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1. INTRODUCTION

1.1	 In Thomson (2005) the method of pricing the liabilities of a financial institution 
by means of dynamic mean–variance hedging is applied to an incomplete market that 
is nevertheless in equilibrium with homogeneous expectations (the TP1 model). In this 
paper, as in that, the ‘price’ of liabilities is defined with reference to a given stochastic 
asset–liability model that is consistent with the market, as the price at which, subject to 
specified provisos, a prospective transferor or transferee who adopts that model would 
be indifferent to the transfer of the liabilities. That paper gave no illustration of the 
application of the model, because the TP1 model requires a long-term equilibrium model 
of the major constituents of the market portfolio and no such model existed that could be 
used for that purpose. In order to operationalise the TP1 model it was therefore necessary 
to develop an equilibrium model.

1.2	 In Thomson & Gott (unpublished) a long-term equilibrium model (the TGESA1 
model) is developed and parameterised for the South African market and in Thomson 
& Gott (2009) a similar model (the TGEUK1 model), with some improvements, is 
developed and parameterised for the United Kingdom market. These models needed to 
incorporate a model of the market portfolio that was consistent with the requirements 
of equilibrium. (In particular, expected returns on the market and the volatility of those 
returns had to be expressed as ex-ante values. For example, expected one-year returns 
on the market conditional on information at the start of a year should not be less than 
the one-year risk-free rate.) Simple models of the market portfolio were considered 
sufficient for the purposes of publication of the TGESA1 and TGEUK1 models and those 
papers therefore incorporated tentative models of the market portfolio (the TGMSA1 
and TGMUK1 models respectively). However, in order to operationalise the TP1 model, 
it was necessary to develop credible models of the market portfolio. A summary of the 
above-mentioned models, as well as the other related models mentioned below, is given 
in the glossary at the end of this paper.

1.3	 In Thomson (2010), after consideration of alternative specifications of the process 
governing the return on the market portfolio, a refined model of the South African 
market portfolio (the TMSA2 model) is developed for predictive purposes. Similarly, 
in Thomson (unpublished) a refined model of the UK market portfolio (the TMUK2 
model) is developed. The aim of this paper is to apply the TP1 model to the TGESA1 and 
TMSA2 models with a view to quantifying the effects of:
–– non-additivity due to incompleteness;
–– guarantees implicit in reasonable expectations of pension increases; and
–– the sensitivity of the price of illustrative liabilities to the parameters of the model.

For that purpose it was necessary to consider some further amendments both to the 
TGESA1 model and to the TMSA2 model; the amended equilibrium model is referred 
to as the TGSA2 model and the amended market-portfolio model as the TMSA3 model. 
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The amendments are explained in section 3. For ease of reference, the models referred to 
above are listed in an appended glossary. The application is to retirement-fund benefits 
in the South African market.

1.4	 The TP1 model assumes that a discrete, stochastic state-space model is available 
of the variables required to determine, by means of an asset–liability model, the liability 
cash flows and the return on all relevant categories of assets during a particular year for 
given values of the variables at the start of that year. While the TGESA1 and TGEUK1 
models include models of the relevant asset categories, they do not include models of the 
liabilities. This paper illustrates the development of such a model. Because the modelling 
of the liabilities of different financial institutions—and even those of different retirement 
funds—may be quite different, the development (or at least the parameterisation) of a 
model of the liabilities may differ from fund to fund.

1.5	 In the development of the equilibrium models (TGESA1, TGESA2 and TGEUK1) 
and the pricing models (TP1 and TP2) it is assumed that at the beginning of each year, 
portfolios are selected by optimisation in mean–variance space so that the market is in 
equilibrium. Whilst (for an arbitrary utility function) this could accommodate elliptically 
symmetric distributions with fat tails (such as the multivariate t distribution), it does 
not accommodate skew distributions. In this paper forces of return, conditional on the 
state-space vector at the start of a year, are assumed to be normally distributed. However, 
the state-space vector itself is not symmetrical, as the return on the market portfolio is 
non-linear. In the long run, therefore, the skewness of the return on the market portfolio 
is reflected in skewness of the unconditional returns on its constituent asset categories. 
The effect of the market price of conditional moments of higher order than the variance 
on the pricing of liabilities is beyond the scope of this paper.

1.6	 In an earlier, unpublished application of the TP1 model1 it was found that, except 
for quite short-term liabilities, the computational demands of the pricing algorithm 
became excessive. The main reason for this was that the algorithm calls for simulations 
within simulations: for each year of the term of liabilities, a large number of simulations 
is required, and for each such simulation another large number of simulations is required. 
In this article consideration is given to the reduction of the computational demands of 
the algorithm. This is achieved partly by amendments to the specification of the model 
and partly by changes in programming methods, software and hardware. The amended 
specification is referred to as the TP2 model. The specification is given in greater detail 
than in Thomson (2005).

1.7	 In the debate between the economic valuation of retirement-fund liabilities using 

1	  �Kransdorff, SH (unpublished). The pricing of liabilities in an incomplete market: a practical 
application. Unpublished honours research paper, School of Statistics and Actuarial Science, 
University of the Witwatersrand, 2005
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bond yields (Head et al., 2000: method 3) and the use of bond yields plus a risk premium 
(ibid.: method 4), it may be argued (e.g. Exley, Mehta & Smith, 1997) that, because 
such liabilities cannot be completely hedged by means of bonds, there is room for the 
inclusion of equities in an optimal portfolio. Because the expected yield on equities is 
greater than that on bonds, this would justify the use of a risk premium in the valuation 
of the liabilities. The size of that risk premium may be subjectively determined or it may 
be determined with reference to the actual proportion of the fund’s investments that is 
in equities so as to achieve stability in funding levels (Head et al, op. cit.: 106–8). On 
the latter basis, the effect of the risk premium may be a fairly substantial reduction in 
the liabilities (ibid.: 89). Under the approach adopted in this paper, it may be expected 
that the effect of allowing for equities (and of departure from a matched position in 
bonds) will be relatively small. This is due to a different criterion for the exposure to 
equity: instead of starting with a subjectively determined exposure, the method in this 
paper seeks to optimise that exposure. In essence the approach here is that, only to the 
extent that the trustees are unable to avoid risk should the valuation of the liabilities 
allow for a risk premium (Thomson, 2002). (In order to recognise the nature of their 
responsibilities, reference is made in this paper to ‘trustees’ rather than to the expression 
‘board’ used in the Pension Funds Act.2) It may therefore be expected that the effect will 
be a considerably smaller departure from the value based on risk-free bond yields than 
that produced by the risk premiums typically used.

1.8	 Other literature on the subject of this paper is reviewed in the above-mentioned 
papers and is not revisited here.

1.9	 In section 2 the liabilities are specified as well as the models of salaries and 
mortality, which are required for the projection of the liabilities. Section 3 discusses 
the modelling of assets and price inflation using the market-portfolio and equilibrium 
models. Section 4 explains the TP2 pricing model. Section 5 presents and discusses 
the results of the pricing, including the sensitivity of the price to the parameters and 
observations regarding the control parameters and the speed of convergence. Section 6 
concludes, with some suggestions for further research.

2.	 LIABILITIES
2.1	 SPECIFICATION

2.1.1	 For a member aged x in service at time 0, we let Pxt denote the pension 
accrued for service to time t, conditional on information at that time. We define:
			   Px0 = pnSx0;	 (1)
where:

p is the rate of pension accrual per year of service;
n is the length of service of that member in years from date of entry to time 0; and
Sxt is the member’s annual salary during year t.

2	 Pension Funds Act 24 of 1956 as amended
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2.1.2	 As time passes, the member receives salary increases, and the accrued 
pension for service to time 0 increases proportionally. It is assumed that salary increases 
are granted annually in arrear. When the member retires the accrued pension
			   Px,R–x–1 = pnSx,R–x–1	 (2)

becomes payable. This is based on the salary during the last year of service preceding her 
(or his) attainment of retirement age R. Thereafter, increases may be granted to pensions. 
For the purposes of this paper it is assumed that:

p = 0,02; and
R = 65.

2.1.3	 Let Pxt denote the pension payable to a member (whether that member is 
an active member at time 0 or a pensioner) at time t ≥ R–x in respect of service to time 
0, and let cxt denote the cash flow in year t in respect of the member for such service, 
conditional on information at that time. We define:
			   ( )1

, 12xt x t xt xtc p p P−= + 	 (3)
where:

pxt is the probability that the pensioner will be alive at time t; and
Pxt is the pension payable during year t.

2.1.4	 To approximate annual payment, we assume that half the pension is 
payable at the start of the year and half at the end, subject at each date to the member’s 
survival. No allowance is made for exit from the fund—either by death or otherwise—
before the attainment of the retirement age; it is assumed that the price of the liabilities 
in respect of the member at the time of occurrence of such a contingency will be paid 
by the fund at that time and any extra benefits will be current-costed. The probabilities 
in equation (3) therefore allow for mortality only after the retirement age. In the pricing 
of the liabilities of the fund, no allowance is made for future service; it is assumed that 
the cost of benefits in respect of future service will be met by future contributions. 
Allowance is, however, made for future salary increases. Both the salary and the pension 
are expressed in real terms—i.e. deflated to time 0 using an index of consumer price 
inflation. Each member’s salary (and therefore her accrued pension for service to time 0) 
is a stochastic process. The rates of pension increase and mortality are also stochastic 
processes. These stochastic processes are discussed below.

2.1.5	 It is assumed that mortality risks can be pooled, either by reassurance or 
otherwise, on the same basis as that used in this paper. In the absence of arbitrage, this 
means that, whether or not the fund actually undertakes such pooling, the price of the 
liabilities is determined as if it did. This means that, conditionally on mortality rates at 
the start of a year, mortality risks are diversifiable during that year.

2.1.6	 While the above specification of benefit accrual contemplates a defined-
benefit retirement fund using the projected unit method of funding, it could equally be 
applied to a defined-contribution retirement fund using such a specification as its basis 
for the accrual of reasonable benefit expectations.
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2.1.7	 Besides pricing the liabilities accrued, we must price the current annual 
rate of benefit accrual. The rate of benefit accrual at time 0 in respect of current service is:
			   0 0x xP Sπ′ = 	 (4)

and the cash flow in year t in respect of a member for service accruing at time 0, 
conditional on information at that time, is:
			   ( )1

, 12xt x t xt xtc p p P−′ ′= + .	 (5)

2.1.8	 The pricing of the liabilities for service to time 0 gives the value of 
the assets required to reflect the price of the accrued liabilities and the pricing of the 
liabilities for service currently accruing gives the amount of contributions required for 
liabilities currently accruing.

2.1.9	 As explained in Thomson (2005), in order to determine an accurate 
price of the liabilities of a financial institution in an incomplete market, the liabilities for 
each member should be modelled stochastically, allowing for its interdependence with 
the other liabilities and with the assets. This would necessitate an additional modelling 
dimension for every member. Even for a small fund, the computational demands would 
become excessive. Some simplification is therefore necessary.

2.1.10	 Also, as explained in that paper, the prices of liabilities in an incomplete 
market are not generally additive. However, if a fund is divided into cohorts of members, 
then, as the number of members in each cohort increases, the error due to non-additivity 
may be expected to tend to a constant proportion of the price of the liability of that 
cohort.

2.1.11	 In this paper an illustrative fund has been reduced to seven model-point 
age cohorts. The fund data are shown in Tables A.1 and A.2 of Appendix A. At time 0, 
at each age, half the members and pensioners at each age are assumed to be female and 
half male; the accrued pensions of females are assumed to be identical to those of males. 
While the data have been derived from an actual fund, they have been stylised to avoid 
identification.

Table 1: Model-point data
Accrued pensions Accruing pensions

age
cohort no. of members

pensions
(R’000)

age
cohort no. of members

pensions
(R’000)

x Nx Px x Nx P΄x

25 360 2 394 25 360 642
35 1680 28 844 35 1680 3 480
45 2040 51 896 45 2040 4 230
55 1804 54 706 55 1804 3 402
65 1442 64 932 62 762 1 288
75 1010 49 442
85 600 20 864
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2.1.12	 We assume that, at time 0, the fund comprises four age cohorts of active 
members and three age cohorts of pensioners. In determining the model-point data, the 
fund data have been grouped into the nearest cohort age so that, in each cohort, the total 
number of members, annual salaries and accrued pensions are equal to those of the fund 
members grouped into that cohort. The model-point data for the cohorts used are shown 
in Table 1.

2.2	 SALARY INCREASES
2.2.1	 We let the real salary during year t of active member m at time 0 be 

denoted by:
			   ( ), 1 expmt m t t mtS S ξ ζ−= + ;	 (6)
where:

ξt is the annualised force of the general increase in year t, such that:
			   1 3 2 7t t t tb bξ ξ ξ ξ ξξ µ η η σ ε= + + + ;	 (7)

			   { }tEξµ ξ= ;	 (8)

η3t is the inflation innovation in the equilibrium model and bξ1 is the associated 
volatility;

η7t is the innovation arising from the notional risky assets comprising the market 
portfolio, such that:
			 

6

7 7
1

t i it
i

aη ε
=

= ∑ ;	 (9)

			 
6

7
1

6i
i

a
=

=∑ ;	 (10)

bξ2 is the associated volatility and εit~N(0,1);

σξ is the residual volatility of ξt;

εξt ~ N(0,1);

( ) ( ) ( )cov , cov , cov , 0t t t it t itξ ξ ξ ξε ε ε ε ε ε′ ′= = =  for t t′ ≠  and 1, ,6i =  ;

mtζ  is the additional force of increase to member m in year t, such that:

			 
m mmt x x mtς ς ςζ µ σ ε= + ;	 (11)

{ }
mx mtEςµ ς= ;

{ }2 var
mx mtςσ ς= ;

~ (0,1)mt Nςε ;

( ) ( ) ( ) ( )cov , cov , cov , cov , 0mt mt mt m t mt it mt itς ς ς ς ς ςε ε ε ε ε ε ε ε′ ′ ′= = = =  for t t′ ≠ , 

m m′ ≠  and 1, ,6i =  ; and

( ) ( ), ,cov cov 0mt t mt tς ξ ς ξε ε ε ε ′= =  for t t′ ≠ .
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2.2.2	 In practice, the values of the constants and parameters in the above 
formulation will vary from fund to fund. For the purposes of this paper, the following 
values were assumed:

0,01ξµ =

1 0,005bξ = − ;

2 0,005bξ = ;

0,03ξσ = ; and

7
1
6ia =

.
2.2.3	 It was also assumed that:

			   ( )expx xς µς µς µςµ α β λ= + − ; and	 (12)

			   ( )expx xς σς σς σςσ α β λ= + − ;	 (13)

where:
0,016µςα = ;

0,5µςβ = ;

0,1µςλ = ;

0,042σςα = ;

Figure 1: Mean and standard deviation of the additional force of increase to a member
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          ; and

0,08σςλ = .

These parameters are based on the experience of the illustrative fund referred to in 
¶2.1.11. The values of xςµ  and xςσ  are shown in Figure 1 as the ‘mean’ and ‘standard 
deviation’ respectively.

2.2.4	 Since we are modelling real salary increases, bξ1 will be negative: the 
greater the rate of inflation, the less likely it will be that salary increases will match it. 
The value is arbitrary; in absolute value it is very small in relation to σM, the volatility of 
the market portfolio (cf. section 3.1 below). More importantly, it is small in relation to 
σξ. The values of ai7 are taken as equal so that the dependence of salaries on the assets is 
expressed through the market portfolio itself; the value chosen gives a standard deviation 
of 1, so that bξ2 represents the assumed volatility. The latter is arbitrary; as for bξ1 it is 
very small in relation to σM, and, again more importantly, it is small in relation to σξ.

2.2.5	 Let Gxt denote the set of members aged x at the start of year t and let  Mxt 
denote the number of members in that set. Then the distribution of:

			 
, 1

1

xt

xt mt
m Gx tM

ζ ζ
∈−

= ∑ 	 (14)

is normal with mean and variance:
			   xx ζζµ µ= ; and	 (15)

			 
2

2

, 1

x
x

x tM
ζ

ζ

σ
σ

−

= .	 (16)

2.2.6	 Conditionally on Sx,t–1 and ξt, we may therefore simulate a value of

			   ( ), 1 expxt x t t xtS S ξ ζ−= + 	 (17)

for the cohort by sampling xtζ  from a normal distribution with the above mean and 
variance. Because Sx,t–1, ξt and xtζ  are independent, equation (17) gives an unbiased 
sample.

2.2.7	 We assume that the data include salary increases just received and that, 
thereafter, salary increases take place annually in arrear, so that, for a retiring member:

			   SR = Sx,R–x–1.	 (18)

This means that there is no further salary increase in the year of age 64.

2.3	 PENSION INCREASES
2.3.1	 We let the real pension during year t be denoted by:

			   ( ){ }1 exp max 0,t t tP P γ−= − ;	 (19)

0,5σςβ =
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where γt is the annualised force of inflation during year t. The requirement that the real 
force of pension increase be at least –γt  avoids negative nominal increases when inflation 
is negative.

2.3.2	 In the author’s experience, when inflation is high and real investment 
returns are low, South African pension funds have tended to limit increases to pensions. 
To the extent that pension increases can be hedged, the reasonable expectations of 
members might justifiably disregard such limits. It is therefore arguably unnecessary to 
apply them. For the purposes of this paper no such limits have been applied.

2.4	 MORTALITY
2.4.1	 There is no published table of pensioner mortality in South Africa. 

Dorrington & Tootla (2007) give South African annuitant mortality rates based on data 
in respect of the period from 1996 to 2000, tabulated as SAIFL98 and SAIML98 for 
females and males respectively.

2.4.2	 The Faculty and Institute of Actuaries (CMI, 2006) have published 
mortality tables based on lives experience during the period 1999–2002 both for immediate 
annuitants (IFL00 and IML00) and for pensioners (those for normal pensioners being 
PNFL00 and PNML00).

2.4.3	 For the purposes of this paper, the commencing force of pensioner 
mortality for the year of age x—i.e. the age interval [x, x + 1)—was taken as:

			 
00

{ }98 98
{ } { }00

{ }

PNL
xSAP SAIL

x xIL
x

ν
ν ν

ν
= ;	 (20)

where:
00

{ }
PNL
xν  is the corresponding value from the PNFL00 or PNML00 table;

00
{ }
IL
xν  is the corresponding value from the IFL00 or IML00 table; and

98
{ }
SAIL
xν  is the corresponding value from the SAIFL98 or SAIML98 table.

In this formulation ν{x} denotes in each case the average (or equivalently the aggregate) 
force of mortality over the year of age x; i.e.:
			   ( ){ } ln 1x xqν = − − .	 (21)

In the actuarial literature this is often (as in Dorrington & Tootla, op. cit.) shown as 1
2xµ + . 

Whereas the latter represents an approximation to a value at exact age 1
2x + , the usage 

in this paper represents an exact value of the aggregate force over the year.
2.4.4	 The results are shown in Table A.3 of Appendix A.
2.4.5	 Allowance was made for stochastic improvement in mortality by means 

of the process:
			   ( ){ } { } 1 expSAP SAP

x t x t tνν ν χ+ + −= ;	 (22)
where:

{ }
SAP
x tν +  represents the force of pensioner mortality during year 2008 + t for a 

pensioner of age x at the start of 2008;
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		                 ;	 	 (23)

	 , 1 7t t t tbν ν ν ν ν νχ χ µ η σ ε−= + + + ;		  (24)

μν is the expected rate of increase in mortality (which will be negative to allow 
for improvement);

εqt~N (0,1); and
( ) ( ) ( ), , ,cov cov cov 0t t t it t itν ν ν νε ε ε ε ε ε′ ′= = =  for t t′ ≠  and 1, ,6i =  .

2.4.6	 The purpose of the definition of { }
SAP
xν  as in equation (23) is to allow for 

improvement in mortality in the 10 years that elapsed from 1998 to 2008. Again, the 
values of the constants and parameters in the above formulation will vary from fund to 
fund. For the purposes of this paper, the following values were assumed:

μν = – 0,004;
bν = – 0,001; and
σν = – 0,005.

2.4.7	 Dorrington & Tootla (2007) suggest an average reduction in mortality 
equivalent to one year of age for every 20 years projected. This is approximately 
equivalent to the above value of μν. The values of bν and σν are arbitrary; the latter, 
representing the independent volatility of the annual improvement is small in relation to 
μν and the former, representing the additional volatility arising from the market portfolio, 
is even smaller.

3.	 ASSETS AND PRICE INFLATION
3.1	 THE MARKET-PORTFOLIO MODEL

3.1.1	 In the TMSA2 model the return on the market portfolio is:
			   ; ;M t I t M tgδ δ σ ε= + ;	 (25)
where:

;I tδ  is the real force of risk-free interest during year t, conditional on information 
at time t–1;

g =1,39;
σM = 0,159; and
εt~N (0,1) is serially independent.

3.1.2	 In the use of the model for predictive purposes, it is inevitable that, in a 
small minority of cases, ( ); 0 0I tδ < . As explained in Thomson & Gott (2009), negative 
market prices of risk may be avoided in such cases by using the TGMUK1 model:
			   ; ;M t M t M tδ µ σ ε= + ; and	 (26)

			   ; ;M t I tgµ δ=  for ; 0I tδ > ;	 (27)

;I tδ=  otherwise.

( )98
{ } { } exp 10SAP SAP

x x νν ν µ=
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3.1.3	 The TMSA3 model used in this paper comprises the TGMUK1 
formulation with the TMSA2 parameterisation.

3.2	 THE EQUILIBRIUM MODEL
3.2.1	 In the TGESA1 model index-linked and conventional zero-coupon 

bonds are modelled by means of variables 0 ( )I tb s  and 0 ( )C tb s  respectively. As explained 
in ¶3.2.3 of Thomson & Gott (unpublished),

0 ( )I tb s
s

 and 0 ( )C tb s
s

represent the expected yield curve at time t, conditional on information at time t–1. It has 
been found simpler to use the variables ( )ItY s  and ( )CtY s , such that

( )ItY s
s

 and ( )CtY s
s

represent the actual yield curve at time t. The parameterisation of the model is not 
affected by this amendment.

3.2.2	 As stated in Thomson & Gott (unpublished), the parameters required for 
the TGESA2 model, incorporating the TMSA2 model, are as follows:
–– for all required values of s:

			   { }0 0( ) ln ( )I IY s P s= −  and { }0 0( ) ln ( )C CY s P s= − ,	 (28)

	�  0 ( )IP s  and 0 ( )CP s  being the prices at time 0 of s-year index-linked and 
conventional bonds respectively; and 

	�  ( )Ijb s  and ( )Cjb s , i.e. the sensitivity of the yield on s-year index-linked and 
conventional bonds respectively to the jth factor for j = 1,2;

–– σM, the volatility of the return on the market portfolio;
–– g, the sensitivity of ex-ante expected returns on the market portfolio to positive risk-

free returns;
–– bγ, the volatility of the force of inflation in excess of conditional ex-ante expected 

inflation;
–– bE;1, the covariance of the return on equities with the return on the market portfolio, 

expressed relative to the latter; and
–– for i=1,…,N  and j=1,…,6: aij, the sensitivity of the jth factor to the ith notional 

risky asset.
3.2.3	 In this paper, as in its precursors, the ‘return’ on an asset during a 

particular year is defined as the average instantaneous real rate (or ‘force’) of return 
during that year. To avoid arbitrage, the TGESA2 model of the return on the market 
portfolio is made up of notional risky assets (six in number), each with equal ex-ante 
volatility and expected return. Realisations of the returns on these assets drive six 
factors, which in turn drive the returns on the assets. Index-linked and conventional term 
structures are each driven by two, and the force of inflation and the return on equities (in 
excess of their conditional ex-ante expected values) each by another.
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3.2.4	 A summary of the amended model (denoted TGESA2) is given in 
Appendix C.

4. 	 PRICING
4.1	 PRICING METHOD

4.1.1	 The pricing method follows the TP1 model. In that model the price of 
the liabilities at time t depends on a state-space vector at that time; in Thomson (2005) 
the choice of a state-space vector is not addressed. The pricing method involves primary 
simulations of that vector to a time horizon at which the liabilities are extinguished, 
followed by secondary one-year simulations from each node of the primary simulations. 
Figure 2 depicts primary simulations from time 0 to time T–1 (where T is the time of 
the last possible payment to a surviving member in terms of the mortality table used) 
and secondary simulations from a primary simulation node at time t–1. No primary 
simulations are necessary for the final year. Secondary simulations are made from each 
primary simulation node.

4.1.2	 First let us consider the primary simulations. As shown in Figure 3, these 
comprise simulations of the state-space vector xti. In principle the state-space vector 
comprises sufficient information to define the state of the world in the ith simulation at 
time t. The definition of the state-space vector is considered further in section 4.2 below.

4.1.3	 Now let us consider the secondary simulations. These proceed backwards 
from the time horizon T, where the last payment is made, so we first consider the 
secondary simulations in year T. In Figure 4a we use an asterisk to distinguish variables 
derived from secondary simulations from those derived from primary simulations. Thus 
the state-space vector xT–1,i arises from the ith simulation at time T–1, whereas x*

Tij  arises 
from the jth subsequent secondary simulation at time T. At the latter simulation, since 
the state of the world is defined, we can determine the fund’s cash flows in respect of 

Figure 2: Primary and secondary simulations
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the final benefits then due, and there is no further liability. Once we have completed all J 
simulations from the primary simulation node, we have a sample multivariate distribution 
of the price of the liabilities at time T and the returns on assets during year T. Using 

Figure 3: Primary simulations of the state-space vector

Figure 4: Secondary simulations:
Figure 4a: Simulation of state space and 

prices at end of final year
Figure 4b: Calculation of price at start of 

final year
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mean–variance hedging and the equilibrium assumptions of the capital-asset pricing 
model (CAPM) as in the TP1 model and as summarised in Appendix D, we may then 
determine the price of the liabilities at the start of year T after all payments then due. This 
is depicted in Figure 4b. To this price we add the payments due at the end of the previous 
year.

4.1.4	 Similarly, for each year from T–1 to 2, we calculate the price of the 
liabilities at each node of the primary simulations. In these years, however, the price of 
the liabilities is known only for primary simulations, not for secondary simulations. As 
shown in Figure 5a, what we have at time t are secondary simulations of the state-space 
vector. As shown in Figure 5b, we also have the price of the liabilities at each node of 
the primary simulations at that time. What we need to do for each secondary simulation 
is to estimate a price corresponding to the state space simulated. Since the price depends 
only on the state-space vector, we may do this by selecting a nearby group of state-
space vectors from the primary simulations and calculate a weighted average price—
weighted, that is, by the relative nearness of each of the selected state-space vectors to 
the secondary state-space vector. The details of this process are described in Appendix B. 
Having estimated the year-end price corresponding to each secondary simulation of the 

Figure 5: Secondary simulations:
Figure 5a: Simulation 

of state space and 
prices at end of year t

Figure 5b:  Weighted 
average price 

corresponding to x*
tij

Figure 5c: Calculation of price 
at start of year t
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state-space vector, we may then calculate the price at the start of the year as shown in 
Figure 5c. The details of the calculations are given in Appendix D.

4.1.5	 For year 1 we follow the same process, except that in this case the state 
space at the start of the year is known, so that, instead of repeating the calculations for 
each of a set of primary simulations, we arrive at a unique price p0 as shown in Figure 6.

4.1.6	 The pricing algorithm is set out in Appendix E.

4.2	 DEFINITION OF THE STATE-SPACE VECTOR
In practice it would assist in the interpolation process if the state-space vector 

were chosen so that the price of the liabilities is approximately linear in each component 
of that vector. For the purposes of this paper, the state-space vector was defined as:
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Figure 6: Secondary simulations:
Figure 6a: Simulation of 
state space and prices at 

end of year t

Figure 6b: Weighted 
average price 

corresponding to x*
tij

Figure 6c: Calculation of 
price at start of year t
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where:

			   ( ) { }exp ( )It ItP s Y s= − ;	 (30)

			   ( ) { }exp ( )Ct CtP s Y s= − ; and	 (31)

			   ( )expt tνθ χ= .	 (32)

Here ( )IP s  and ( )CP s  represent the prices of index-linked and conventional bonds 
respectively and s1,…su represent selected terms to redemption. In order to reduce the 
dimensionality of the state-space vector, and therefore the computational demands of the 
algorithm, a subset of each yield curve is selected. θt represents the cumulative change 
in mortality. 

nx tP  represents the total accrued pensions of members in cohort n at time t, 
being of age xn at that time.

4.3	 ADJUSTING THE MODEL-POINT RESULTS
4.3.1	 The pricing of the liabilities proceeds as follows. Let p denote the 

aggregate price of the liabilities for the model-point cohorts as described above. We find 
the deterministic value of the liabilities based on the fund data and the model-point data, 
which we denote by LFD and LMD respectively. For this purpose the value of the liability 
for member m aged x at time 0 is:
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Then:
			 

1
F
x

FD m
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L l
∈

= ∑ ∑ ; and	 (34)

			 
1

M
x

MD m
x m G

L l
∈

= ∑ ∑ ;	 (35)

where 1
F
xG  and 1

M
xG  are the sets of members aged x at the start of year 1 in the fund and 

in the model-point cohorts respectively.
4.3.2	 The deterministic valuation produces a price that is equal to the stochastic 

valuation with all the random normal distributions set to their expected values. (Because 
of non-linearities, this does not mean that the resulting value is equal to the expected 
value of the stochastic price.)
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4.3.3	 Then the aggregate price of the liabilities is adjusted to allow for bias in 
the use of model points by multiplying the model-point price by the ratio of LFD  to LMD 
to give the adjusted price:
			   FD

MD

Lp p
L

= .

4.4	 ACCRUING COSTS
A similar exercise is undertaken for the liabilities currently accruing in respect of 

active members. The results represent the annual contributions currently required to fund 
the benefits on a basis consistent with the pricing of the accrued liabilities.

4.5	 PROGRAMMING
4.5.1	 The pricing algorithm was coded in R. The packages available in that 

language included a Sobol quasi-random multivariate normal number generator (Sobol, 
1976). In order to expedite convergence, that generator was used instead of pseudo-
random numbers. It was found better to generate a matrix of Sobol numbers for the 
primary simulations and a separate matrix for the secondary simulations, each of the 
dimensions required, and to access those matrices as and when required, than to generate 
the numbers as and when required.

4.5.2	 The code is available from the author free of charge.

5.	 RESULTS
5.1	 DETERMINISTIC VALUATION

5.1.1	 On the basis of equations (34) and (35) it was found that the results of the 
deterministic valuations of accrued liabilities based on the fund data and the model-point 
data were:

LFD = 2 911 803; and LMD = 2 930 084.
(As above, figures are in R’000.)

5.1.2	 The values of the liabilities accruing per annum were:
149 749FDL′ = ; and 150 120MDL′ = .

Based on the fund data, the deterministic cost of accruing liabilities was 22,96% of salaries.

5.2	 STOCHASTIC PRICE
5.2.1	 Using a single cohort (female members aged 55), convergence to three 

significant digits (i.e. about 0,1%) was achieved with the following values of the control 
parameters:
–– the number of primary simulations: I = 2000;
–– the number of secondary simulations: J = 250;
–– the selected terms to redemption (cf. section 4.2): 1, 5, 10, 15 and 20 years for index-

linked bonds and 1, 5, 10 and 20 years for conventional bonds;
–– the number of primary simulations selected for weighted averaging (cf. Appendix B): 

E = 700; and
–– the power of the dispersion measure for averaging (cf. Appendix B): n = 2.
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5.2.2	 The program was run with an Intel C2 Quad CPU at 2,33GHz. Using 
the above control parameters for all cohorts combined, the determination of the accrued 
liabilities took 47 hours. Slightly better convergence was achieved using larger values of 
I and J but the accuracy required for this paper did not justify the extra run time. On the 
basis proposed in this paper, the price of the accrued model-point liabilities is:

p = 3 063 000.
Adjusted to correspond to the fund data, this gives:

 3 044 000p = .
Overall, the stochastic price exceeds the deterministic value by 4,5%. (As above, figures 
are in R’000.)

5.2.3	 The price of the accruing model-point liabilities is:
165 820p′ = .

Adjusted to correspond to the fund data, this gives:
165 410p′ = ;

that is, 25,4% of total salaries. Overall, the stochastic price exceeds the deterministic 
value by 10,5%.

5.2.4	 As explained in Thomson (2005), the price of the liabilities is not 
additive. In the first place, there is intra-cohort non-additivity. This effect may be shown 
by determining the price of the liabilities per unit of accrued pension for each cohort 
separately. This may be done for all members in the cohort and for a single member 
in that cohort (i.e. by setting Mxt =1). Inter-cohort non-additivity may be shown by 
comparing the price of the liabilities for all cohorts combined with the sum of the prices 
of the liabilities for the cohorts. These effects are shown in Table 2, which analyses 
the price of the accrued liabilities in comparison with the deterministic valuation. In 
the row captioned ‘Adjusted’ the values have been adjusted to correspond to the fund 
data. ‘Total’ means an arithmetic total of the relevant values shown. ‘% incr’ shows the 
percentage change between the preceding two columns.

5.2.5	 At active ages the excess of the stochastic price as shown in column (2) 
over the deterministic value of the liabilities as shown in column (1) is essentially due 
to the cost of the guarantee that, when inflation is negative, nominal pensions will not 
be reduced. (The increase is shown in column (3).) The effect of the guarantee decreases 
with attained age: for older members the funnel of doubt about future inflation rates 
does not widen as much as for younger members. For the latter members the reduction 
in price due to the risk premium included in the effective discount rate predominates. As 
anticipated in section 1, this effect is relatively small.

5.2.6	 The effects of intra-cohort non-additivity are relatively small. As shown 
in column (5), they apply only at active ages. This is because, as explained in section 
2.1, individual pensioner mortality risks are diversifiable. Risks relating to improvement 
in mortality and pension increases are proportionate to the liabilities, and liabilities for 
pensioners are therefore additive.

5.2.7	 The total increase in the price of the liabilities (column (7)) over the 
deterministic valuation (column (6)) is shown in column (8). Because of their greater 
longevity, female members show a greater increase. Again, this is essentially due to the 
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cost of the guarantee for longer time horizons. As shown in column (7), the aggregate 
stochastic price of the model-point liabilities is R3 063 million, 0,82% less than the total 
of those liabilities. This reduction is due to inter-cohort non-additivity.

Table 2: Analysis of price of accrued liabilities

Sex Age Value per unit accrued pension Aggregate value
deterministic

valuation
stochastic

price
deterministic 

valuation stochastic price

1 member entire cohort
% incr % incr R’million % incr

(1) (2) (3) (4) (5) (6) (7) (8)
Female

25 14,11 16,40 16,2 16,25 –0,9 17 19 15,2
35 11,94 13,79 15,5 13,70 –0,7 172 198 14,7
45 12,00 13,81 15,1 13,72 –0,6 311 356 14,3
55 12,67 13,96 10,2 13,88 –0,5 347 380 9,6
65 13,36 13,41 0,4 13,41 0,0 434 435 0,4
75 9,53 9,25 –2,9 9,25 0,0 236 229 –2,9
85 5,96 5,53 –7,2 5,53 0,0 62 58 –7,2

total 1 579 1 675 6,1
Male

25 12,27 14,05 14,5 13,92 –0,9 15 17 13,4
35 10,35 11,77 13,8 11,69 –0,7 149 169 13,0
45 10,37 11,75 13,3 11,67 –0,6 269 303 12,6
55 10,89 11,83 8,7 11,77 –0,5 298 322 8,1
65 11,38 11,26 –1,1 11,26 0,0 369 366 –1,1
75 7,95 7,60 –4,3 7,60 0,0 196 188 –4,3
85 5,25 4,80 –8,5 4,80 0,0 55 50 –8,5

total 1 351 1 414 4,6
Total 2 930 3 088 5,4
Aggregate 2 930 3 063 4,5
Adjusted to fund data 2 912 3 044 4,5

5.2.8	 Without the guarantee on the pension increase, the stochastic price of the 
liabilities reduces from R3 063 million to R2 874 million, i.e. by 6,17%. The latter price, 
in turn, is 1,9% less than the deterministic valuation of R2 930 million This represents the 
aggregate reduction in price due to the risk premium included in the effective discount 
rate.

5.3	 SENSITIVITY TESTS
5.3.1	 The results of sensitivity tests of the aggregate stochastic price are 

reported in Table 3. For the purposes of these tests, only those parameters that do not enter 
into the deterministic valuation are considered; in general, the sensitivity to parameters of 
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the deterministic valuation will be similar to the sensitivity of the deterministic valuation 
to those parameters. Because of their complexity, the parameter sets ,1( )Ib s  and ,2 ( )Ib s , 
representing the sensitivity of the return on an s-year index-linked bond to the factor 
driving the return on a 1-year and 20-year bond respectively, and the corresponding sets 

,1( )Cb s  and ,2 ( )Cb s  for conventional bonds, have not been considered. For the same 
reason, the parameter set aij, representing the composition of the ith factor in terms 
of notional risky asset j has not been considered. It is not expected that the effects of 
feasible changes in these parameters would be substantial. In some cases, groups of 
parameters are considered together. The results are reported in terms of the model-point 
data; no adjustment has been made for the fund data.

5.3.2	 While the test values have been subjectively chosen, the intention is to 
reflect the feasible range from a minimum possible absolute value to the value adopted. 
In the cases of certain volatilities zero values were not used as they would have resulted 
in anomalies in the calculations.

5.3.3	 An opposite range in terms of increase in absolute value would be 
equally feasible, and for the purposes of discussion it is assumed that, in absolute value, 
the effect on the price of the liabilities would be similar.

5.3.4	 The most substantial effect is for bγ, the volatility of the force of inflation 
in excess of conditional ex-ante expected inflation (parameter set 8). A reduction in this 
volatility reduces the price of the guarantee that, when inflation is negative, nominal 
pensions will not be reduced. Clearly the volatility will not reduce to zero, so that the 
uncertainty is considerably less than 1%.

5.3.5	 The effects of g and σM (parameter sets 6 and 7) are also substantial. 
The former is the sensitivity of ex-ante expected returns on the market portfolio to 
positive risk-free returns and the latter is the residual volatility of the return on the 
market portfolio. In the estimation of these parameters in Thomson (2010), the minimum 
‘required’ value of g was 1,2. In the calibration of the descriptive model of the market 
portfolio, the confidence limits embraced lower values. However, it is argued in that 
paper that such values would not be consistent with risk-aversion. Nevertheless, as 
discussed in Thomson (ibid.) there is considerable scope for subjectivity in the setting of 
g for the purposes of predictive modelling, so, ex ante, the upside range may be greater 
than the downside range. The confidence limits of σM  were (0,11; 0,20), so that the range 
contemplated is reasonable. The explanation of these effects requires further analysis.

5.3.6	 bξ1, the sensitivity to inflation of the general salary increase, slightly 
affects the price, as it affects the cost of the pension guarantee.

5.3.7	 The effects of the remaining parameters are insubstantial. For the sake 
of simplicity they could be omitted from the formulation. It should be noted, though, 
that this is a large fund. For a smaller fund the relative effects of the additional salary 
increases (parameter set 4) may be more substantial than for this fund.

5.3.8	 Overall it appears from the above analysis that the uncertainty of the 
price is less than 1%.
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Table 3: Sensitivity of the aggregate stochastic price to the parameters

Parameter Test result
(R’million)

set name description standard 
value test value price

(R’million)
change in 

price

0 standard values 3 063 N/A

1 bξ1
general salary increase: sensitivity 
to inflation –0,005 0 3 067 0,14

2 bξ2
general salary increase: sensitivity 
to return on market portfolio 0,005 0 3 063 –0,01

3 σξ
general salary increase: residual 
volatility 0,03 0,01 3 063 0,01

4

ασς
volatility of additional increase: 
level parameter 0,042 0

3 064 0,01βσς
volatility of additional increase: 
slope parameter 0,5 0

λσς
volatility of additional increase: 
age parameter 0,08 0

5
bν

pensioner mortality: sensitivity to 
return on market portfolio –0,001 0

3 063 0,01
σν

pensioner mortality: residual 
volatility 0,005 0,001

6 g return on market portfolio: 
sensitivity to risk-free rate 1,39 1,2 3 052 –0,37

7 σM
return on market portfolio: 
residual volatility 0,159 0,1 3 077 0,45

8 bγ
force of inflation: residual 
volatility –0,01379 0 3 030 –1,07

9  inflation risk premium 0,003 0 3 063 0,00

10 bE1
return on equities: residual 
volatility 0,13923 0,1 3 063 0,00

6.	 CONCLUSION
6.1	 For the purposes of this paper, the TGESA2 equilibrium model was used. That 
model is similar to the TGESA1 model. As shown in Thomson & Gott (unpublished), the 
TGESA1 model tends to include quite substantial negative inflation rates, and negative 
yields on index-linked bonds in the long-term future. While this problem is mitigated 
in the TGEUK1 model, the use of a similar South African model for the purposes of 
this paper gave rise to some anomalies. The further development of a South African 
equilibrium model is a matter for further research.

6.2	 Despite the fact that the deterministic value of the liabilities was determined at 
risk-free index-linked bond yields, the stochastic price of the liabilities was found to be 
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4,5% higher. This was essentially due to the cost of the guarantee that, when inflation is 
negative, nominal pensions will not be reduced. In view of the problems mentioned in 
the preceding paragraph, the cost of this guarantee is arguably overstated in this paper.

6.3	 Without that guarantee, the price of the liabilities is only 1,9% less than the 
deterministic value. As explained in section 1, the risk-premium effect shown here is a 
considerably smaller departure from the value based on risk-free bond yields than that 
produced by the risk premiums typically used in deterministic valuations. If it is accepted 
that the valuation of the liabilities should allow for a risk premium only to the extent that 
the trustees are unable to avoid risk, then it is apparent that the valuation basis must be 
much closer to a risk-free basis than that produced by the risk premiums typically used.

6.4	 On the other hand, if that is not accepted, it must be questioned what the role of 
the trustees is. From the members’ point of view their function would then constitute an 
agency problem in that, with adequate expertise at no extra cost, the members would be 
better advised to make their own arrangements for their retirement benefits in respect of 
future service; the trustees’ function would merely be serving to reduce the security of 
the members.

6.5	 While the effects of non-additivity are noticeable even with only three significant 
digits of accuracy, they are relatively minor. Intra-cohort non-additivity reduces the price 
of the liabilities by 0 to 0,9%, while inter-cohort non-additivity reduces it by a further 
0,82%.

6.6	 As regards sensitivity, the most substantial effect is for bγ, the volatility of the 
force of inflation in excess of conditional ex-ante expected inflation. The effects of g 
and σM are also substantial. The former is the sensitivity of ex-ante expected returns on 
the market portfolio to positive risk-free returns and the latter is the residual volatility of 
the return on the market portfolio. The reasons for these effects require further analysis. 
bξ1, the sensitivity to inflation of the general salary increase, slightly affects the price, 
as it affects the cost of the pension guarantee. The effects of the remaining parameters 
are insubstantial. For the sake of simplicity, but subject to certain caveats, they could be 
omitted from the formulation.

6.7	 Overall, the sensitivity of the price of the liabilities to the parameters of the model 
is considerably less than the error involved in a deterministic valuation. In broad terms, 
an error of the order of 4,5% (for accrued liabilities) to 10,5% (for accruing liabilities) 
is reduced to uncertainty of the order of 1%. As explained in section 5.3, this excludes 
uncertainty common to both approaches. In comparison with the use of bond yields plus 
a risk premium, the error—and hence the improvement—is substantially greater.

6.8	 In this paper, no consideration has been given to constraints on the market 
portfolio or on the fund’s investment portfolio. The latter would constitute an appropriate 
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benchmark for the establishment of investment policy and the measurement of investment 
performance.  In practice, both are subject to a minimum of zero for each asset category 
and, in the case of bonds, for each term to redemption. In addition, the fund’s investment 
portfolio is subject to the requirements of regulation 28 under the Pension Funds Act. 
In terms of that regulation, the maximum that may be invested in equities is 75% of 
the fund’s assets. The application of these constraints requires further work both on the 
equilibrium model and on the pricing algorithm.

6.9	 It would also be of interest to compare the results of this paper with 
corresponding stochastic results based on fair value, i.e. the price of the liabilities 
assuming that a complete market existed. This would entail the pricing of the liabilities 
with no allowance for the risk premium due to the residual risks. These comprise the 
risks that cannot be fully diversified (viz. the risks of salary increases and improvement 
in pensioner mortality) and those that cannot be hedged by means of mean–variance 
hedging. An analysis of these effects awaits further research.

6.10	 The methods of this paper may be applied to the funding of the benefits of 
individual members in a defined-contribution fund, with prospective benefits expressed 
in terms of pensions based on final salary and length of service. Similar methods could 
be used for lump sums if and to the extent that they are considered preferable. For 
these purposes, additional information may be available regarding the prospects of an 
individual member with regard to future salary increases and post-retirement mortality, 
with possible reduction in uncertainty and therefore in risk premium. If necessary, any 
balance of the cost of benefits may be met by additional contributions by employees 
(or, equivalently, by the employer on behalf of individual employees). The trustees may 
arrange for advice to be given to members regarding reasonable benefit expectations, 
additional contribution rates required, investment channel selection and the risks to be 
borne by the member, the fund, the employer and any underwriter. For these purposes it 
would be necessary to fund the full price of the liabilities for each member, without any 
reduction for non-additivity. This would provide a flexible framework for the funding of 
benefits for members that would facilitate a compromise between defined contributions 
and defined benefits so as to retain the advantages of both systems as perceived by 
employees and employers.

6.11	 The effects on the pricing of liabilities of allowance for conditional 
distributions with non-normal moments of higher order than the variance are left for 
further research. Essentially, though, subject to the caveats mentioned above, this paper 
serves to operationalise the pricing of defined-benefit liabilities in an incomplete market. 
The attainment of certainty in the pricing of such liabilities belongs to another world: that 
of the Holy Grail or the rainbow’s end. In a world veiled by uncertainty the best we can 
do is to roll back that veil so far as we are able.
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TP1 Thomson (2005) pricing model for an 
incomplete market using 
the CAPM with mean–
variance hedging

TP2 this paper includes a weighted 
averaging algorithm for 
price estimation and a 
stochastic DB liabilities 
model; illustrative 
application to SA

South African models

TGMSA1
Thomson & Gott 
(unpublished)

tentative model of the 
market portfolio

incorporated in TGESA1

TGESA1 equilibrium model

TMSA2 Thomson (2010) predictive model of the 
market portfolio

TMSA3

this paper

amended model of the 
market portfolio

incorporated in TGESA2

TGESA2 amended version of 
TGESA1

UK models

TGMUK1
Thomson & Gott (2009)

tentative model of the 
market portfolio

incorporated in TGEUK1

TGEUK1 equilibrium model

TMUK2 Thomson (unpublished) predictive model of the 
market portfolio
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APPENDIX A

TABULATION OF DATA AND MORTALITY ASSUMPTIONS

Tables A.1 and A.2 show the fund data for active members and pensioners respectively. 
Table A.3 shows the rate of pensioner mortality 98

{ }
SAP
xµ  for the year of age x in 1998.

Table A.1: Fund data

Age No. of 
members

Pensions 
accruing 

p.a.
(R’000)

Accrued 
pension
(R’000)

Age No. of 
members

Pensions 
accruing 

p.a.
(R’000)

Accrued 
pension
(R’000)

21 2 4 2 43 206 434 5062
22 9 14 12 44 208 434 5234
23 16 24 36 45 210 438 5460
24 23 36 72 46 207 426 5500
25 30 50 124 47 204 416 5534
26 46 80 246 48 201 406 5562
27 62 110 408 49 198 396 5584
28 78 144 618 50 195 386 5598
29 94 180 876 51 192 376 5608
30 110 214 1174 52 189 368 5610
31 126 250 1522 53 186 358 5606
32 142 288 1922 54 183 348 5598
33 158 322 2352 55 180 336 5524
34 174 358 2832 56 176 324 5440
35 190 396 3360 57 172 314 5352
36 192 404 3588 58 168 302 5262
37 194 412 3824 59 164 290 5108
38 196 416 4030 60 160 278 5012
39 198 420 4240 61 156 268 4910
40 200 424 4452 62 152 256 4750
41 202 428 4668 63 148 246 4644
42 204 428 4840 64 146 240 4598
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Table A.2: Fund data: pensioners

Age No. of 
pensioners

Pension 
(R’000) Age No. of 

pensioners
Pension 
(R’000) Age No. of 

pensioners
Pension 
(R’000)

65 143 4490 78 83 1788 91 20 286

66 140 4368 79 77 1619 92 16 231

67 136 4123 80 72 1459 93 13 185

68 132 3882 81 66 1307 94 11 145

69 128 3645 82 61 1165 95 9 112

70 124 3413 83 55 1031 96 7 85

71 119 3186 84 50 907 97 5 63

72 114 2965 85 45 791 98 4 45

73 109 2751 86 40 684 99 3 32

74 104 2543 87 36 587 100 2 22

75 99 2343 88 31 498 101 1 15

76 93 2150 89 27 419 102 1 10

77 88 1965 90 23 348 103 1 6
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Table A.3: Pensioner mortality

Age 98
{ }
SAP
xµ Age 98

{ }
SAP
xµ

x female male x female male

60 0,00917 0,01493 86 0,10538 0,14148

61 0,01070 0,01773 87 0,11545 0,15041

62 0,01239 0,02087 88 0,12655 0,15960

63 0,01422 0,02429 89 0,13884 0,16970

64 0,01614 0,02799 90 0,15240 0,18211

65 0,01822 0,03115 91 0,16713 0,19511

66 0,02052 0,03374 92 0,18344 0,20852

67 0,02292 0,03655 93 0,20159 0,22232

68 0,02541 0,03958 94 0,22184 0,23646

69 0,02786 0,04282 95 0,24447 0,25090

70 0,03027 0,04624 96 0,26980 0,26559

71 0,03276 0,04981 97 0,29847 0,28235

72 0,03533 0,05360 98 0,32920 0,30105

73 0,03802 0,05771 99 0,36123 0,31986

74 0,04085 0,06212 100 0,38826 0,34440

75 0,04384 0,06684 101 0,41120 0,37627

76 0,04705 0,07186 102 0,43665 0,41084

77 0,05052 0,07718 103 0,46258 0,44831

78 0,05432 0,08281 104 0,48965 0,48888

79 0,05849 0,08878 105 0,51902 0,53281

80 0,06312 0,09509 106 0,55063 0,58032

81 0,06828 0,10177 107 0,58445 0,63170

82 0,07407 0,10883 108 0,62046 0,68725

83 0,08057 0,11633 109 0,65866 0,74734

84 0,08793 0,12432 110 0,69910 0,81231

85 0,09625 0,13278 111 ∞ ∞
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APPENDIX B

SECONDARY SIMULATION: 
ESTIMATION OF PRICE AT END OF YEAR

B.1	 In the primary simulations of the state space, we have simulated at time t the 
state-space matrix:
			   ( )* * *

1 I=X x x ;	 (B1)

where:
			 

*
1

*

*

i

i

Di

x

x

 
 

=  
 
 

x ;	 (B2)

and dix


 is the d th component of the ith simulation, for d =1,…,D and i =1,…,I. (For 
simplicity, the subscript t is suppressed.)

B.2	 In the secondary simulations, prices at time t have been determined from the 
primary simulations and from secondary simulations of the state space at later times. (As 
indicated in section 4.1, the secondary simulations proceed in reverse for t =T,T–1,…,1 .) 
We denote these prices:

			 

*
1

*
I

p

p

 
 

=  
 
 



*p ;	 (B3)

where *
ip  is determined from the ith primary simulation.

B.3	 In the secondary simulation we simulate the state space at time t, viz.:

			 
1 j

j

Dj

x

x

 
 

=  
 
 

x ;	 (B4)

where djx  is the dth component of the jth secondary simulation.

B.4	 From this information we need to estimate pj, the price at time t corresponding 
to the jth secondary simulation. First we select a set of columns of X* as follows. We 
determine a weighting vector:

			 

1 j

j

Ij

w

w

 
 

=  
 
 

w ;
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where:
	

*
( )

1

1
ij D nd

dj din
d d

w
r x x

s=

=
−∑

 for 1, ,i I=  ;	 (B5)

	 ( ) * *

1

1
1

I nn
d di d

i
s x x

I =

= −
− ∑ ;	 (B6)

	
1

1

D

r

r

−

 
  = 
 
 

R 1 ;	 (B7)

	

12 1

21 2

1 2

ˆ ˆ1,001
ˆ ˆ1,001

ˆ ˆ 1,001

D

D

D D

ρ ρ
ρ ρ

ρ ρ

 
 
 =
 
 
 

R





   



;	 (B8)

	 1 is the unit vector of length D;

	 1 2

1 2

1 2

(2)

(2) (2)
ˆ d d

d d

d d

s

s s
ρ = 	 (B9)

	 ( )( )1 2 1 1 2 2

(2) * * * *

1

1
1

I

d d d i d d i d
i

s x x x x
I =

= − −
− ∑ ; and	 (B10)

	 * *

1

1 I

d di
i

x x
I =

= ∑ .	 (B11)

B.5	 In (B5) the power n is an integer chosen so as to optimise convergence: too small 
a value will tend to place excessive emphasis on more distant points in the state space 
and result in bias, while too large a value will ignore the available details of the price 
hypersurface. ( )n

ds  is a dispersion factor for the dth dimension with the same power, 
which, in (B5), offsets the scale of { }1,dix i I=  .

B.6	 rd is an adjustment to compensate for correlation between *
dix  and other components 

of *
ix . In R the diagonal of the estimated correlation matrix has been increased by a small 

margin to avoid singular matrices. For example, suppose that, for a particular year of the 
primary simulations:

			 

1,001 1 0
1 1,001 0
0 0 1,001

 
 =  
 
 

R .



SAAJ 11 (2011)

32 | ARBITRAGE-FREE EQUILIBRIUM PRICING OF LIABILITIES IN AN INCOMPLETE MARKET

This might, for example, occur for components 1 and 2 being those of index-linked 
bonds close to maturity and for component 3 being an accrued pension. Then:

			 

1

2

3

500,25 499,75 0 1
499,74 500,25 0 1

0 0 0,999 1

0,500
0,500 .
0,999

r
r
r

−    
    = −    
    
    

 
 =  
 
 

B.7	 But for the increase in the diagonal, the adjustment to components 1 and 2 would 
have been indeterminate. With the increase they are each halved, which, by symmetry, is 
appropriate. The weighting of component 3 remains approximately unadjusted.

B.8	 We then select the E columns of X* corresponding to the E greatest values of 
wi, where E is chosen so as to optimise convergence: too large a value will tend to  
place excessive emphasis on more distant points, which will result in errors due to non-
linearity, while too small a value will ignore the available details. We define the matrix:

			   ( )* *
1j E=X  
x x .	 (B12)

where the set { }* *
1 , , E 
x x  comprises those columns. Let 

			 
1

j

E

p

p

 
 =  
 
 








p 	 (B13)

denote the prices selected from the corresponding components (i.e. the corresponding 
primary simulation nodes) of  p*and let 

			 
1

j

E

w

w

 
 =  
 
 








w 	 (B14)

denote the weightings selected from the corresponding components of wj. Then we 
estimate pj as the weighted mean of the selected components of jp , viz.:

			   j j
j

j

p
′

=
′1

 



w p

w
;	 (B15)

where 1 is the unit vector of length E.
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APPENDIX C

MARKET EQUILIBRIUM MODEL TGESA2

C.1		  As stated above, the parameters required for the equilibrium model are as 
follows:
for all required values of s:

0 ( ) ( )I IY s sy s=  and 0 ( ) ( )C CY s sy s= ;
where ( )Iy s  and ( )Cy s  are the yields to redemption on s-year zero-coupon 

index-linked and conventional bonds respectively, at the valuation date; and
( )Ijb s  and ( )Cjb s  for j = 1, 2;

–– bγ; and
–– bE1;

for i = 1,…, N and j = 1,…, 6:
–– aij; and:
–– .

C.2	 The parameters required for the equilibrium model are as follows:
–– σM; and
–– g.

C.3	 From the above values we have:

	 1 0(0) (1)I IYδ = ;	 (C1)

	 { }1 2( ) ( ) ( )IM M I Is b s b sσ σ= − + ;	 (C2)

	 { }1 2( ) ( ) ( )CM M C Cs b b s b sγσ σ= − + + ; and	 (C3)

	 1EM E Mbσ σ= .	 (C4)

C.4	 For t = 1 we then determine:

	
(0) if (0) 0;

(0) otherwise.
Mt It It

It

gµ δ δ
δ

= >
=

.	 (C5)

C.5	 Using Monte Carlo methods we then select Sobol quasi-random standard normal 
variables:
	 εit for i = 1,…, N.	 (C6)

C.6	 From the above values we calculate:

	 2

(0)Mt It
t

M

k
µ δ

σ
−

= ;	 (C7)
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	             ;	 (C8)

	 , 1 , 1(1) (1)t C t I tY Yγµ φ− −= − − ;	 (C9)

	 3t t tbγ γγ µ η= + ;	 (C10)

	 ( ) (0) ( )It It t IMs k sµ δ σ= + ;	 (C11)

	 ( ) (0) ( )Ct It t CMs k sµ δ σ= + ;	 (C12)

	 (0)Et It t EMkµ δ σ= + ;	 (C13)

	 1 1 2 2( ) ( ) ( ) ( )It It I t I ts s b s b sδ µ η η= − − ;	 (C14)

	 3 1 4 2 5( ) ( ) ( ) ( )Ct Ct t C t C ts s b b s b sγδ µ η η η= − − − ;	 (C15)

	 1 6Et Et E tbδ µ η= + ;	 (C16)

	 ( ) , 1 , 12 ( ) ( 1) ( )It I t I t ItY Y Yτ τ τ δ τ− −= − − − ;	 (C17)

	 , 1( ) ( 1) ( )It I t ItY s Y s sδ−= + − ;	 (C18)

	 ( ) , 1 , 12 ( ) ( 1) ( )Ct C t C t t CtY Y Yτ τ τ γ δ τ− −= − − − − ; and	 (C19)

	 , 1 ,( ) ( 1) ( )Ct C t t C tY s Y s sγ δ−= + − − .	 (C20)

Finally, for t < T, we set:
	 , 1(0) (1)I t ItYδ + = .	 (C21)

C.7	 The calculations in ¶¶C.4–6 are repeated for t =2,…, T.

1

N

jt ij it
i

aη ε
=

= ∑
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APPENDIX D

DETERMINATION OF THE PRICE OF LIABILITIES 
AT THE START OF A YEAR

D.1	 In this appendix, which follows Thomson (2005), the derivation of the price at 
the start of year t is set out. As there explained, this method is based on mean–variance 
hedging and the equilibrium assumptions of the CAPM. It is assumed that the following 
variables have been determined:
–– Ftj, i.e. the price of the liabilities at the end of year t, including cash flows then due, 

for each secondary simulation j = 1,…,J;
–– { }exp (0)t Itf δ= ; and

––           ;

where Vntj is the market value at time t of an investment in asset category n =1,…,N per 
unit investment at time t–1 for each secondary simulation j.

D.2	 Then we calculate PL,t–1, the price of the liabilities at the start of the year, as 
follows:
	

1

1ˆ
J

Ft tj
j

F
J

µ
=

= ∑ ;	 (D1)

	
1

1ˆ
J

Vt tj
jJ =

= ∑Vµ ;	 (D2)

	 ( )22

1

1ˆ ˆ
1

J

Ft tj Ft
j

F
J

σ µ
=

= −
− ∑ ;	 (D3)

	 ( )( )
1

1ˆ ˆ ˆ
1

J

FVt tj Ft tj Lt
j

F
J

µ
=

= − −
− ∑ Vσ µ ;	 (D4)

	 ( ) ( )
1

1ˆ ˆ ˆ
1

J

Vt tj Vt tj Vt
jJ =

′
= − ⊗ −

− ∑ V VΣ µ µ ;	 (D5)

	 where ⊗  denotes the Kronecker product, i.e.: [ ] [ ]i i i ja b a b′  ⊗ =   ;

	 2 2 1ˆˆ ˆ ˆ ˆt Ft FVt Vt FVtεσ σ −′= −σ Σ σ ;	 (D6)

	 ( )ˆ ˆt Vt Vt tf
−1= − 1z Σ µ 	 (D7)

1tj

tj

Ntj

V

V

 
 

=  
 
 

V
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	           ;	 (D8)

	 ˆ ˆMt t Vtµ ′= m µ ;	 (D9)

	 2 ˆˆMt t Vt tσ ′= m mΣ ;	 (D10)

	 ˆ ˆHMt t FVtσ ′= m σ ;	 (D11)

	  *
2

ˆ ˆ ˆˆ
ˆ

HMt t Mt
Ft

Mt

εσ σ σ
β

σ
+

= ; and	 (D12)

	 ( ){ }*
, 1

1 ˆˆ ˆL t Ft Ft Mt t
t

P f
f

µ β µ− = − − .	 (D13)

1
t t

t

=
′1

m z
z
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APPENDIX E

PRICING ALGORITHM

The pricing algorithm is as follows:

1.	 Preliminary specifications
	 1.1	 Programmatic preliminaries
	 1.2	 Specify the control variables (cf. ¶5.2):

–– an indication whether the price to be calculated is that of accrued pensions 
or accruing pensions;

–– a specification of the cohorts to be priced, by age and sex;
–– the yield-curve points to be selected for the state-space vector (cf. ¶4.2);
–– I, the number of primary simulations;
–– J, the number of secondary simulations;
–– n, the power used in the estimation of the year-end price ((B5) and (B6)); 

and
–– E, the number of primary simulations used in the estimation of the year-end 

price (B12).
	 1.3	 Specify the liabilities data:

–– the valuation year;
–– for each model-point cohort:
–– for each sex:

–– the number of members;
–– the accrued annual pension; and
–– �for ages below the retirement age, the annual pension accruing per year.

	 1.4	 Specify the benefits:
		�  For the purposes of this paper the only item requiring specification was the 

retirement age.
	 1.5	 Specify the liabilities valuation assumptions:
		  1.5.1	 Salaries model:
			   parameters per section 2.2
		  1.5.2	 Mortality model:

–– parameters per section 2.4 
–– base year of the mortality table
–– mortality table per Table A.3

	 1.6	 Specify the model of assets & inflation:
		  1.6.1	 Equilibrium model:
			   the parameters required per section C.1 of Appendix C.
		  1.6.2	 Market-portfolio model:
			   the parameters required per section C.2 of Appendix C.
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2.	 Preliminary calculations
	 2.1	 Preliminary calculations: liabilities
		�  This involves the determination of the dimensions of the model-point data, the 

mortality table and hence the time T to the final liability cash-flow, relative to 
the retirement age and the control variables specified in step 1.2, as well as the 
following variables for the ages required:
–– μςx per (12);

–– σςx per (13); and

–– { }
SAP
xν  per (23).

	 2.2	 Preliminary calculations: assets
		�  This involves the determination of the dimensions of the yield curves and the 

selected yield-curve points, as well as the following variables:
–– ( )IM sσ  per (C2);
–– ( )CM sσ  per (C3); and
–– EMσ  per (C4).

	 2.3	� Define dimensions of Sobol numbers and generate those required for the 
primary simulations

		  See section 4.5.

3.	 Primary simulations of state space
	 For i  = 1,…, I:
	 3.1	 Initialise
		  3.1.1	 Initialise: Assets:

–– �The values of the following variables are reset to their values for t = 0:
–– ( )ItY s ;
–– ( )CtY s ; and
–– , 1(0)I tδ + .

		  3.1.2	 Initialise: Liabilities:
	�		�   This involves resetting the age cohorts and the cumulative improvements 

in mortality to their original specifications
	 3.2	 Proceed with simulation as follows:
		  For t = 1,…,T – 1:
		  3.2.1	 Select Sobol numbers.
		  3.2.2	 Assets:
			   Calculate variables required per ¶¶C.4–C.6
			�   Capture the resulting values of the following variables for use in the 

secondary simulations:
–– ( )ItY s ; and
–– ( )CtY s .
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		  3.2.3	 Liabilities:
			   3.2.3.1	 Liabilities: Initialise
					�     This involves redetermining the dimensions of the model-point 

data at the start of year t according to the attained ages of the 
cohorts.

			   3.2.3.2	 Liabilities: Salary increases:
					     Calculate the following variables:

–– ξt per (7); and
–– ζxt (separately for each cohort) per (17);
–– and hence the increased pensions for active members:

		  ( )1, , 1 expx t x t t xtP P ξ ζ+ −= + .

					�     As noted in section 2.2, the salary increase in the year of age 
(R – 1; R] is nil.

			   3.2.3.3	 Liabilities: Mortality:
					     For each sex and pensioner cohort age:

–– Recalculate { }
SAP
x tν +  allowing for the cumulative mortality 

change to the start of the year per (22);
–– Calculate the increased pension as:

		  			   ( )1, , 1 exp SAP
x t x t xtP P ν+ −= − .

			   3.2.3.4	 Liabilities: Pension increases:
					�     Calculate the force of pension increase and hence the increased 

pensions for pensioners per (19) as:

	 				    ( ){ }1, 1, exp max 0,x t x t tP P γ+ +′ = −

			   3.2.3.5	 Liabilities: Determine cumulative mortality change to year-end:

				    	 tνχ  per (24).

			   3.2.3.6	 Liabilities: Record output:
–– 1,x tP +′
–– tνχ .

4.	 Secondary simulations of state space and estimation of prices
	 4.1  Secondary simulations: initialise:
		  4.1.1	 Index general state-space vector
			�   This involves the determination of the fixed components of the state-

space vector. (Variable components are dealt with in 4.2.1.1 below.)
		  4.1.2	 Initialise variables
			�   This involves the determination of the dimensions of the vectors and 

matrices to be used in the secondary simulations.
		  4.1.3	 Generate Sobol numbers for secondary simulations
			   See section 4.5.
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	 4.2	 Secondary simulations
		  For t = T,…, 1:
		  4.2.1	 Initialise year:
			   if t < T:
			   4.2.1.1	 Define variable state-space dimensions at time t – 1
			   4.2.1.2	 Determine state-space matrix at year-end
			   4.2.1.3	 Calculate scaling factors
					     If t > 1, calculate:

–– *
dx  per (B11)

––  ( )n
ds  per (B6); and

–– wij per (B5).
			   4.2.1.4	 Liabilities: Initialise
					�     This involves redetermining the dimensions of the model-point 

data at time t according to the attained ages of the cohorts as in 
3.2.3.1.

					�     Also, the components of the Sobol-number matrix that are 
required for the secondary simulations in year t are defined with 
reference to the redetermined dimensions of the model-point 
data.

		  4.2.2	 Proceed with reference to primary simulations
			   If t = 1 then It = 1; otherwise It = I.
			   For i = 1,…,It:
			   4.2.2.1	 Obtain information from primary simulations
					     If t = 1 then, for s = 1,…, τ and for each sex and each cohort x:

–– , 1 0( ) ( )I t IY s Y s− =  and , 1 0( ) ( )I t IY s Y s− =  per 1.6.2 above;

––          per (24); and

–– , 1 0x t xP P− = .
					�     Otherwise , 1( )I tY s− , , 1( )I tY s− , , 1tνχ −  and , 1x tP −  are obtained 

from 3.2.2 and 3.2.3.4.
			   4.2.2.2	 Liabilities: Cash flow at start of year
					     cf. Section 2.1
			   4.2.2.3	 Reinitialise price vectors and Sobol argument
					     The values of pj (B15) are set to null.
					�     The commencing argument for reading Sobol numbers is reset 

to 0, so that, during each set of secondary simulations, the same 
set of Sobol numbers is read for each primary simulation i.

			   4.2.2.4	 Proceed with secondary simulations
					     If t < T :
					     For j = 1,…, J:
					     4.2.2.4.1	 Select Sobol numbers.
	

, 1 0tνχ − =
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					     4.2.2.4.2	 Assets
						      Calculate variables required per ¶¶C.4–C.6.
						      Hence define the matrix Vtj (cf. Appendix D).
					     4.2.2.4.3	 Liabilities
						      4.2.2.4.3.1	Liabilities: initialise pensions
							�       Set pensions equal to those obtained in 

4.2.2.1 above.
						      4.2.2.4.3.2	Liabilities: salary increases
							�       Follow the same procedure as in 3.2.3.2 

above.
						      4.2.2.4.3.3	Liabilities: mortality
							�       Follow the same procedure as in 3.2.3.4 

above.
						      4.2.2.4.3.4	Liabilities: cash flow at year-end
							       cf. Section 2.1
						      4.2.2.4.3.5	Liabilities: pension increases
							�       Follow the same procedure as in 3.2.3.3 

above.
						      4.2.2.4.3.6	Liabilities: change in mortality
							�       Record the cumulative mortality change 

to the end of the year (i.e. tνχ ) for use in 
4.2.2.4.3.7 below.

						      4.2.2.4.3.7	�Liabilities: weighted average price at 
year-end after cash flow

							       Determine xt per (29).
							       cf. App. B
						      4.2.2.4.3.8	�Liabilities: price at year-end before cash 

flow
							�       Add cash flow per 4.2.2.4.3.6 to 

liabilities per 4.2.2.4.3.7
			   4.2.2.5	 Calculate price at start of year after cash flow
					     Calculate , 1L tP −  per Appendix D.
			   4.2.2.6	 Calculate price at start of year before cash flow
					     Add cash flow at the start of the year per 4.2.2.4.3.3.
		  4.2.3	 Record price at start of year:
			   If t = 1 , 1L L tp P −=

5.	 Print Lp .


