 
selection is causing a paradigm shift in dairy cattle breeding programs. Genomic selection is now 
implemented in many dairy cattle national genetic evaluations in the United States (VanRaden et al., 2009), 
Europe (Berry et al., 2009) and Australasia (Harris & Johnson, 2010). Devising and implementing breeding 
schemes to maximize the potential of this technology is required. Schaeffer (2006) compared a selection 
strategy using genomic selection to a traditional progeny testing scheme similar to that operated in Canada. 
He reported a two-fold increase in genetic gain using genomic selection with a 92% reduction in the cost of 
proving the bull. Other simulation studies suggest at least a 50% increase in annual genetic gain from 
implementation of genomic selection breeding programs compared to traditional breeding programs (Pryce 
et al., 2010; Lillehammer et al., 2011; McHugh et al., 2011). 

The fundamental change on how genomic selection will influence breeding programs is that genomic 
predictions can be obtained at a very young age, well before sexual maturity, thereby reducing the generation 
interval considerably. Therefore, research into the optimal use of reproductive technologies in breeding 
programs is likely to intensify, in particular the genotyping of embryos (Humblot et al., 2010). Furthermore, 
two of the selection pathways in genetic gain originate with the dam (i.e. dams to produce sires and dams to 
produce dams). For low heritability traits in particular, accurate estimates of the genetic merit of the dams is 
difficult. Genomic selection will improve the accuracy of selection of the dams and increase genetic gain 
further. McHugh et al. (2011) documented a large increase in genetic gain achievable when females were 
also genotyped; not only were the candidate dams more accurately identified, but the contribution of the 
genotyped and phenotyped dams to the genomic selection training population increased the accuracy of 
selection even more.  
 
Concerns 

As with most new technologies, misuse of the technology, intentionally or not, can have unfavourable 
consequences. Genomic selection is no exception. Genetic gain is expected to increase by at least 50% with 
successful implementation of genomic selection (Pryce et al., 2010; Lillehammer et al., 2011; McHugh  
et al., 2011). Rapid increases in genetic gain can reduce the ability to purge out unfavourable consequences 
of selection, including inbreeding depression (McParland et al., 2009). One option to minimize (but not 
eliminate) this concern is to use bulls sparingly in their first year. In this way any congenital defects or 
calving difficulties may be identified earlier and the bull could be culled or used in appropriate matings (i.e. 
avoidance of carrier females if the bull is a carrier of a lethal recessive allele). Of course, if the bull is a 
carrier of a rare lethal recessive allele then this may not be observable in a small number of (unrelated) 
animals. Nonetheless, young bulls cannot produce sufficient semen to generate large progeny group sizes 
and therefore small first-crop progeny groups will be generated. Furthermore, an extensive phenotyping 
strategy must be implemented to rapidly identify any unfavourable consequences of selection. Sentinel herds 
could be used to compare national average genetic merit to elite genetic merit animals under contrasting 
systems of production (Wickham et al., 2012). 

Because the increase in accuracy of genomic predictions, and therefore genetic gain, is a function of 
the number of phenotyped animals and the accuracy of their phenotypes, genetic gain will tend to be greatest 
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in high heritability traits where ample phenotypic data are available (Amer, 2012). This will place greater 
selection pressure on traits such as milk production which are known to be antagonistically correlated with 
fertility (Berry et al., 2012) and health (Berry et al., 2011) thereby possibly leading to a reduction in genetic 
gain for fertility and health traits or even reverting to a deterioration in genetic merit for the latter traits in 
populations where it is currently improving.  

Genomic selection has intensified global competition in the international trade of dairy cattle 
germplasm and this can have serious consequences for inbreeding, and its associated deleterious effects 
(McParland et al., 2007). Several simulations (Daetwyler et al., 2007) have reported a lower accumulation of 
inbreeding per generation with genomic selection compared to breeding programs based on traditional BLUP 
genetic evaluations; however, because the generation interval is shortened in genomic selection breeding 
programs compared to traditional progeny test breeding programs, inbreeding per annum may be greater with 
genomic selection. Knowledge of the DNA of individual animals can, nevertheless, be used to reduce the 
accumulation of inbreeding by identifying least related animals at the genomic level. Stochastic simulations 
also show that the use of sexed semen in a genomic selection breeding program can help manage rates of 
inbreeding (Pedersen et al., 2012). Moreover, genomic selection can be used to screen a much larger 
population of potential candidate animals thereby widening the genetic diversity and, if unrelated / lowly 
related candidates are genetically elite, then help manage the rates of inbreeding (Hayes & Goddard, 2010).  
   
Implications of genomic selection for South African dairy and beef cattle  
Genotypes 

South African dairy and beef cattle breeders are already exploiting DNA technology through DNA-
based parentage verification and diagnostic testing (Van Marle-Köster & Nel, 2003). Dairy bulls are 
routinely screened for known recessive disorders such as BLAD, DUMPS and CVM. Beef cattle can be 
tested for meat tenderness with various diagnostic kits as well as for a few genetic disorders, including 
dwarfism and certain translocations. This is, however, the only (limited) genotypic information available for 
cattle breeds and the quantity of information differs greatly among breeds. No official system for the 
collection and storage of biological samples of cattle currently exists in South Africa. A livestock 
identification system where breeders stored hair samples on a voluntary basis for use in the advent of 
livestock theft is the only collective repository for biological samples (ARC, 2007). Other biological material 
(including semen, blood and hair samples) is dispersed among AI companies, research institutions, 
laboratory facilities, etc. 

The South African dairy industry has an advantage over the beef industry owing to stronger national 
and international genetic linkage with (internationally) superior AI sires. South Africa is a member of 
INTERBULL which is the body responsible for international genetic evaluations of dairy cattle (Mostert, 
2007). In the beef industry there is, however, particular challenges regarding the implementation of genomic 
selection of which the main one is the limited recording of performance traits. Often the specific traits that 
could gain the most from genomic selection such as fertility, longevity and carcass quality have not been 
recorded in South Africa. There is also less genetic linkage between herds due to the limited use of AI by 
beef breeders and also lower availability of animals with accurate EBVs. These limitations are nonetheless 
not unique to South Africa and were also documented by Garrick (2011) for the US cattle industry. The 
structure of the beef industry in South Africa is also more complex with a relatively small seed stock sector 
where genetic selection takes place and which provides the genetic material (bulls) for commercial 
production. Also, there is a large number of beef breeds in South Africa compared to dairy breeds which has 
implications for the identification of suitable reference/training populations needed for the implementation of 
genomic selection in the entire beef sector. 

The challenge for implementation of genomic selection therefore is to firstly collate all available 
biological samples (hair, semen or live animals for blood) and quantify whether they are of sufficient quality 
and quantity for the establishment of a breed-specific training population. DNA of animals that have made a 
large genetic contribution to the modern-day population should also be sourced. All animals should have 
accurate phenotypic information for use in genomic predictions but genotypes on prominent ancestors, even 
without phenotypic information, can also be useful to generate population haplotypes for more accurate 
imputation from lower to higher density genotypes. Once the training population has been established, all 
animals should be genotyped using a SNP panel, and the most appropriate genomic prediction algorithm 
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determined using the appropriate validation procedures. The suitability of commercially available 
genotyping platforms to South African populations should be established. 
 
Phenotypes 

Beef and dairy cattle in South Africa has a relatively long history of performance recording with 
official performance testing for beef cattle taking place since 1959 and milk recording since 1917 (Bergh, 
2010). Participation in national performance recording schemes and private recording schemes differs, 
however, between breeds as performance testing has not been enforced by all breed societies. Participation in 
the recording scheme for beef cattle varies from as low as 32% to 100% (Scholtz, 2010), while participation 
in official milk recording schemes is estimated at only 24% (Scholtz & Grobler, 2009). The available 
recording schemes facilitate breeders to submit data on fitness (reproduction), production and quality traits. 
The average number of cows participating in milk recording in South Africa is summarized in Table 2 for the 
three major dairy breeds in South Africa.  
 
 
Table 2 Number of dairy cows and bulls in animal recording, and traits recorded in South Africa (2012, R.R. 
van der Westhuizen, Pers. Comm., bobbie@studbook.co.za)  
 

Breed No of 
cows 

No of 
bulls 

Milk 
yield Butter fat Protein SCC Linear 

scores 
        
Ayrshire 
S A Jersey 
S A Holstein 

14604 
56864 
71105 

126 
768 

1552 

x 
x 
x 

x 
x 
x 

x 
x 
x 

x 
x 
x 

 
x 
x 

        
x = trait recorded. 
SCC: somatic cell count. 

 
 

South Africa has approximately 30 different beef cattle breeds including British, European, composite 
and indigenous breeds. In Table 3 a summary is provided of the beef cattle breeds that have performance 
information on at least 1000 registered cows and bulls (older than 2 years). 

Many of the South African dairy populations participate in INTERBULL and therefore genetic 
evaluation of all internationally available bulls exists on the South African scale for the majority of traits. 
These estimates of genetic merit (i.e. phenotypes) are freely available for use in national genomic 
evaluations. Much of the germplasm used in South African dairy herds originates from outside South Africa 
(Dürr & Jackobsen, 2009), either directly or indirectly. Therefore, these international estimates of genetic 
merit, which include performance information from South Africa itself, can be extremely beneficial for 
implementing genomic selection in a breed. Genotypes for many international AI bulls are currently 
available through international collaboration (Cromie et al., 2010). Therefore, it is possible to at least 
undertake research on the potential to implement genomic selection in (some of) these populations. 

Beef cattle breeds that may take advantage of genomic selection will need adequate numbers of 
phenotyped animals. Lower heritability traits such as fertility and health (Veerkamp & Beerda, 2007; Berry 
et al., 2011) which are the type of traits that can generally benefit most from exploiting genomic information, 
require even larger populations of animals to achieve noticeable improvements in the accuracy of genomic 
predictions. The description of the Bonsmara (a composite breed developed in South Africa) detailing the 
available number of breeding animals with records for maternal, reproduction and growth efficiency traits is 
summarized in Table 4. The Bonsmara is the largest beef cattle breed in South Africa, with in excess of  
81 000 cows. Participation in the beef cattle improvement scheme is compulsory for all Bonsmara breeders, 
and phenotypic recording is thus enforced. Assuming that sufficient biological material or DNA of 
appropriate quality is available on a large sample of these animals, the Bonsmara should have sufficient 
resources to implement genomic selection for at least a selection of performance traits. Some other beef 
breeds in South Africa (e.g. SA Angus and Beefmaster) should also have sufficiently large databases for the 
possible establishment of sufficiently sized training populations. For these breed, the resources (e.g. 
genotypes and phenotypes) available can also be improved through international collaboration.  
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Table 3 Major beef cattle breeds in South Africa and traits recorded (SA Studbook, May 2012) 
                           

 R
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ales 
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B
irth w

eight dir 
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irth w

eight m
at 

W
eaning w

eight 

M
ilk 

C
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at 

12m
onth w

eight 

18m
onth w

eight 

Post w
ean w

eight 

M
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eight 

A
D
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K
leiber R

atio 
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R

 

Scrotum
 circum

f. 

A
FC

 

IC
P 

H
eight 

L
ength 

D
ressing%

 

M
eat yield 

M
arbling 

G
row

th V
alue 

C
ow

 V
alue 

Production V
alue 

Sanga: 
Nguni 31400 5894 x x x x  x x  x x x             
Drakens-
berger 8167 1637 x x x x    x x x x x x x x x x x x x x x x 

Afrikaner 4539 680 x x x x  x x  x x x x x   x x       
Tuli 3747 824 x x x x  x x  x x x             

British breeds: 

Angus SA. 10553 1723 x  x x x   x x x x x x x x x x x x x x x x 

Hereford 3789 624 x x x x  x x  x x x x x   x x       

Sussex 4260 882 x x x x  x x  x x x x x   x x       

European breeds: 

Charolais 3291 570 x x x x  x x  x x x x x x x x x       

Braunvieh 1345 177 x x x x  x x  x x x     x x       

Pinzgauer 1101 169 x x x x  x x  x x x     x x       

Composite breeds: 
Bonsmara 81881 14729 x x x x    x x x x x x x x x x x x x x x x 

Beefmaster 24134 2992 x x x x  x x  x x x x x   x x       
Santa 
Gertrudis 1825 1826 x x x x  x x  x x x x x   x x       
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W
eaner index 

  

 

Bos indicus: 
                          

Brahman 24542 11371 x x x x x x x    x x x x x x        

European breeds: 
Limousin 3949 1762 x x x x x x x    x x x x x x        
Simmen-
taler 13755 4243 x x x x x x x x x x x x x x x x x x x     

Composite breeds: 

Brangus 4643 1704 x x x x x x x x x  x x x x x x        

Simbra 7388 2893 x x x x x x x x x  x x x x x x x x  x    

Braford 1850 675 x x x x x x x x   x x x x x x        
                          
 
 

The first challenge for genomic selection in South Africa is to evaluate which breeds have sufficient 
biological samples and phenotypic data to be able to establish a sufficiently sized training population to 
generate accurate genomic predictions. The suitability of the commercially available genotyping platforms 
for genomic evaluations needs also to be confirmed in these populations. This breed-specific training 
population can then be used to obtain a prediction equation with an ideally high correlation between the 
genotypic information and the “true” breeding values for the different traits. A number of proven bulls with a 
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large number of recorded progeny (with breeding value predictions with a very high reliability) should be 
genotyped to validate the accuracy of prediction. Once high predictive ability is achieved, information 
obtained from low density genotyping of animals can be imputed to calculate direct genomic values. The 
steps to be taken to achieve this are shown in Figure 1. The use of genomic selection should result in shorter 
generation intervals and an increased rate of genetic improvement for the South African cattle industry. 
Across-breed genomic evaluations may increase the accuracy of genomic predictions further, especially for 
breeds with smaller population sizes, but the potential to achieve high accuracy of genomic predictions using 
a multi-breed cattle population and the current genotyping platforms is currently unknown. 
 
 

Table 4 Traits recorded and number of records per trait for the Bonsmara breed (April 2012)  
 

Trait  Accuracy  
Number in pedigree file Number alive 

(Maximum available) (Minimum available) 

Males Females Males Females 
  Weight traits   
WW >60 540853 577644 28992 82745 
 >80 15585 83394 1485 15190 
Milk >60 441657 481033 22497 71031 
 >80 11021 4800 975 523 
Mature weight >60 7108 45712 211 8475 
 >80 913 20 18 0 
  Fertility traits   
AFC >60 10657 89275 589 17424 
 >80 1686 8 49 0 
ICP >60 883 64 16 4 
 >80 50 0 2 0 
  Post-wean growth tests   
Extensive (ADG) >60 148242 30213 10073 5588 
 >80 3554 26 315 4 
Intensive (FCR) >60 20363 5320 1203 1091 
 >80 806 19 61 4 
  Carcass traits   
EMA >60 2362 17 526 13 
  >80 61 0 24 0 
      
WW: weaning weight; Milk: maternal WW; AFC: age at 1st calving; ICP: inter-calving period;  
ADG: average daily gain; FCR: feed conversion ratio; EMA: eye muscle area. 

 
 
Conclusion  

Application of genomic selection globally in both the dairy and beef industries is underway and 
smaller populations with fewer resources will have to collaborate and carefully plan breeding programs to 
remain internationally competitive. It is also important to note that the same principles of genomic selection 
discussed here for cattle also apply to sheep and goats. South Africa, with a significantly large small stock 
population, should therefore also investigate the potential of this technology for especially sheep where an 
internationally comparable animal recording system exists.  It is envisaged that genomic selection will be 
important for South African dairy and beef cattle breeders and in the long term also for small stock.  
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Figure 1 Steps in the process to implement genomic selection. 
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