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ABSTRACT
This paper introduces a new class of Markov switching models where switches in variables are 
not perfectly correlated. Maximum-likelihood estimates of the parameters are derived and shown 
to require only the smoothed inferences obtained from a univariate analysis of the variables. 
The framework is used to estimate a multiple Markov switching (MMS) model of South African 
financial and economic variables, which can be used for various actuarial applications, especially 
those involving long-term projections. Users may wish to set certain parameters in relation to 
future expectations rather than simply using estimates based on past data, but that process is not 
covered in this paper.
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1. 	 INTRODUCTION
1.1	 Early actuarial stochastic models assume that the dynamic process for various 
economic and financial variables is linear. For example, Wilkie’s (1986) model for 
UK inflation uses an AR(1) process to describe the data. Thomson (1996) uses a linear 
transfer function model to model inflation, with equity dividend growth as the input. 
Other linear models include those of Carter (1991), Claasen (unpublished) and Sherris et 
al (1999).
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1.2	 One of the primary assumptions of such models is that certain key variables are 
stationary. For example, both Wilkie (1986, 1995) and Thomson (1996) assume that 
various yields and inflation are stationary, although standard unit-root tests suggest that 
these variables may be integrated (see Maitland, unpublished b). The implication of a 
unit root in a time series is that shocks to the system are permanent, trends are stochastic 
and forecast variances increase linearly as the lead time of the forecast increases. Hence, 
stationarity is a necessary assumption for producing reasonable long-term projections.

1.3	 Maitland (unpublished a) shows that the Thomson (1996) transfer-function 
models suffer from a number of statistical problems and estimation errors. Mean reversion 
in certain variables of the model creates risk-adjusted returns that are unrealistic and 
gives rise to predictability that violates the efficient market hypothesis (EMH). Maitland 
(unpublished a, b) also shows that the Thomson (1996) model suffers from parameter 
instability and bias, which also makes it problematic for use in long-term projections.  
Some authors argue that the EMH is unrealistic, but a more complete discussion of 
actuarial models and EMH is beyond the scope of this paper.

1.4	 Later models include non-linear effects through the use of autoregressive 
conditional heteroscedasticity (ARCH) models, which were introduced by Engle (1982). 
Such models include the inflation model of Wilkie (1995) and Hua (unpublished). Whitten 
& Thomas (1999) extend Wilkie’s (1995) UK inflation model with further analysis using 
ARCH and threshold autoregressive (TAR) models. Harris (1994) defines an exponential 
regressive conditional heteroscedasticity (ERCH) model for Australian data.

1.5	 Harris (1996) fits a Markov switching model to quarterly share-price returns and 
inflation. Markov switching models form another class of non-linear models and were 
first introduced by Goldfeld & Quandt (1973). They were popularised by the pioneering 
work of Hamilton (1989, 1990), who describes the likelihood function, regime inferences 
and an efficient estimation technique for fitting such models.

1.6	 Krolzig (1997) develops a comprehensive framework for Markov switching 
vector autoregressions in which switches between the various components of the vector 
are perfectly correlated. In Harris (1999), an alternative switching vector autoregression 
framework is developed, and a vector switching model is estimated for Australian data. 
However, a vector switching model is not useful if switches between parameter values 
relating to the individual components of the vector of variables can occur at different 
points in time.  In this case, neither framework provides a useful approach for jointly 
modelling the variables because parameter values of one variable may switch from one 
state to another without simultaneous switches in other variables.

1.7	 This paper generalises the Markov switching framework by allowing the 
parameter values of individual series to switch at different times, while allowing 
for the joint modelling of the variables and state switching. It provides a new and 
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parsimonious framework that allows individual variables to switch from one state to 
another without all variables switching at the same time. The model is shown to provide 
a reasonable description of South African data. The framework presented also allows for 
easy application of normative assumptions (see Thomson, 2006) while retaining those 
descriptive aspects of the model that are still believed to be relevant to the future.

1.8	 The model presented in this paper was initially presented to the Actuarial Society 
of South Africa in 1999 and based on data from 1960Q1 to 1998Q4. Those parameter 
estimates are presented together with updated parameters based on data from the period 
1960Q1 to 2006Q2.

2. 	 VARIABLES MODELLED AND TIME INTERVALS
This section considers some of the data requirements for a stochastic asset–liability 

model. Many of the issues have been extensively covered by Thomson (1996), so this 
section focuses mainly on aspects where that approach has been modified or extended.

2.1	 VARIABLES MODELLED
2.1.1	 As explained by Thomson (1996:768),
“sufficient variables should be modelled to enable the assets and liabilities of the financial 
institution to be simulated in such a way as to facilitate decision making.”

Uncertainty in the liabilities may be due to a large number of random elements. For 
example, for a defined-benefit pension scheme, wage inflation, price inflation and 
demographic effects are uncertain. However, since the demographic effects “have a lesser 
effect on the finances of the scheme and because they are not as strongly correlated with 
the variables used for simulating asset cash flows,” (Thomson, 1996:770), their inclusion 
increases the dimension of the model unnecessarily. By marginalising the distribution of 
the liabilities with respect to the demographic effects, we reduce the dimension of the 
model with only a small loss of information. 

2.1.2	 The variables specified in this paper facilitate a market-based approach 
to the valuation of liabilities. Section 9.1.1 of PGN 201 of the Actuarial Society of South 
Africa1 states that “the basis used to value the assets must be consistent with that used to 
value the liabilities …” If, instead of using discounted cash-flow techniques, the market 
value of liabilities is used to measure the liabilities and assets are taken at market value, 
it is not necessary to model dividend yields and dividend growth rates.

2.1.3	 In an attempt to minimise the dimension of the model and to simplify 
the analysis, this paper considers a model using only the following four variables:

—— the inflation rate;
—— the zero-year nominal yield;
—— the 20-year nominal par yield; and

1	� PGN 201  Retirement funds – actuarial valuation reports and related topics. Actuarial Society 
of South Africa, 2003
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—— the total return on equities.
Maitland (2002) shows how to construct a full arbitrage-free yield curve given a 

model of the zero- and 20-year nominal par yields. Property, wage inflation and offshore 
asset classes have been excluded as well as inflation-linked yields, although the latter can 
be inferred from the inflation rate and the nominal yield curve derived from the model. 
Hence, the variables in this model represent only a subset of the variables required for a 
comprehensive asset–liability modelling exercise. However, it is believed that the model 
presented can form the basis for a more comprehensive model of the assets and liabilities 
of a financial institution.

2.2	 TIME INTERVALS
2.2.1	 The intended purpose of a stochastic model largely dictates the 

minimum time interval between forecasts. The Thomson (1996:772) model is developed 
for annual liability cash flows produced from demographic models based on annual age 
intervals and for comparison with revenue accounts prepared on an annual basis. Wilkie 
(1995) and the Finnish Group (Ranne, unpublished) also use annual intervals although 
Wilkie (op. cit.) presents some results for quarterly and monthly intervals as well.

2.2.2	 Sherris et al (1999:238) consider annual cash flow projections to be a 
crude approximation to the timing of cash flows and hence prefer a quarterly model. For 
resilience reserving, capital adequacy and solvency testing, an annual model will tend to 
understate insolvency probabilities for two reasons. First, solvency can only be assessed 
annually so that insolvency in the interim will not be detected if the fund has recovered 
by the following assessment. Secondly, since temporal aggregation tends to reduce 
excess kurtosis, an annual model may not capture large fluctuations such as equity-
market crashes and interest-rate hikes that occur within the year (see Harris 1994:36–8).

2.2.3	 Thomson (1996:772) states that
“the use of quarterly data in the development of the model tends to accentuate the short-
term relationships at the expense of longer-term relationships.”

However, this is not inevitable if the model structure and span of the data allow for 
longer-term relationships. In the context of the testing of the stationarity of dividend 
yields, Wilkie (1995:825–6) points out that, even with a large number of frequently 
sampled observations, a stationary process with high autocorrelation may appear to be 
non-stationary if the observation period (span) is too short. However, the problem in this 
context is that the span of the data is too short, not that the sampling frequency of the 
data is too high. The point Wilkie makes is that an increase in the number of observations 
by more frequent sampling leads only to a marginal increase in power of unit-root tests, 
whereas an increase in the span of the data significantly increases the power of these 
tests (see Perron, 1991). Nonetheless, from this perspective, a model developed using 
quarterly data from 1960 onwards should be no worse than one developed using annual 
data over the same period.

2.2.4	 As Thomson (1996:772) points out, a quarterly model can be used for 
comparison with investment performance results, which are often reviewed quarterly. 
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Furthermore, for some defined-contribution funds, interim bonuses are declared for 
the following quarter based on investment returns to date and expected returns for the 
remainder of the year. The fund rules may not allow negative bonuses to be declared so 
that an investment reserve is required to cover shortfalls. In such cases a quarterly model 
is required to estimate an appropriate investment reserve level and assess the effects 
of various bonus strategies. Another advantage of using quarterly intervals over annual 
intervals is that more data points lead to better parameter estimates. Also, annual figures 
can be derived from a quarterly model but quarterly figures cannot be derived from an 
annual model. Consequently, a quarterly time interval is preferred to an annual time 
interval and so quarterly data are used in this paper.

2.2.5	 Possible complications from the use of quarterly intervals instead of 
annual intervals are that quarterly data may exhibit relatively high kurtosis and may 
contain seasonal effects. As discussed above, for some applications it is important to 
capture high kurtosis in the data and so this should be modelled.

2.2.6	 Financial series do not usually exhibit seasonal effects but such effects 
are likely in economic series such as the consumer price index (CPI). This seasonality 
may be caused by the use of interim price estimates for certain index constituents when 
actual prices are only available at the end of each year.

2.2.7	 Since seasonal effects are of little interest in the current context, 
the modelling of seasonality requires unnecessary additional parameters and model 
complexity. Hence, quarter-on-quarter forces of inflation have been seasonally adjusted 
using the X-12-ARIMA method developed by the U.S. Census Bureau.2 The model used 
for the X-12-ARIMA seasonal adjustment is an ARIMA(1,0,1)×(1,0,0)4 model. The 
seasonally adjusted and annualised force of inflation is the inflation series modelled in 
this paper.

2.3	 TRANSFORMATIONS
2.3.1	 The main purpose of transforming data is to enable the use of a simple 

model form rather than a more complicated one in the original data. The overriding 
consideration in the choice of transformation is that of linearity. If a non-linear model 
can be expressed, by suitable transformation of the variables, in linear form, it is said to 
be intrinsically linear (see Draper & Smith, 1981:222).

2.3.2	 Even if relations between variables turn out to be non-linear, linear 
modelling frameworks such as the transfer-function model with autoregressive 
integrated moving average terms (ARIMAX) and the vector autoregressive moving 
average (VARMA) model classes provide a simple and parsimonious framework for 
model development and should be considered before moving to non-linear modelling 
frameworks. For this reason, functions that admit a linear relation between variables 
are highly desirable. For example, rates of growth are multiplicative whereas forces are 
additive and hence more linear. In this context, a logarithmic transformation of the rates 

2	 �For further details see: X-12-ARIMA Reference Manual. Statistical Research Division, U.S. 
Census Bureau, Washington D.C., 2000
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is appropriate. In addition, a logarithmic transformation changes the range to (–,), 
allowing certain variables to be modelled with standard normal distributions. A broad 
literature review and discussion of the most appropriate functions to use for the variables 
modelled in the Thomson Model can be found in Thomson (1996:773–7).

2.4	 TIME SERIES MODELLED
2.4.1	 The quarter-on-quarter force-of-inflation series is constructed by taking 

the natural logarithm of the ratio of the all-items CPI at quarterly intervals. This series 
is seasonally adjusted (as discussed above) and then annualised to give the seasonally 
adjusted and annualised force of inflation series, INFLt .

2.4.2	 Figure 1 shows INFLt together with the year-on-year force of inflation, 
INFL-YYt at quarterly intervals from 1960Q1 to 2006Q2. It should be noted that the 
modelling of the year-on-year force of inflation at quarterly intervals is problematic in 
that it has a tendency to increase the autocorrelation between successive periods and to 
obscure temporal dependence in the series. This comparison is shown only for illustrative 
purposes and for comparison with the more familiar year-on-year figures often published.

2.4.3	 For long-term interest-bearing securities, the use of an average annual 
force of interest is well motivated by Thomson (1996:776). The variable modelled is:

LINTt=2*ln(1+JAYC20t  /200);
where JAYC20t is the JSE-Actuaries 20-year nominal bond yield, convertible half-yearly, 
at time t, as quoted under code JAYC20 by INET.3

3	 INET Graphics and Database Service. Intelligent Network (Pty) Ltd., 2006

Figure 1: INFLt (“SAdj-X12 INFL) and INFL-YYt (“Y-on-Y INFL”)
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2.4.4	 For money-market instruments, Thomson (1996:776) models the 
annual force of return on the Alexander Forbes money-market index, as quoted under 
code GMC1 by INET.4 However, that index is constructed from the average monthly 
return on a portfolio consisting of 3-month negotiable certificates of deposit with 1, 2 and 
3 months to maturity. All information contained in GMC1 at time t is available before that 
time, so the value of GMC1 at time t does not belong in the information set at that time: 
unlike the yield curve, GMC1 does not reflect rates available at the start of the period.

2.4.5	 Ideally, the force of interest on 3-month Treasury bills at time t should 
be used to reflect the risk-free rate available at that time for the quarterly period (t, t + 1). 
However, since there is only a short history of Treasury-bill rates, the zero-year nominal 
yield, as quoted under code JAYC00 by INET5 is used as a proxy. The short-term interest 
rate modelled is defined as:

SINTt=2ln(1+JAYC00t /200) for t in {1986Q1,…,2006Q2}.
2.4.6	 Since JAYC00 is available only from 1986 onwards, the annualised 

force of change in GMC1 from time t to time t + 1 is used as a proxy for JAYC00t, as 
follows:

SINTt=4ln(GMC1t +1/GMC1t) for t in {1960Q1,…,1985Q4}.
2.4.7	 Maitland (2002) shows that, in constructing a full arbitrage-free yield 

curve, the zero- and 20-year nominal par yields are the best yields to model to minimise 
the forecast error of the full yield curve.

2.4.8	 For equities, it is preferable to model the excess equity return above 
the return on a risk-free asset (as modelled by the risk-free rate of interest) rather than 
the nominal equity return because risk-averse investors are typically interested in the 
additional returns they receive for taking on risk.

2.4.9	 It could be argued that the real yield on a three-month CPI-linked 
bond is the appropriate risk-free hurdle rate for investors interested in accumulating real 
wealth. However, since such an instrument does not exist in South Africa, this approach 
is not particularly helpful. Arguably, for such investors, the three-month Treasury bill is 
the best proxy we have for a risk-free investment over the short term.

2.4.10	 It could also be argued that, for an investor with longer-term liabilities, 
the return on an immunising portfolio of longer-dated bonds is the relevant hurdle rate (see 
Maitland (2001) for the immunisation framework that is mathematically optimal). This 
is indeed true. However, for the purposes of simplicity and without further knowledge 
of the segmentation of investor objectives, SINTt is used as a proxy for the three-month 
Treasury-bill rate, and this is assumed to be the risk-free hurdle rate for each quarterly 
period.

2.4.11	 The total return index for equities, EQTRIt, is taken as the FTSE–
JSE all-share index, as quoted under code J203TRI by the JSE.6 This is available from 

4	 supra, 2006
5	 supra, 2006
6	 �FTSE / JSE End of Day Indices Dissemination User Manual, JSE Information Products Sales 

Division, 30 October 2005
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30 September 1995 onwards. Before this, a total-return index for equities is constructed 
assuming dividends are uniformly distributed over the calendar year and using the JSE-
Actuaries all-share index and the dividend yield per cent on that index, as quoted under 
codes CI01 and ADY respectively by INET.7

2.4.12	 The total, annualised, quarterly force of return on equities in excess of 
the risk-free rate, XSEQt, is then constructed as follows:

XSEQt =4*ln(EQTRIt /EQTRIt –1)–SINTt –1
2.4.13	 The variables SINTt , LINTt and XSEQt are shown in Figures 2 to 4. The 

analysis in this paper uses data over the period from 1960Q1 to 2006Q2.

3. 	 UNIT-ROOT TESTS
3.1	 In the building of a multivariate time-series model, the purpose of developing a 
univariate model for each of the variables is to guide subsequent multivariate modelling. 
How best to proceed hinges on knowing whether the individual series are stationary 
or non-stationary. Conventional time-series estimation techniques based on classical 
assumptions about the distribution of the error terms can lead to incorrect inferences if 
the series are non-stationary. For example, if classical ordinary least squares are used to 
estimate the relationship between two non-stationary variables, each containing a unit 
root, standard test statistics produce misleading inferences. This is known as the spurious 
regression problem (see Granger & Newbold, 1974).

7	 supra, 1998

Figure 2: SINTt
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3.2	 Standard unit-root tests generally test the null hypothesis of a unit root against the 
one-sided alternative of no unit root (see, e.g., Hamilton, 1994:Chapter 17). The results 
of some standard unit-root tests are shown in Table 1, viz. the augmented Dickey–Fuller 

Figure 4: XSEQt
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Figure 3: LINTt
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test (ADF), the Phillips–Perron test (PP) and the Kwiatkowski–Phillips–Schmidt–Shin 
test. For further details, see Maitland (unpublished b), Dickey & Fuller (1979, 1981), 
Phillips & Perron (1988) and Kwiatkowski, Phillips, Schmidt & Shin (1992). These tests 
all include an intercept in the test equation and test for a unit root in the level series.

Table 1: Unit-root tests

Variable
ADF PP KPSS

t-statistic ( p-value) t-statistic ( p-value) LM-statistic
[5% critical value]

INFLt –2,982 (0,039) –6,017 (0,000) 0.504 [0,463]

SINTt –2,857 (0,053) –2,441 (0,132) 0.891 [0,463]

LINTt –1,534 (0,514) –1,501 (0,531) 1.067 [0,463]

XSEQt –13,202 (0,000) –13,209 (0,000) 0.058 [0,463]

3.3	 For both the ADF and PP tests, the null hypothesis is that the series is non-
stationary, and only if the series is sufficiently stationary is this assumption rejected. 
These results suggest that the null hypothesis cannot be rejected at the 5% level for SINTt 
and LINTt . The results also suggest that INFLt and XSEQt do not contain a unit root since 
the null hypothesis is rejected at the 5% level for these two variables.

3.4	 The KPSS test is a Lagrange-multiplier (LM) test that evaluates the null 
hypothesis that the series is stationary against the alternative that it is non-stationary. As 
a result, the KPSS test reverses the usual burden of proof. An LM-statistic that is greater 
than the 5% critical value rejects the null hypothesis at the 5% level. The KPSS result 
supports the findings of the ADF and PP tests that XSEQt does not contain a unit root. 
The results also suggest that the null hypothesis of stationarity can be rejected at the 5% 
level for INFLt , SINTt and LINTt . This supports the finding of the ADF and PP tests that 
SINTt and LINTt each contain a unit root but contradicts the earlier result for INFLt .

3.5	 The ADF and PP results for INFLt in Table 1 above also contrast with the standard 
unit-root test results shown in Maitland (unpublished b), which used annual data for the 
force of inflation over the period 1960 to 1993. A rerun of the ADF and PP tests for INFLt 
for the sub-period 1960Q1 to 1993Q4 shows that the null of a unit root cannot be rejected 
at the 5% level for the ADF test statistic but that it can be rejected for the PP statistic. 
Such mixed results are symptomatic of non-linear effects in the data.

3.6	 The implication of a unit root in a time series is that shocks to the system are 
permanent, trends are stochastic and forecast variances increase linearly as the lead time 
of the forecast increases. Hence, whether or not a variable contains a unit root is critical 
for projection purposes.
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3.7	 The above results using data from 1960Q1 to 2006Q2 might suggest a multivariate 
model with INFLt modelled as a stationary variable and SINTt and LINTt as non-
stationary variables. However, such a mixed model would not make sense, particularly 
as LINTt reflects the market’s expectation of future inflation, the real rate of interest and 
an inflation risk premium. If inflation is stationary, a non-stationary LINTt would imply a 
non-stationary inflation risk premium and real interest rate. However, it is unreasonable 
to assume that real interest rates can wander off to any level, as implied by a forecast 
variance that increases linearly with time.

3.8	 As discussed in section 2.2, an increase in the span of the data significantly 
increases the power of unit-root tests (see Perron, 1991 and Wilkie, 1995:825–6). Homer 
& Sylla (2005) show that for around 4000 years interest rates have remained around 
5% a year (in non-inflationary times). This suggests that with an increased span of 
data, standard unit-root tests on the above series will most likely indicate that they are 
stationary. However, even with the short span of data available, certain tests lead to more 
reasonable models than suggested by the above unit-root test results.

3.9	 Perron (1989) shows that standard unit-root tests that do not allow for the 
presence of a structural break have little power against the alternate of no unit root when 
the underlying series has a structural break but no unit root. The power of these tests 
decreases as the magnitude of the intervention variables increases.

3.10	 Using Perron’s (1989) framework, Maitland (unpublished b) shows that the null 
hypothesis of a unit root can be rejected once the possibility of a structural break is 
considered. However, Perron’s framework does not entertain the possibility of multiple 
structural breaks at unknown times. For this reason, unit-root tests that allow for the 
possibility of a deterministic structural break are not considered further in this paper. 
Instead, a modelling framework allowing for multiple structural breaks at unknown 
times is presented in the following section.

4. 	 UNIVARIATE MARKOV SWITCHING MODELS
4.1	 INTRODUCTION

4.1.1	 Economic and financial time series can exhibit dramatic breaks in 
their behaviour, associated with events such as oil-price shocks, changes in government 
policy, financial crises and shifts in investor expectations. If the behaviour for particular 
periods can be adequately described by autoregressive (AR( p)) models of the form:
	 	 	 	 y c y yt t p t p t= + + + +− −φ φ ε1 1 … 	 (1)
with εt ~ N(0,σ

2), then it would be reasonable to allow the parameters c, 1,…, p, σ of 
this model to change to accommodate such breaks. The encompassing model could then 
be described as:
	 	 	 	 y c y yt S S t p S t p tt t t

= + + + +− −φ φ ε1 1, ,… 	 (2)
with εt ~ N(0, σSt

2), where st denotes the regime or state of the process at time t.
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4.1.2	 Since the determinants of these changes may be unobservable (as, for 
example, with a shift in investor expectations), or because one may simply not wish 
to include such determinants as factors in the model (the causes of financial crises are 
varied and inflation is not only influenced by oil-price shocks), it is preferable to consider 
a probabilistic model to describe the occurrence of such breaks that give rise to changes 
in the parameters c, 1,…, p, σ.

4.1.3	 The simplest specification is that st is the realisation of a Markov chain 
with the probability of a switch from state i to state j (i, j = 1, 2,…, M ) being:
				    Pr |s j s i pt t ij= =( ) =−1 	 (3)
where pi1 + pi2 +…+ piM = 1 for all i{1,…,M}. This assumes that the probability of a 
change in state or regime depends on the past only through the value of the most recent 
regime. The regimes are not observed directly but can be inferred through the observed 
behaviour of yt .

4.1.4	 The specification in equations (2) and (3) is non-linear and is referred 
to as a Markov-switching (MS) model. Markov-switching regressions were introduced 
by Goldfeld & Quandt (1973), and the likelihood function was first correctly calculated 
by Cosslett & Lee (1985). The pioneering work of Hamilton (1989, 1990) describes the 
likelihood function, regime inferences and an efficient estimation technique for fitting 
such models. Krolzig (1997:Chapter 7) provides a useful discussion on model selection 
and model checking procedures for MS models.

4.1.5	 A model specification search is undertaken using the Schwartz infor-
mation criterion (SC) and a likelihood ratio (LR) test. Given the number of regimes, 
standard asymptotic distribution theory holds for the SC concerning the number of auto-
regressive parameters and heteroscedasticity. (SC provides the most parsimonious model 
specification amongst the widely used Akaiki information criterion (AIC), Hannan–
Quinn (HQ) criterion and SC.) See Hamilton (1994) for details.

4.1.6	 The LR test concerns the appropriate number of states in equation (2), 
and follows a non-standard distribution. Equivalence in all regimes of the parameters 
c ,1,…,p,σ  of equation (2) implies that the Markov chain parameters pij are not 
identified under the null hypothesis of a single state (M = 1).

4.1.7	 As discussed in Garcia (1998), testing for the number of states in 
a regime switching framework is complex. Given some M ≥ 2, the problem is that 
under any number of regimes smaller than M some transition probability (‘nuisance’) 
parameters of the unrestricted model may take any value and are hence unidentified. The 
result is that the LR test fails to have a standard chi-square distribution with number of 
degrees of freedom equal to the number of restrictions imposed.

4.1.8	 To overcome these complexities, the bounded likelihood ratio test 
proposed by Davies (1977) and recommended by Krolzig (1997) is used to test the null 
hypothesis of a single state M = 1 (i.e. the ‘linear’ model) against the alternative of two 
or more states (M ≥ 2). This circumvents the problem of estimating nuisance parameters 
under the alternative hypothesis and derives instead an upper bound for the significance 
level of the LR test:
		  Pr Pr exp / // /LR x x x x qq

q q>( ) ≤ >( ) + −( ) ⋅ ⋅ ( ) 
− −

χ 2 2 1 2 1
2 2 2Γ ;	 (4)



SAAJ 10 (2010)

A MULTIPLE MARKOV SWITCHING MODEL FOR ACTUARIAL USE IN SOUTH AFRICA | 83

where Γ ••(( ))is the standard gamma function and q is the number of nuisance parameters. 
(Note that for M = 2, q = 2.)

4.2	 INFLt
4.2.1	 Maitland (unpublished a) shows that the Thomson (1996) model suffers 

from parameter instability. In particular, he shows that the autoregressive parameter for 
inflation is much lower than that suggested by the Thomson model and the means quite 
different when estimated from the sub-periods 1960–1975 and 1976–1993.

4.2.2	 Maitland (unpublished b) also shows that it is this parameter instability 
that gives rise to the apparent unit root in the inflation series, and that the null hypothesis 
of a unit root can be rejected once the possibility of a single structural break is considered.

4.2.3	 This assumption of a single structural break is unsatisfactory as a 
probability law that could have generated the inflation series. Furthermore, such features 
are not desirable for projection purposes and are not likely given the current framework 
of inflation targeting in South Africa.8 Instead, an MS model, which allows for multiple 
structural breaks at unknown times, is a more appropriate framework for modelling 
INFLt .

4.2.4	 A number of first-order MS models with M = 2 states have been 
estimated for INFLt, allowing for switching in any combination of the intercept term (I), 
the autoregressive terms (A) and the variance of the residuals (H). The results are shown 
in Table A.1 of Appendix A. The null of a single state model (M = 1) is rejected in favour 
of M = 2, the LR statistic being highly significant, even after applying Davies’s (1977) 
correction. M = 3 is rejected. In terms of the SC, the best model is the autoregressive 
model with switching only in the intercept term:
				    INFL c INFLt S t tt

= + +−φ ε1 1 ,	 (5)
with εt ~ N(0, σ2 = 0,0332), c1 = 0,0299 (0,005), c2 = 0,0944 (0,013) and 1 = 0,24 (0,097). 
Standard errors are shown in parentheses. st = 1 corresponds to a low-mean regime with 
a mean force of inflation, c1/(1–1), of about 4% a year, while st = 2 corresponds to a 
high-mean regime with a mean force of inflation of about 12% a year. The probability 
of remaining in state 1 given that the process is already in state 1 is p11 = 0,968, while 
the probability of remaining in state 2 given that the process is already in state 2 is p22 = 
0,970. The autoregressive parameter and the variance remain stable across regimes. The 
ergodic (unconditional) probabilities or stable-state probabilities (see, e.g., Hamilton, 
1994:Chapter 22) are both 0,5 for the low- and high-mean states, while the expected 
durations for the low- and high-mean states are both about 8 years.

4.2.5	 When one compares this MS model with the linear AR(1) model 
shown in Table A.1 of Appendix A, the problem of parameter bias becomes apparent. 
It can be seen that the autoregressive parameter 1 = 0,67 for the AR(1) model is much 
higher than 1 = 0,24 for the MS model. The bias is caused by the changing level of the 
series, as discussed by Maitland (unpublished b).

8	 �For details see: A new monetary policy framework. Statement of the Monetary Policy 
Committee of South Africa, T.T. Mboweni,  6 April 2000.
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4.2.6	 The estimated probability (conditional on all the data) that the regime 
was in the high-inflation regime each quarter is shown in Figure 5. This should be 
compared with Figure 1 where it can be seen that a high-inflation regime corresponds 
roughly to the periods 1973–1994, 1998:3 and the year 2002.

4.2.7	 The year 1973 corresponds to the first oil-price shock, which led to 
a twenty-year period of entrenched inflation, ending with the end of the apartheid era 
and the dismantling of many trade barriers, which led to increased international trade, 
decreased market power of domestic companies and downward pressure on real wages 
(see Aron & Muellbauer, 2000).

4.2.8	 The third quarter of 1998 corresponds to the Russian debt crisis, and 
2002 follows the dramatic fall in the rand in 2001 following the Zimbabwe crisis and 
fears of contagion in the region.

4.2.9	 With the introduction of inflation targeting in 2000,9 periods of 
persistent high inflation such as were experienced from 1973–1994 are arguably less 
likely to occur in future. In using the MS model for projection purposes, the user is likely 
to lower the value of p22, the probability of remaining in state 2.

4.2.10	 However, the possibility of future inflation shocks (resulting from 
oil shocks, currency shocks, political crises, financial crises, wage pressures etc.) is not 
removed with the introduction of inflation targeting; nor can we rule out the possibility 
of a weak monetary policy regime at some time in the future. By simply adjusting the 
transition probabilities, the user is able to mimic stochastic projections under such 
scenarios.

4.2.11	 Although certain aspects of the past are unlikely to repeat themselves 
in the future, more stable aspects might still prove useful. For example, the user is able 
to retain the estimates for c1, c2, 1 and σ, unless more plausible values can be justified.

4.2.12	 The values of 1 and σ are stable across both regimes and are therefore 
estimated from the full sample of data, so our confidence in these estimates should be 
higher. While inflation expectations from the real and nominal yield curves, and the 
inflation target band of between 3% and 6% a year, might suggest slightly different 

9	 For details see Mboweni, supra.

Figure 5: Probability that INFLt was in the high-inflation regime
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values for c1 and σ, the value of 1 can be retained, unless the user has reason to justify 
how inflation targeting might alter this dynamic.

4.2.13	 In contrast to the MS model for INFLt, none of the parameters for 
INFLt estimated in the Thomson (1996) model are useful for projection purposes. As 
discussed by Maitland (unpublished a), Thomson’s INFLt autoregressive parameter is 
biased; the forecast mean tends to the arbitrary level of 9.5% a year, and clearly depends 
on the period of data used to estimate the parameters; and the forecast variance is inflated 
because of regime switching in the underlying series.

4.2.14	 The MS model appears to be relatively stable when estimated over the 
sub-periods 1960:1–1998:4 and 1970:1–2006:2. In both cases, the problem of parameter 
bias is again apparent in the corresponding linear models (Tables A.1.2–3 of Appendix A).

4.2.15	 For the MSIH(2)–AR(1) model estimated over the sub-period 1960:1–
1998:4, the parameter estimate for p22 is equal to one (see Table A.2 in Appendix A). 
This implies a permanent switch to the high-mean inflation regime, which is clearly 
unrealistic. The problem is that that span of data does not include periods during which a 
switch from the high-mean regime to the low-mean regime occurred (or at least not with 
sufficient clarity to distinguish this given the higher volatility of the high-mean regime 
in this model). However, we know inflation has come down since then, and even if it had 
not, this is always a possibility. Hence, the parameter estimate p22 = 1 from this subset 
model, while clearly a reasonable estimate given the data from that sub-period, is clearly 
not appropriate for forecasting.  This illustrates the importance of applying judgement 
when setting parameters for projection purposes.

4.3	 SINTt
4.3.1	 The results of fitting various first-order MS models to SINTt are shown 

in Table A.4 of Appendix A. The null of a single-state model (M = 1) is rejected in favour 
of M = 2, the LR statistic being highly significant, even after applying Davies’s (1977) 
correction. M = 3 is rejected. In terms of the SC, the best model is the autoregressive 
model with switching in both the intercept term and the residual variance:
				    SINT c SINTt S t tt

= + +−φ ε1 1 ;	 (6)
where εt ~ N(0, σSt

2), c1 = 0,0072 (0,002), c2 = 0,0234 (0.006) and 1 = 0,866 (0,037). 
Standard errors are shown in parentheses. st = 1 corresponds to a low-mean regime with 
a mean force of interest, c1/(1–1), of about 5,5% a year, while st = 2 corresponds to a 
high-mean regime with a mean force of interest of about 17,5% a year. σ1 = 0,0051 and 
σ2 = 0,0155, so the high-short-term-interest regime is much more volatile, its volatility 
being three times that of the low-short-term-interest regime. The autoregressive parameter 
is stable across regimes.

4.3.2	 The probability of remaining in state 1 given that the process is 
already in state 1 is p11 = 0,947 while the probability of remaining in state 2 given that 
the process is already in state 2 is p22 = 0,920. The ergodic probabilities or stable-state 
probabilities are 0,601 for the low-mean state and 0,399 for the high mean state. The 
expected duration for the low-mean state is about 5 years while that for the high-mean 
state is about 3 years. (Because of the probabilistic nature of the MS process, the series 
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may remain in either state for as little as one quarter or much longer than the expected 
duration. Such asymmetry is not well captured by linear models.)

4.3.3	 When one compares this MS model with the linear AR(1) model 
shown in Table A.4 of Appendix A, the problem of parameter bias in the linear model 
again becomes apparent. The autoregressive parameter 1 = 0,963 for the AR(1) model 
is much higher than 1 = 0,866 for the MS model, the bias again being induced by the 
changing level of the series. The estimated probability (conditional on all the data) that 
the regime was in the high-inflation regime each quarter is shown in Figure 6.

4.3.4	 The MSIH model for SINTt appears to be very stable when estimated 
over the sub-periods 1960:1–1998:4 and 1970:1–2006:2. In both cases, the problem of 
parameter bias in the autoregressive parameter is again apparent in the linear models.

4.3.5	 The residuals from the AR(1) model for SINTt exhibit a very high 
kurtosis of 5,4 and a Jarque–Bera statistic of 65,3, suggesting that the null hypothesis 
that the residuals are normally distributed can be rejected at the 99,999% level. Also, the 
Ljung–Box test statistics on the squared residuals indicate significant serial correlation 
structure in the volatility. This suggests fitting a GARCH model (see Engle (1982) and 
Bollerslev (1986) for details) to SINTt .

4.3.6	 The GARCH(1,1) model successfully removes all serial correlation 
in the squared residuals. However, the model suffers from extreme upward bias in the 
autoregressive parameter 1, which is estimated to be 0,999. The kurtosis of the residuals 
increases to 7,1 and the Jarque–Bera statistic of 182,8 indicates an even more severe 
departure from normality than with the residuals from the AR(1) model. In contrast, the 
assumption of normality in the residuals from the MS model in equation (6) cannot be 
rejected.

4.3.7	 The log-likelihood for the GARCH(1,1) model is 585,22, which is 
considerably less than the log-likelihood of 604,65 for the MS model in equation (6). 
However, the standard likelihood-ratio test cannot be used to compare these two models 
because they are not nested.

4.4	 LINTt
4.4.1	 The results of fitting various first-order MS models to LINTt for the full 

period 1960:1–2006:2 as well as the sub-periods 1960:1–1998:4 and 1970:1–2006:2 are 

Figure 6: Probability that SINTt was in the high-interest regime
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shown in Tables A.7–9 of Appendix A. For both periods including the 1960s, the MSIH 
model is numerically unstable. Furthermore, the autoregressive parameter is very close 
to one when data from the 1960s is included in the estimation but drops when this period 
is excluded.

4.4.2	 Examination of the data in Figure 3 reveals the cause of the instability. 
The earlier data are characterised by long stretches during which the long-bond yield 
remains unchanged, interspersed with occasional jumps. For example, from December 
1962 to September 1964, LINTt is constant at 0,0469, while from September 1966 to 
March 1970 it remains constant at 0,064. The series was constructed by Dr J Greener 
“based on the coupon of the bonds issued in the primary market” using long-dated 
government bonds issued by the South African Reserve Bank for government. Since 
there were very few issues in the 1960s, the yield remained constant for long stretches 
at a time. These bonds were simply bought and held, largely by life offices, pension 
funds and particularly the Government Employees Pension Fund, which were all subject 
to prudential regulations forcing them to hold large volumes of government bonds. An 
active secondary market for these bonds did not develop until the early 1980s.

4.4.3	 Such dynamics are not characteristic of ARIMAX, VARMA or MS 
stochastic processes and bias the autoregressive parameter 1 towards one. They are 
unlikely to be repeated in future if market forces continue to determine yields, and hence 
are not useful for projection purposes. Hence, data from the 1960s are excluded for 
estimation of the LINTt MS model parameters.

4.4.4	 Using data for the period 1970:1–2006:2, the null of a single state 
model (M = 1) is rejected in favour of M = 2, the LR statistic being highly significant, 
even after applying Davies’s (1977) correction. M = 3 is rejected. In terms of the SC, the 
best model is the autoregressive model with switching in both the intercept term and the 
residual variance:
				    LINT c LINTt S t tt

= + +−φ ε1 1 ;	 (7)
where εt ~ N(0, σSt

2), c1 = 0,0129 (0.004), c2 = 0,0214 (0.006) and 1 = 0,852 (0.041). 
Standard errors are shown in parentheses. st = 1 corresponds to a low-mean regime with 
a mean force of interest, c1/(1–1), of about 8.5% a year, while st=2 corresponds to a 
high-mean regime with a mean force of interest of about 14,5% a year. σ1 = 0,0041 and 
σ2 = 0,0083, so the high-long-term-interest regime is much more volatile, its volatility 
being more than double that of the low-long-term-interest regime. The autoregressive 
parameter 1 = 0,852 is constant across regimes.

4.4.5	 The probability of remaining in state 1 given that the process is already 
in state 1 is p11 = 0,973, while the probability of remaining in state 2 given that the process 
is already in state 2 is p22 = 0,983. The ergodic or stable-state probabilities are 0,391 for 
the low-mean state and 0,609 for the high mean state. The expected duration for the low-
mean state is about 9 years while that for the high-mean state is about 14 years.

4.4.6	 When one compares this MS model with the linear AR(1) model 
shown in Table A.6 of Appendix A, the problem of parameter bias in the linear model 
again becomes apparent. The autoregressive parameter 1 = 0,965 for the AR(1) model 
is much higher than 1 = 0,852 for the MS model, the bias again being induced by the 
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changing level of the series. The estimated probability (conditional on all the data) that 
the regime was in the high-inflation regime each quarter is shown in Figure 7. (These 
inferences are based on the parameters estimated from the period 1970:1–2006:2.)

4.4.7	 The transition probability estimates for LINTt are based on very few 
switches, so the precision of these estimates can be expected to be low. However, with 
the introduction of inflation targeting in 2000,10 periods of persistent high inflation such 
as were experienced from 1973 to 1994 would be expected to occur less often in future, 
and this would be expected to concentrate 20-year bond yields in the low-mean regime. 
Hence, in using the MS model for projection purposes, the user is likely to decrease the 
values of p12 and p22, rather than rely on these parameter estimates.

4.4.8	 The residuals from the AR(1) model for LINTt for the period 1970:1–
2006:2 exhibit kurtosis of 3,5, a Jarque–Bera statistic of 3 and a p-value of 0,216, 
suggesting that the assumption of normality cannot be rejected. However, the Ljung–
Box test statistics on the squared residuals indicate significant serial correlation structure 
in the volatility. This suggests fitting a GARCH model to LINTt .

4.4.9	 The GARCH(1,1) model successfully removes all serial correlation 
in the squared residuals. The Jarque–Bera statistic of 2,3 for the residuals suggests that 
the assumption of normality cannot be rejected. The log-likelihood for the GARCH(1,1) 
model is 521,36, which is slightly lower than the log-likelihood of 524,41 for the 
MS model in equation (7). However, the GARCH model suffers from upward bias in the 
autoregressive parameter 1, and so cannot be recommended.

4.5	 XSEQt
4.5.1	 One of the earliest and most enduring models of the behaviour of equity 

price trajectories is the random-walk model. Such a model implies that equity returns are 
independent and identically distributed (i.i.d.). The Black–Scholes option-pricing theory 
extends this model by assuming that returns over any discrete time interval follow a 
lognormal distribution. These standard models are accommodated by modelling XSEQt 
as an i.i.d. normal random variable, i.e. the AR(0) model.

10	For details see Mboweni, supra.

Figure 7: Probability that LINTt was in the high-interest regime
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4.5.2	 There is now a vast literature suggesting that the standard lognormal 
model is inadequate. Empirical studies of equity returns provide evidence of time-varying 
volatility that the standard lognormal model is unable to capture. Engle (1995:xii) states 
that “[t]he GARCH(1,1) model is [now] the leading generic model for almost all asset 
classes of returns,” and presents a collection of papers on variants of the ARCH model 
used in finance.

4.5.3	 More recently, MS models have been successfully applied to the 
modelling of equity returns. Harris (1996, 1999) introduced the regime-switching 
lognormal model for equity returns, Bollen (1998) prices American and European 
options under this model, and Hardy (2001) successfully applies the approach of Harris 
(1999) and Bollen (op. cit.) to US and Canadian data.

4.5.4	 The standard Jarque–Bera test is used to test the null hypothesis that 
XSEQt follows a normal distribution. XSEQt has a negative skewness of –0.24 and a 
kurtosis of 4,1. The Jarque–Bera statistic is 10,410 and has a p-value of 0,005, which 
indicates a severe departure from normality. Superficially, this suggests fitting a model 
with a fat-tailed residual distribution.

4.5.5	 The Ljung–Box test statistics on the squared residuals of the AR(0) 
model, however, indicate significant serial correlation structure in the volatility. This 
indicates the need for a model incorporating time-varying volatility rather than simply a 
model with a fat-tailed residual distribution. For this purpose, the ARCH(1) model turns 
out to be a better model for XSEQt, the GARCH(1,1) model being over-parameterised. 
The log-likelihood for the ARCH(1) model is –118,07.

4.5.6	 The results of fitting various MS models to XSEQt are shown in 
Table A.10 of Appendix A. The first-order autoregressive term is not significant, as 
would be expected under the efficient market hypothesis, and the results from this class 
of models are not shown. The null of a single-state model (M = 1) is rejected in favour 
of M = 2, with a significant LR statistic of 17,16 and a p-value of 0,0034 after applying 
Davies’s (1977) correction. M = 3 is rejected. In terms of the SC, the best model is the 
autoregressive model with switching in both the intercept term and the residual variance:
				    XSEQ ct S tt

= +ε ;	 (8)
where εt ~ N(0, σSt

2), c1 = –0,0333 (0,093) and c2 = 0,1404 (0,041). Standard errors 
are shown in parentheses. σ1 = 0,620 57 and σ2 = 0,305 81, so st=1 corresponds to a 
volatile, low-mean-return regime with an effective annual volatility of 31%, while st = 2 
corresponds to a stable, high-mean-return regime with an effective annual volatility 
of 15%. The model is stable when estimated over the sub-periods 1960:1–1998:4 and 
1970:1–2006:2. The log-likelihood for the MS model in equation (8) is –112,9, which is 
considerably higher than the log-likelihood of –118,0685 for the corresponding ARCH(1) 
model. However, the standard likelihood ratio test cannot be used to compare these two 
models because they are not nested.

4.5.7	 The probability of remaining in regime 1 given that the process 
is already in regime 1 is p11 = 0,8259 while the probability of remaining in regime 2 
given that the process is already in regime 2 is p22 = 0,8853. The ergodic or stable-state 
probabilities are 0,3972 for the volatile, low-mean-return state and 0,6028 for the stable, 
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high-mean-return state. The expected duration for the volatile, low-mean-return state 
is about 6 quarters while that for the high-mean-return state is about 9 quarters. The 
estimated probability (conditional on all the data) that the regime was in the volatile, 
low-mean return regime each quarter is shown in Figure 8.

4.5.8	 Figure 9 shows the unconditional density function for XSEQt and the 
joint density functions for each of the unobserved regimes, scaled by the probability 
of being in each of those regimes. Although the distribution of XSEQt conditional on 
each regime is Gaussian, the mixing distribution exhibits higher kurtosis and negative 
skewness. However, unlike the unconditional distributions for INFLt , SINTt and LINTt , 
the unconditional distribution for XSEQt is unimodal.

4.5.9	 The MSIH(2)–AR(0) model of equation (8) not only captures the 
time-varying volatility of quarterly equity returns but also captures a time-varying risk 
premium. Although the unconditional equity risk premium is about 7% a year, the risk 
premium in the volatile-return regime is negative while that in the stable- (less volatile-) 
return regime is strongly positive. This suggests that investors have been poorly rewarded 
for taking on risk when the equity market is in the volatile regime.

Figure 8: Probability that XSEQt was in the volatile regime
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Figure 9: Unconditional and scaled conditional distributions for XSEQt
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5. 	 A MULTIVARIATE MARKOV SWITCHING FRAMEWORK
5.1	 INTRODUCTION

5.1.1	 Harris (1996) fits univariate MS models to quarterly equity returns 
and inflation data in Australia. In Harris (1999), he develops a regime-switching 
vector autoregression model, in which a vector, comprising gross domestic product, 
inflation, share-price returns and changes in the long-bond yield, switches between two 
unobservable states. Although switching between states in Harris’ (1996) univariate MS 
models is not perfectly correlated, the correlation is high. Hence, this vector-switching 
simplification provides a reasonable description of the joint process.

5.1.2	 The Markov-switching vector autoregression (MSVAR) framework 
developed by Krolzig (1997) is restricted mainly to vector switching models in which 
switching between each univariate component of the vector is contemporaneously 
perfectly correlated. Krolzig (1997:127) also considers a bivariate model in which 
switching between each univariate series is not simultaneous, but where the lag in 
switching is fixed, which he refers to as ‘intertemporally perfectly correlated regime 
shifts’.

5.1.3	 A problem arises when switching between states in the univariate MS 
models is poorly correlated (see Figures 5–8 above). Suppose the number of variables 
is N and each variable is indexed n  {1, 2,…, N}. Suppose also that the nth variable 
has possible states st

n = j  {1, 2,…, Mn} at time t. Then, if switching between states 
is less than perfectly correlated, the total number of states in the multivariate model is 
M Total = M1M2…MN.

5.1.4	 Parsimony with respect to the number of regimes is extremely desirable 
in vector switching models since the number of observations feasible for the estimation 
of regime-dependent parameters drops as the number of regimes increases.

5.1.5	 For example, a four-variable system with each univariate series 
containing two regimes requires a total of sixteen regimes. In the framework presented 
by Hamilton (1990) and Krolzig (1997), parameter estimates would be required for each 
of sixteen autoregressive models (as described by equation (2)), or worse, each of sixteen 
vector autoregressive models. Clearly, such an approach is not feasible.

5.2	 A TRACTABLE MULTIPLE MARKOV-SWITCHING MODEL FRAMEWORK
5.2.1	 Let St

*  denote the joint state of the multivariate system at time t, and 
index this state as follows:
	 St

* =1		  if s s s st t t
N

t
N1 2 11 1 1 1== == == ==−−, , , , ;

	 St
* = 2		  if s s s st t t

N
t
N1 2 11 1 1 2== == == ==−−, , , , ;

	 …
	 S Mt

* = 1	 if s s s s Mt t t
N

t
N

N
1 2 11 1 1== == == ==−−, , , , ;

	 S Mt
* = +1 1	 if s s s st t t

N
t
N1 2 11 1 2 1== == == ==−−, , , , ;

	 …
	 S Mt

Total* = 	 if s M s M s M s Mt t t
N

N t
N

N
1

1
2

2
1

1== == == ==−−
−−, , , , . 	 (9)
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5.2.2	 Let c
S
n

t
*  denote the parameter cSt* for the nth variable in state St

*, 
with similar notation for the autoregressive and residual standard-deviation parameters
φ φ σ
1, ,* * *,...,
S
n

p S
n

S
n

t t t
 of equation (2). Then place the following across-regime restrictions on 

the c
S
n

t
*  parameters and collect these into the reduced set θ σn

S
n

S
n

p S
n

S
nc

t t t t
= ( )1 1, , ,* * * *,...,  :

c c j k M j

M
S j
n

S k
n

l
l n

N

l
l n

Nt n t
* * mod int
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==

== ++
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iff or 1

1
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1

1

  	 	 	 	                                               ;	 (10)

with similar restrictions for the autoregressive and residual standard-deviation parameters 
of equation (2). This reduces the number of parameters in equation (2) to the same total 
number as would be estimated in the estimation of univariate MS models for each of the 
variables.

5.2.3	 Let St
* be the realisation of a Markov chain with the probability of a 

switch from state i to state j (i, j = 1, 2,…, M Total) being:

	 	 	 	 Pr |* * *S j S i pt t ij= =( ) =−1 .	 (11)

From the indexation in (9), we can find in , jn  {1, 2,…, Mn} and n {1,…, N}, such that:

	 	 Pr | Pr ,..., | ,...,* *S j S i s j s j s i s it t t t
N

N t t
N= =( ) = = = = =− − −1

1
1 1

1
1 1 NN( ) .	 (12)

5.2.4	 Let Yt
n  represent the subset of our sample for the nth variable (y1

n,…, 
yt

n) with t  {1, 2,…, T}. Given the data to time t for all variables, Y Y Yt t t
N={ }1,..., , 

our joint inference about the unobserved states at times t and t – 1 is:

   Pr , | ; Pr ,.., , ,..,* *S j S i Y s j s j s i st t t t t
N

N t t= =( ) = = = =− − −1
1

1 1
1

1 1λ NN
N t t

Ni Y Y=( )| ,.., ;1 λ ;	 (13)

where λ θ θ ρ== {{ }}P N*, ,..., ,1 , P* is the multiple-switching transition matrix of 
probabilities pij

*, and ρ is the vector of initial state probabilities across all variables (see 
Hamilton (1990) for further details).

5.2.5	 If we assume that the inference in equation (13) is independent for 
each of the variables, then, as shown in Appendix B, the maximum-likelihood estimates 
for the transition probabilities satisfy:

	 	 	
 

 

1
* 2 1

1
2 1

Pr , | ;
ˆ

Pr | ;

NT
n n n n
t n t n T

t n
ij NT

n n n
t n T

t n

s j s i Y
p

s i Y






 


 

 







 ;	 (14)

where λ θ ρn n n nP= { }, ,  and, for the nth variable, ρn is the vector of initial state probabilities 
and P n is the transition matrix. The maximum-likelihood estimates for the parameters
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c
S
n

S
n

p S
n

S
n

t t t t
* * * *, ,...,

, ,
 
1

σ  and ρ ρ ρ={ }1,..., N

are those obtained from estimation of the univariate MS model for the nth variable.
5.2.6	 The maximum-likelihood estimate of the residual covariance matrix 

is the cross-product of the residuals from each of the variables in each state, each factor 
being weighted by the corresponding smoothed inferences (shown in the subject of the 
product in the denominator of equation (14)). For details, see Appendix B.

5.2.7	 The assumption of independence in the smoothed inferences for each 
of the variables in equation (14) is not restrictive since it is exactly the assumption we 
made in fitting the univariate MS models. However, this assumption does not imply that 
switching in any one variable is independent of switching in the other variables, and by 
reference to equation (12) we find in general that:

			   Pr | Pr |* *S j S i s j s it t t
n

n t
n

n
n

N

= =( ) ≠ = =( )− −
=
∏1 1
1

.	 (15)

6. 	 EMPIRICAL ESTIMATION OF THE MMS MODEL
6.1	 Table 2 summarises the univariate MS-model parameters obtained in section 4 
and the ordering, n, of the variables (from left to right) that are used in the MMS model.

Table 2: MMS model parameters for the individual variables

INFLt SINTt LINTt XSEQt

c1 0,029 9 0,007 2 0,012 9 –0,033 3

c2 0,094 4 0,023 4 0,021 4 0,140 4

1 0,241 5 0,865 9 0,852 3 –

σ1 0,032 995 0,005 074 0,004 082 0,620 57

σ2 – 0,0154 66 0,008 319 0,305 81

p11 0,968 2 0,947 2 0,9730 0,825 9

p22 0,968 8 0,920 4 0,982 7 0,885 3

ℓ 350,403 7 604,650 1 524,408 8 –112,935

6.2	 The calculation of the maximum-likelihood estimate of the covariance matrix 
of the residuals is described in Appendix B. The corresponding correlation matrix of the 
residuals is shown in Table 3.

6.3	 Table 4 shows the maximum-likelihood estimate of the transition matrix P, using 
joint inferences for the period 1960:1–2006:2. The joint inferences for LINTt are based 
on parameter estimates for the period 1970:1–2006:2 (see section 4.4 for further details).
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Table 3: Residual correlation matrix for the MMS model

INFLt SINTt LINTt XSEQt
INFLt 1,000

SINTt 0,147 1,000

LINTt 0,211 0,179 1,000

XSEQt 0,064 –0,157 –0,082 1,000

6.4	 In keeping with Hamilton’s (1990) approach, the format of the transition matrix 
P in Table 4 is that the transition probability pij occurs in row j and column i, where pij is 
defined as in equation (11). Hence, the columns of P must sum to one.

Table 4: Multiple-switching transition matrix P for the MMS model
State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0,75 0,07 0,02 0,00 0,26 0,04 0,00 0,00 0,04 0,00 0,00 0,00 0,01 0,00 0,00 0,00
2 0,21 0,91 0,01 0,03 0,12 0,37 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
3 0,00 0,00 0,65 0,17 0,00 0,00 0,08 0,01 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00
4 0,00 0,00 0,12 0,73 0,00 0,00 0,02 0,05 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00
5 0,01 0,00 0,00 0,00 0,44 0,14 0,03 0,00 0,00 0,00 0,00 0,00 0,03 0,01 0,00 0,00
6 0,00 0,00 0,00 0,00 0,08 0,35 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00
7 0,00 0,00 0,13 0,02 0,04 0,01 0,60 0,12 0,00 0,00 0,00 0,00 0,00 0,00 0,03 0,00
8 0,00 0,00 0,01 0,03 0,00 0,03 0,10 0,79 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,03
9 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,64 0,12 0,00 0,00 0,06 0,02 0,00 0,00

10 0,01 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,14 0,81 0,00 0,00 0,02 0,17 0,00 0,00
11 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,10 0,01 0,56 0,13 0,00 0,00 0,01 0,00
12 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,01 0,12 0,76 0,00 0,00 0,00 0,07
13 0,00 0,00 0,00 0,00 0,05 0,03 0,00 0,00 0,05 0,02 0,00 0,00 0,79 0,32 0,03 0,00
14 0,00 0,00 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,02 0,00 0,00 0,09 0,45 0,00 0,00
15 0,00 0,00 0,04 0,00 0,01 0,00 0,16 0,00 0,01 0,00 0,26 0,03 0,01 0,00 0,74 0,08
16 0,00 0,00 0,00 0,01 0,00 0,00 0,01 0,02 0,00 0,00 0,04 0,06 0,00 0,00 0,17 0,80

6.5	 The MMS model is a discrete Markov process at discrete time points 
t = 1, 2, 3,… (in our case, quarter-ends) and these states are represented by St in equation 
(9).  Only one state change is possible from one discrete time to the next.  For example, 
state 1 at time t  – 1 can switch to any one (but only one) of the 16 states at time t, i.e. 
given St –1 = 1, St = I, where I is any integer from 1 to 16.

6.6	 Note that St also maps to one of the 16 binary sets represented by the four univari-
ate states (s1

t ,s
2
t ,s

3
t ,s

4
t ). Hence it is possible for more than one of these univariate states 
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to switch at the same time. An example of this can be seen in Table 4 where state 1, with 
binary representation (1, 1, 1, 1), can go to states 2 (1, 1, 1, 2), 3 (1, 1, 2, 1), 5 (1, 2, 1, 1), 
9 (2, 1, 1, 1) and 10 (2, 1, 1, 2), where it can be seen that more than one of the univariate 
states has switched from 1 to 2.

6.7	 The ergodic or stable-state probabilities and the expected duration (in quarters) 
for each state are shown in Table 5.

Table 5:  States, ergodic probabilities and durations 
MMS state

S* s1 s2 s3 s4 Ergodic probability Duration

1 1 1 1 1 0,084 3,9
2 1 1 1 2 0,235 11,0
3 1 1 2 1 0,030 2,9
4 1 1 2 2 0,032 3,7
5 1 2 1 1 0,008 1,8
6 1 2 1 2 0,003 1,5
7 1 2 2 1 0,037 2,5
8 1 2 2 2 0,053 4,7
9 2 1 1 1 0,037 2,8
10 2 1 1 2 0,068 5,3
11 2 1 2 1 0,033 2,3
12 2 1 2 2 0,064 4,2
13 2 2 1 1 0,057 4,7
14 2 2 1 2 0,014 1,8
15 2 2 2 1 0,116 3,8
16 2 2 2 2 0,130 4,9

6.8	 For example, row 2 in Tables 4 and 5 corresponds to the joint state with low 
expected inflation, low expected short- and long-term interest rates and stable excess 
equity returns. Historically, this state had the highest duration and the system remained 
in this state the longest.

6.9	 Row 16 in Tables 4 and 5 corresponds to the joint state with high expected 
inflation, high expected short- and long-term interest rates and stable excess equity 
returns. This state had the next highest duration and was the second most persistent state 
in the system.

6.10	 Intuition might suggest that SINTt and LINTt should be in the same state at any 
one time. From the ergodic probabilities in Table 5, the probability that SINTt and LINTt 
are in the same state is calculated by summing rows 1, 2, 9 and 10, as well as rows 7, 8, 
15 and 16. An alternative might be to model LINTt as a base variable, and then to model 
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a variable SPREADt = SINTt – LINTt . However, using the tests outlined in section 4, 
the null hypothesis of a single state for SPREADt is rejected in favour of a two-state 
MS model. Similar results hold for the spreads of SINTt over INFLt and LINTt over 
INFLt . Hence, no reduction in states is possible from this approach.

6.11	 For LINTt and INFLt another possible approach to modelling the dynamics of 
these variables is to model a series in which INFLt jumps first and then LINTt jumps 
with a variable lag. Such a model has been proposed by Durland & McCurdy (1994). 
However, from a financial perspective, while past expectations in the bond market failed 
to adequately reflect future inflation, one would not want to force such a structure on 
a stochastic model as it would not permit instances where the bond market correctly 
anticipates future inflation and inflation shocks.

6.12	 With inflation targeting and tight monetary policy, one might expect short-term 
and possibly long-term interest rates to rise with, or following, an increase in inflation. 
However, if the system is in state 9 or 10 (representing high expected inflation and low 
expected short- and long-term interest rates), it is more likely to remain in that state than 
to move to state 13 or 14, which would equate to an increase in short-term interest rates. 
(See columns 9 and 10 of Table 4, where it can be seen that the transition probabilities in 
rows 9 and 10 are much higher than those in rows 13 and 14.)

6.13	 Clearly, the estimated transition matrix parameters are purely a description of 
past experience and are not appropriate for projection purposes, especially given the 
current framework of inflation targeting in South Africa.

6.14	 However, while certain aspects of these dynamics may not be useful for projection 
purposes, it is possible to adjust these aspects while conditioning on other aspects that 
may still be relevant. It is also possible to adjust the multiple-switching transition matrix 
and regime-specific parameters independently of one another. This makes the proposed 
framework very powerful as a tool for extracting those aspects of the past that one 
believes may be relevant to the future. It also makes market-consistent projections and 
stochastic scenario testing relatively simple.

6.15	 Parameterisation of the model for projection purposes is beyond the scope of 
this paper. Also, the effect of parameter uncertainty on projection distributions cannot 
be assessed in the proposed framework. Joint parameter uncertainty could be modelled 
using the Markov-chain Monte Carlo approach, as in Harris (1999), but this is left for 
future research.

7.	 CONCLUSION
7.1	 The MMS framework presented in this paper allows the modelling of Markov-
switching variables where switches in variables are not perfectly correlated.
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7.2	 The approach to modelling MS follows Krolzig (1997) in recommending a 
bottom-up approach in which univariate MS models are used to identify states. The 
correlation, or otherwise, of switching between these states can then be used to guide the 
choice of vector-switching or multiple Markov switching for the multivariate model.

7.3	 Maximum-likelihood estimation of the parameters is shown to be relatively 
simple once the univariate Markov-switching models have been estimated.

7.4	 The framework is used to estimate an MMS model of South African financial 
and economic variables. The variables estimated are by definition descriptive of a past 
that is unlikely to repeat itself. However, while certain dynamics may not be useful for 
projection purposes, it is possible to adjust these aspects while conditioning on other 
features that may be still be relevant for projection purposes.

7.5	 As part of such adjustments, it is also possible to include current market conditions 
so that projections are market-consistent. Together with the framework suggested in 
Maitland (2002), it is possible to construct an arbitrage-free model of the local market. It 
is suggested that that framework can be used for various actuarial applications, especially 
those involving long-term projections.
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APPENDIX A

UNIVARIATE MS-MODEL PARAMETER ESTIMATES

A.1	 In Tables A.1 to A.12, MSIAH(M)-AR(p) refers to MS models with M states and 
switching in any combination of the intercept term (I), the autoregressive terms (A) and 
the variance of the residuals (H). Standard errors are shown in parentheses. ℓ refers to the 
log-likelihood value, and ‘Davies’ refers to the p-value as defined by equation (4).

A.2	 Tables A.1 to A.3 show the model estimates for INFLt for the periods 1960:1–
2006:2, 1960:1–1998:4 and 1970:1–2006:2 respectively.

Table A.1: INFLt MS-model estimates (1960:1–2006:2)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,029 9
(0,005)

0,026 4
(0,006)

0,027 4
(0,005)

c2
0,094 4
(0,013)

0,092 0
(0,012) –

1
0,241 5
(0,097)

0,237 6
(0,072)

0,668 5
(0,055)

σ1 0,032 995 0,028 097 0,0401

σ2 – 0,036 052 –
p11 0,968 2 0,958 1 –

p22 0,968 8 0,966 6 –

ℓ 350,403 7 352,062 6 333,425 8

AIC –3,723 3 –3,730 4 –
SC –3,618 8 –3,608 6 –

Davies 0,000 0,000 –
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Table A.2: INFLt MS-model estimates (1960:1–1998:4)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,032 0
(0,006)

0,020 7
(0,005)

0,031 9
(0,006)

c2
0,097 2
(0,012)

0,084 5
(0,010) –

1
0,213 4
(0,084)

0,252 7
(0,080)

0,643 1
(0,062)

σ1 0,034 518 0,026 680 0,041 3

σ2 – 0,039 215 –
p11 0,972 7 0,977 5 –

p22 0,984 7 1,000 0 –

ℓ 291,673 8 295,185 7 274,924 0

AIC –3,686 1 –3,718 5 –
SC –3,568 3 –3,581 1 –

Davies 0,000 0,000 –

Table A.3: INFLt MS-model estimates (1970:1–2006:2)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,048 7
(0,007)

0,050 4
(0,007)

0,043 3
(0,008)

c2
0,100 1
(0,012)

0,102 5
(0,011) –

1
0,214 9
(0,082)

0,202 2
(0,082)

0,556 0
(0,069)

σ1 0,035 371 0,039 314 0,040 7

σ2 – 0,031 462 –
p11 0,982 3 0,984 0 –

p22 0,985 1 0,986 0 –

ℓ 273,720 0 275,322 8 261,355 6

AIC –3,667 4 –3,675 7 –
SC –3,544 8 –3,532 6 –

Davies 0,000 0,000 –



SAAJ 10 (2010)

102 | A MULTIPLE MARKOV SWITCHING MODEL FOR ACTUARIAL USE IN SOUTH AFRICA

A.3	 Tables A.4 to A.6 show the model estimates for SINTt for the periods 1960:1–
2006:2, 1960:1–1998:4 and 1970:1–2006:2 respectively.

Table A.4: SINTt MS-model estimates (1960:1–2006:2)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,007 8
(0,002)

0,007 2
(0,002)

0,004 0
(0,002)

c2
0,031 2
(0,003)

0,023 4
(0,006) –

1
0,860 9
(0,020)

0,865 9
(0,037)

0,962 6
(0,019)

σ1 0,008 222 1 0,005 074 3 0,012 4

σ2 – 0,015 466 –
p11 0,936 8 0,947 2 –

p22 0,829 5 0,920 4 –

ℓ 582,855 0 604,650 1 550,236 2

AIC –6,236 3 –6,461 1 –
SC –6,131 8 –6,339 2 –

Davies 0,000 0,000 –

Table A.5: SINTt MS-model estimates (1960:1–1998:4)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,007 4
(0,002)

0,006 1
(0,002)

0,004 1
(0,002)

c2
0,031 3
(0,003)

0,021 8
(0,004) –

1
0,861 7
(0,023)

0,879 4
(0,030)

0,968 0
(0,020)

σ1 0,008 487 3 0,004 866 2 0,012 9

σ2 – 0,015 909 –
p11 0,929 9 0,946 6 –

p22 0,842 9 0,944 8 –

ℓ 481,199 1 502,697 8 455,000 7

AIC –6,131 6 –6,396 1 –
SC –6,013 8 –6,258 7 –

Davies 0,000 0,000 –
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Table A.6:  SINTt MS-model estimates (1970:1–2006:2)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,010 9
(0,003)

0,011 8
(0,002)

0,006 6
(0,003)

c2
0,034 6
(0,004)

0,031 5
(0,004) –

1
0,835 8
(0,029)

0,816 9
(0,022)

0,944 1
(0,027)

σ1 0,009 126 4 0,005 873 9 0,013 8
σ2 – 0,014 679 –
p11 0,910 7 0,918 5 –

p22 0,829 2 0,911 1 –

ℓ 440,839 7 450,952 1 418,699 4
AIC –5,956 7 –6,081 5 –
SC –5,834 1 –5,938 5 –

Davies 0,000 0,000 –

A.4	 Tables A.7 to A.9 show the model estimates for LINTt for the periods 1960:1–
2006:2, 1960:1–1998:4 and 1970:1–2006:2 respectively.

Table A.7:  LINTt MS-model estimates (1960:1–2006:2)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,003 1
(0,001)

0,001 7
(0,004)

0,002 3
(0,001)

c2
0,016 8
(0,002)

0,006 6
(0,005) –

1,1
0,959 7
(0,012)

0,980 3
(0,099)

0,980 2
(0,013)

1,2 – 0,950 3
(0,039)

σ1 0,005 118 9 0,002 409 4 –

σ2 – 0,008 200 8 0,006 6
p11 0,934 3 0,966 8 –

p22 0,428 8 0,986 1 –

ℓ 678,034 5 705,533 5 –

AIC –7,265 2 –7,540 9 667,186 3
SC –7,160 8 –7,401 6 –

Davies 0,000 0,000 –
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Table A.8: LINTt MS-model estimates (1960:1–1998:4)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,003 0
(0,001)

0,001 6
(0,001)

0,002 3
(0,001)

c2
0,017 1
(0,002)

0,027 1
(0,008) –

1,1
0,964 9
(0,011)

0,983 1
(0,015)

0,984 6
(0,013)

1,2 – 0,817 4
(0,057) –

σ1 0,004 961 2 0,002 51 0,006 5

σ2 – 0,008 190 3 –
p11 0,938 7 0,973 2 –

p22 0,420 7 0,984 4 –

ℓ 572,267 1 605,621 4 561,765 7

AIC –7,306 7 –7,711 2 –
SC –7,188 9 –7,554 2 –

Davies 0,000 0,000 –

Table A.9: LINTt MS-model estimates (1970:1–2006:2)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
0,016 7
(0,005)

0,012 9
(0,004)

0,004 4
(0,002)

c2
0,028 4
(0,007)

0,021 4
(0,006) –

1
0,813 4
(0,054)

0,852 3
(0,041)

0,964 6
(0,020)

σ1 0,006 360 6 0,004 081 8 0,007 4

σ2 – 0,008 318 9 –
p11 0,951 8 0,973 0 –

p22 0,953 2 0,982 7 –

ℓ 513,379 1 524,408 8 511,078 5

AIC –6,950 4 –7,087 8 –
SC –6,827 8 –6,944 7 –

Davies 0,203 4 0,000 0 –
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A.5	 Tables A.10 to A.12 show the model estimates for XSEQt for the periods 1960:1–
2006:2, 1960:1–1998:4 and 1970:1–2006:2 respectively.

Table A.10: XSEQt MS-model estimates (1960:1–2006:2)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
–0,660 6
(0,202)

–0,033 3
(0,093)

0,070 7
(0,034)

c2
0,147 3
(0,045)

0,140 4
(0,041) –

σ1 0,402 25 0,620 57 0,468 0
σ2 – 0,305 81 –
p11 0,336 1 0,825 9 –

p22 0,931 1 0,885 3 –

ℓ –118,751 3 –112,934 5 –121,516 6
AIC 1,337 9 1,285 8 –
SC 1,424 9 1,390 2 –

Davies 0,136 8 0,003 4 –

Table A.11: XSEQt MS-model estimates (1960:1–1998:4)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
–0,669 3
(0,209)

–0,035 0
(0,107)

0,060 1
(0,038)

c2
0,141 2
(0,048)

0,117 2
(0,041) –

σ1 0,405 82 0,657 36 0,477 3

σ2 – 0,306 53 –
p11 0,329 4 0,838 4 –

p22 0,929 0 0,900 4 –

ℓ –102,235 1 –95,875 9 –104,784 9

AIC 1,383 7 1,314 5 –
SC 1,481 9 1,432 3 –

Davies 0,164 6 0,002 5 –
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Table A.12: XSEQt MS-model estimates (1970:1–2006:2)

MSI(2)–AR(1) MSIH(2)–AR(1) AR(1)

c1
–0,308 5

(0,507)
–0,039 6

(0,123)
0,058 6
(0,041)

c2
0,161 5
(0,099)

0,121 0
(0,054) –

σ1 0,454 70 0,659 33 0,496 2

σ2 – 0,337 45 –
p11 0,339 8 0,776 4 –

p22 0,815 8 0,863 0 –

ℓ –103,943 0 –99,564 1 –104,348

AIC 1,492 4 1,446 1 –
SC 1,594 5 1,568 7 –

Davies 0,847 1 0,088 4 –
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APPENDIX B

MAXIMUM-LIKELIHOOD ESTIMATION

B.1	 Suppose we have a sample of size T from a vector-valued autoregressive process
yt

n∈ℜ , and suppose that the parameters, θ, of this process switch between a finite 
number of alternatives based on the unobserved states, st. If the probability of switching 
from one state to another can be expressed in the form of a Markov chain, then Hamilton 
(1990:51) shows that the maximum-likelihood estimates for the transition probabilities 
satisfy :
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B.2	 Using the notation introduced in section 5 of this paper, it follows that:
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which, from equation (13), can be written as:
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B.3	 If we now assume that the joint smoothed inference in equation (B3) is 
independent for each of the variables, then:
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B.4	 This assumption is not restrictive since it is exactly the assumption we made in 
fitting the univariate MS models in our bottom-up identification strategy. Substituting 
into equation (B3) gives the desired result:
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B.5	 Generalising from equation (2), let ε t
n j,  denote the error term associated with 

regime St
*= j for the nth variable at time t, and collect these into a vector, ε n j, , span-

ning the length of the time series. Let ξt T
j
|  denote the smoothed regime probability, 

Pr | ;*S j Yt T=( )λ , and collect these into a vector, ξT
j, spanning the length of the time 

series. Then, under the assumption of heteroscedasticity in either of the two variables 
under consideration, Krolzig (1997:108) shows that the maximum-likelihood estimate 
of the covariance in state j between variables n = p and n = q is:
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B.6	 This is the usual cross-product of error terms, weighted by the smoothed regime 
probability at each point in time and divided by the probability-weighted time that the 
series have been in regime j.

B.7	 Krolzig (op. cit.) also shows that the maximum-likelihood estimate of the 
covariance under homoscedasticity is the cross-product of error terms, weighted by the 
smoothed regime probability at each time and then summed across all regimes before 
dividing by T.
			   Cov Cov

Total

j
p q

j j
p q

j

M

y y
T

T y y: :(( )) == (( ))
==
∑∑1
1

	 (B7)

B.8	 From the univariate analysis of the series, it may transpire that certain variables 
are heteroscedastic while others are homoscedastic. Let S u kt

* ( )=  denote the kth union of 
states with constant variance for variables n = p and n = q. Then the maximum likelihood 
estimate of the covariance for the kth union of states is:
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(The summation is taken across all states that are homoscedastic.)

B.9	 If the correlations are assumed to be constant across all states, an estimate of the 
correlation between variables n = p and n = q can be obtained as follows:
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