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In recent years insurance products have become more complex by providing investors with 
various guarantees and bonus options. This increase in complexity has provided an impetus for the 
investigation into integrated asset- and liability-management frameworks that could realistically 
address dynamic portfolio allocation in a risk-controlled way. In this paper the authors propose 
a multi-stage dynamic stochastic-programming model for the integrated asset and liability 
management of insurance products with guarantees that minimises the down-side risk of these 
products. They investigate with-profit guarantee funds by including regular bonus payments while 
keeping the optimisation problem linear. The uncertainty is represented in terms of arbitrage-
free scenario trees using a four-factor yield-curve model that includes macroeconomic factors 
(inflation, capacity utilisation and the repo rate). They construct scenario trees with path-dependent 
intermediate discrete yield-curve outcomes suitable for the pricing of fixed-income securities. 
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programming model. The model is back-tested on real market data over a period of five years.
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1. INTRODUCTION
1.1 In recent years multi-stage dynamic stochastic-programming models have 
become a popular tool for integrated asset and liability modelling. In contrast to the usual 
mean-variance approach (Markowitz, 1952) with a myopic view of managing investment 
risk over a single period, dynamic stochastic optimisation provides the asset manager 
with an integrated way to model both assets and liabilities in a flexible manner that 
takes into account multi-period dynamic asset allocation and the valuation of liabilities 
under future market conditions. In this approach the rebalancing of the asset portfolio 
is modelled explicitly. Examples of the use of dynamic stochastic-programming models 
in asset and liability management can be found in Kouwenberg (2001) and Mulvey et 
al. (2003). Dempster et al. (2003) show that these models will automatically hedge the 
current portfolio allocation against future uncertainties in asset returns and costs of 
liabilities up to the analysis horizon. They are also flexible enough to take into account 
multi-period horizons, portfolio constraints such as no short-selling, transaction costs 
and the investor’s level of risk-aversion and utility.

1.2 Insurance products have become more complex by providing investors with 
various guarantees and bonus options. This increase in complexity has provided an 
impetus for the investigation into integrated asset- and liability-management frameworks 
that could realistically address dynamic portfolio allocation in a risk-controlled way. 
Examples of the use of dynamic portfolio-optimisation models for asset and liability 
management in the insurance industry are the Russell–Yasuda Kasai model by Cariño & 
Ziemba (1998), the Towers Perrin model by Mulvey & Thorlacius (1998) and the CALM 
model of Consigli & Dempster (1998). More recent contributions specifically in the area 
of insurance products with minimum guarantees using dynamic stochastic programming 
as an asset- and liability-management tool are Dempster et al. (2006) and Consiglio et al. 
(2006).

1.3 Dempster et al. (2006) propose an asset- and liability-management framework 
and give numerical results for a simple example of a closed-end guaranteed fund where 
no contributions are allowed after the initial cash outlay. They demonstrate the design of 
investment products with a guaranteed minimum rate of return focusing on the liability 
side of the product. Through back-testing they show that the proposed stochastic-
optimisation framework reasonably addresses the risk created by the guarantee.

1.4 Consiglio et al. (2006) study the same type of problem by structuring a portfolio 
for with-profit guarantee funds in the United Kingdom. The optimisation problem is 
non-linear. They demonstrate how the model can be used to analyse the alternatives to 
different bonus policies and reserving methods. They investigate the asset and liability 
management of minimum-guarantee products for the Italian industry.

1.5 Inspired by the research of Dempster et al. (2006) and Consiglio et al. (2006), this 
paper proposes a multi-stage dynamic stochastic-programming model for the integrated 
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asset and liability management of insurance products with guarantees, that minimises the 
down-side risk of these products. As proposed in Dempster et al. (2006), this model also 
allows for portfolio rebalancing decisions over multiple periods, as well as for flexible 
risk-management decisions, such as the reinvestment of coupons at intermediate time 
steps. With-profits guarantee funds are investigated, as in Consiglio et al. (2006), by 
including regular bonus payments. Once these bonuses have been declared, the bonuses 
become guaranteed. To keep the optimisation problem linear, the way in which bonuses 
are declared is changed. The problem is kept linear, for two reasons. The first is that, by 
keeping the problem linear, the rebalancing of the portfolio can be modelled at future 
decision times. By doing so the dynamic stochastic-programming model automatically 
hedges the first-stage portfolio allocation against projected future uncertainties in asset 
returns (see Dempster et al., 2003, 2006). The second reason is that the model is flexible 
enough to take into account portfolio constraints such as the prohibition of short-selling, 
transaction costs and coupon payments.

1.6 For the South African insurance market, Katz & Rosenberg (unpublished) uses 
a sample smoothed-bonus annuity contract to illustrate the weaknesses of traditional 
pricing, valuation and risk management tools used by life offices particularly in a low 
interest rate environment. Furthermore, they describe, illustrate and argue the merits of 
a coherent pricing, valuation and risk-management framework for managing smoothed-
bonus contracts.

1.7 The pricing of contingent claims and the dynamic management of portfolios 
are two sides of the same coin. The main differences between them are highlighted by 
Consiglio et al. (2006). The literature on the pricing of products with guarantees assumes 
that the reference portfolio is given exogenously (e.g. equities 60% and bonds 40%), and 
does not address the problem of structuring this portfolio optimally. The possible upside 
potential is ignored. According to Dempster et al. (2006):

“This is where the asset manager has a potential advantage. He or she can provide 
the protection while still exposing the client to high-risk markets through active asset 
allocation to potentially higher returns.”

Consiglio et al. (2001) have shown that the financial institution could substantially 
increase shareholder value by structuring the reference portfolio. This can be done by 
viewing it as an integrated asset- and liability-management optimisation problem. Long-
term options, which form the backbone of valuation methods, are in general available 
only as over-the-counter contracts. This adds a credit-risk component to the problem 
that is largely ignored. The replicating-portfolio approach used to value these products 
assumes continuous rebalancing. This assumption and the other assumptions of the 
Black–Scholes model are unrealistic.

1.8 Foroughi et al. (2003) explore the risks faced by South African life insurers 
arising from the provision of investment guarantees in these products. Furthermore, 
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they examine various forms of investment guarantees available in South Africa and the 
business issues created by writing these products. They compare existing methods used to 
value them and discuss practical issues around the building of asset and liability models 
for that purpose. They identify non-profit immediate annuities, participating immediate 
annuities, unit-linked saving products with a maturity guarantee and smoothed-bonus 
savings products with a maturity guarantee as the four main products with investment 
guarantees sold in South Africa.

1.9 It is worth noting that the with-profit guarantee funds discussed in this paper are 
operated by on a 90–10 basis: the policyholders benefit in 90% of the growth in asset 
share and the shareholders in 10%. These products occur to a lesser extent in the South 
African insurance market (see Foroughi et al., 2003). The main goals of this paper are 
firstly to renew awareness of the concept of stochastic programming among the South 
African actuarial community and secondly to extend the work of Dempster et al. (2006) 
and Consiglio et al. (2006). This however provides wide scope for further research of 
these products in the South African insurance market.

1.10 The uncertainty is represented by scenario trees with a four-factor yield-curve 
model that includes macroeconomic factors (inflation, capacity utilisation and the repo 
rate). Scenario trees are constructed whose outcomes are path-dependent intermediate 
discrete yield curves suitable for the pricing of fixed-income securities (see section 3.1).

1.11 The rest of the paper is structured as follows. In Section 2 the formulation and 
implementation of the multi-stage stochastic-programming model is discussed. Section 
3 presents back-testing results. The back-tests are done on real market data over a period 
of five years.

2. SCENARIO OPTIMISATION FRAMEWORK
In this section a linear multi-stage dynamic stochastic programming model is 

proposed for the integrated asset and liability management of insurance products with 
guarantees, that minimises the down-side risk of these products.

2.1 MODEL FEATURES
2.1.1 As in Consiglio et al. (2006) the optimal asset allocation of a with-

profit guarantee fund is investigated by including regular bonuses. As explained above, 
the fund is operated by a proprietary insurer on a 90–10 basis. It is assumed that there 
is a cohort of policyholders, paying a single upfront premium and that no contributions 
are allowed thereafter. At maturity there is an underlying guarantee to pay a minimum 
annual rate of return of g on the initial premium. In addition to receiving a guaranteed 
rate of return on the initial premium, policyholders also receive several bonuses.  
Bonuses are meant to reflect the overall performance of the insurer’s portfolio, and to 
correspond to policyholders’ reasonable expectations. Two types of bonuses are received 
by the policyholder, namely regular bonuses (declared annually) and terminal bonuses 
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(awarded on maturity). Regular bonuses are ‘vesting’; in other words they are guaranteed 
once declared and cannot be reduced (Consiglio et al., 2006). The time horizon of the 
fund is T years. Two asset classes are used, namely, bonds bearing semi-annual coupons 
and equities modelled by means of indices.

2.1.2 To represent uncertainty, future yield curves and index movements are 
simulated and a scenario tree is constructed. A scenario tree is a discrete approximation of 
the joint distribution of random factors (yield curve and equity indices). To facilitate the 
mathematical formulation of the optimisation problem, the scenario tree is represented 
in terms of states (or ‘nodes’) v

ts  where 1 2
12 120, , , ,t T=   and v = 1,2,…,St. The states at 

time t are denoted by:

    
{ }| 1, 2, ,v

t t ts v SΣ = =  .

To enforce non-anticipativity, i.e. to prevent foresight of uncertain future events, we order 
the states in pairs ( ) ( )( )1

1,v t v t
t ts s +

+ , where the dependence of the index v on t is explicitly 
indicated. The order of the states indicates that state ( )1

1
v t
ts +
+  at time t +1 can be reached 

from state ( )v t
ts  at time t. ( )1

1
v t
ts +
+  is a ‘successor state’ and ( )v t

ts  the ‘predecessor state’. By 
using the superscripts “+” to denote successor states and “–” to denote the predecessors, 
we have:

    
( ) ( )1

1
v t v t
t ts s+ +

+=  and ( ) ( )1
1

v t v t
t ts s+ −
+ = .

Each state v
ts  has the associated probability s

tp  such that:

    1
t

s
ts

p
∈∑

=∑ .

Random factors in the scenario tree at time t are indexed by states s  Σt .
2.1.3 The annual decision times td = 0,1,2,…,T–1 are the times at which 

the fund will trade to rebalance its portfolio. The branching of the tree structure is 
represented by a ‘tree-string’, which is a string of integers specifying for each decision 
time td the number of branches for each state s∑

d . This specification gives rise to a 
balanced scenario tree in which each sub-tree in the same period has the same number of 
branches. Figure 1 gives an example of a scenario tree with a (3, 2) tree-string, giving a 
total of 6 scenarios.

2.2 MODEL VARIABLES AND PARAMETERS
2.2.1 The notation used for variables and parameters of the model is set out 

in Tables 1 to 4, where the time index t takes values over the times 1 2
12 120, , , ,t T=  , and 

the states index s takes values from the set { }| 1, 2, ,v
t t ts v SΣ = =  . In this paper ‘yield’ 

means the yield to maturity on a zero-coupon bond.
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Table 1: Time sets

{ }1 2
12 120, , , ,totalT T=  : set of all times considered in the stochastic program

{ }0,1,2, , 1dT T= − : set of decision times

\i total dT T T= : set of intermediate times

{ }31 1
2 2 2, , ,cT T= − : set of coupon payment times between decision times

Table 2: Index sets

{ }| 1, 2, ,v
t t ts v SΣ = =  : set of states at period t

SI : set of equity indices

{ }B Bτ= : set of government bonds with maturity τ

I = SIB : set of all instruments

Figure 1: Graphic representation of a scenario tree
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Table 3: Parameters

Bτ
δ coupon rate of a government bond with maturity τ

BF
τ face value of a government bond with maturity τ

,
s

tr τ yield to maturity τ at time t in state s

g minimum guaranteed rate of return

ρ regulatory equity-to-debt ratio

,
s

t br benchmark rate at time t in state s

γ policyholders’ rate of participation in the profits of the insurer

β target terminal bonus

, ,
, , or a s b s

t i t iP P ask or bid price of asset i I  at time t in state s

 or a bf f proportional transaction costs on ask or bid transactions

s
tp probability of state s in period t

Table 4: Decision variables

{ },
s s
t t i i I

x x
∈

= quantities of assets bought at time t in state s

{ },
s s
t t i i I

y y
∈

= quantities of assets sold at time t in state s

{ },
s s
t t i i I

z z
∈

= quantities of assets held at time t in state s

s
tA value of assets account at time t in state s
s
tL value of liability account at time t in state s
s
tE value of equity account at time t in state s
s
tc amount of equity provided by shareholders at time t in state s

s
tSF amount of shortfall at time t in state s

s
tRB regular bonus payment declared at time t in state s
s
TTB policyholders terminal bonus at time T in state s

2.3 BOND PRICING
It is assumed that all bonds pay semi-annual coupons of Bτ

δ and derive bid and 
ask prices by adding a spread, sp, to the yields. Let ,

,
a s

t BP
τ
 denote the ask price at time t of 

a coupon-bearing bond with maturity τ, so that:
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( )( ) ( ) ( )( )

{ }
, ,

2 2 21
2 2 2 2

, 1
, 2, 1, ,

ss
t t t m t

t t t

m t r spt r spa s
t B B B Bm
P F e F eτ

τ τ τ τ

τ

τ
δ− −

          

− − +− − +

= + + +
= +∑



	 	 	 	 for	tT total	and	s  Σt ;
where	the	principal	amount	is	discounted	in	the	first	term	and	the	coupon-payment	stream	
in	the	second	term.	Let	 ,

,
b s
t BP τ
	denote	the	bid	price	at	time	t	of	the	bond	with	maturity	τ,	so	

that:
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ,
	

( )( ) ( ) ( )( )
{ }

, ,
2 2 21
2 2 2 2

, 1
, 2, 1, ,

ss
t t t m t

t t t

m t r spt r spb s
t B B B Bm
P F e F eτ

τ τ τ τ

τ

τ
δ− −

          

− − −− − −

= + + +
= +∑



	 	 	 	 for	tT total	and	s  Σt .

2.4	 VARIABLE	DYNAMICS	AND	CONSTRAINTS
2.4.1	 The	 variable	 dynamics	 and	 constraints	 for	 the	 minimum-guarantee	

problem	are	as	stated	in	¶¶2.4.2–10.
2.4.2	 The	 cash-balance	 constraints	 ensure	 that	 the	 amount	 of	 cash	 that	 is	

received	from	selling	assets,	coupon	payments	at	decision	times	and	equity	supplied	for	
a	shortfall	is	equal	to	the	amount	of	assets	bought,	as	follows:

	
( ),

0, 0, 01a s s s
i i ai I

P x f A
∈

+ =∑ ,	for	t{0}	and	s  Σt ;	and

( ) { } ( ), ,1
, , , , ,2\

1 1b s s s s a s s
t i t i b i i t i t t i t i ai I i I SI i I
P y f F y c P x fδ

∈ ∈ ∈
− + + = +∑ ∑ ∑ ,

	 	 	 	 for	tTd \{0}	and	s  Σt .
2.4.3	 The	short-sale	constraints	eliminate	the	short-selling	of	assets	in	each	

state	during	each	time	period,	as	follows:

	 	 , 0s
t ix ≥ ,	for	all	iI,	tTtotal \{T}	and	s  Σt ;

	 	 , 0s
t iy ≥ ,	for	all	iI,	tTtotal \{0}	and	s  Σt ;	and

	 	 , 0s
t iz ≥ ,	for	all	iI,	tTtotal \{T}	and	s  Σt .

2.4.4	 The	inventory	constraints	give	the	quantity	invested	in	each	asset	for	
each	state	during	each	time	period,	as	follows:

	 	 0, 0,
s s
i iz x= ,	for	t{0}	and	s  Σt ,	and

	 	 , , , ,
s s s s
t i t i t i t iz z x y−= + − ,	iI,	tTtotal \{0}	and	s  Σt .

2.4.5	 As	the	portfolio	is	rebalanced	only	at	decision	times,	the	information	
constraints	ensure	that	portfolio	cannot	be	changed	between	decision	times,	as	follows:

	 	 , , 0s s
t i t ix y= = ,	for	iI,	tTi \Tc	and	s  Σt .

2.4.6	 The	coupon	reinvestment	constraints	ensure	that	the	coupons	that	are	
paid	at	the	coupon	times	are	reinvested	in	the	same	coupon-bearing	bonds,	as	follows:



SAAJ 10 (2010)

A STOCHASTIC-PROGRAMMING APPROACH TO INTEGRATED ASSET & LIABILITY MANAGEMENT | 51

	 	
( )

1
,2

, ,
, 1

s
i i t is

t i a s
t i a

F z
x

P f
δ −

=
+

,	for	iI \{SI},	tTc	and	s  Σt ;

	 	 , 0s
t iy = ,	for	iI \{SI},	for	tTc	and	s  Σt ;	and

	 	 , ,0, 0s s
t SI t SIx y= = ,	for	tTc	and	s  Σt .

2.4.7	 The	asset-account	constraints	determine	the	value	of	the	asset	account	
for	each	state	at	each	time.	The	value	of	the	asset	account	is	determined	after	rebalancing;	
i.e.	any	equity	 s

tc 	that	has	been	provided	by	shareholders	to	fund	shortfalls,	is	taken	into	
account	by	the	cash-balance	constraints,	as	follows:

	 	 0 0 0
s sA L E= + ,	for	t{ 0 } and	s  Σt ;

	 	
( ),

, , 1s a s s
t t i t i ai I
A P z f

∈
= +∑ ,	for	tT total \{T}	and	s  Σt ;	and

	 	
( ) { }1 1

12 12

, 1
, , ,2\

1s b s s s
T T i b i iT i T ii I i I SI
A P z f F zδ− −

− −∈ ∈
= − +∑ ∑ ,	for	s  Σt .

2.4.8	 The	 liability-account	 constraints	determine	 the	value	of	 the	 liability	
account	for	each	state	at	each	time.	The	liability	grows	at	the	guaranteed	rate	of	return	
and	is	increased	by	any	regular	bonus	payments	that	are	declared,	as	follows:

	 	 0 0
sL L= ,	for	t{ 0 } and	s  Σt ;	and

	 	
1
12

1
12

gs s s
t ttL L e RB−

−= + ,	for	tT total \{T}	and	s  Σt .

2.4.9	 The	 equity-account	 constraints	 determine	 the	 value	 of	 the	 equity	
account	 for	 each	 state	 at	 each	 time.	The	 equity	 grows	 at	 the	 one-month	 return.	 The	
shortfall	is	funded	by	the	shareholders	by	the	infusion	of	additional	equity,	as	follows:

	 	 0 0
s sE c= ,	for	t{0}	and	s  Σt ;	and

	 	
1 ,12

1
12

s
t trs s s

t ttE E e c
−
−−

−= + ,	for	tT total \{T}	and	s  Σt .

2.4.10	 The	 regular-bonus	 constraints	 determine	 the	 amount	 of	 the	 regular	
bonus	 payment	 for	 each	 state	 at	 each	decision	 time.	To	determine	 the	 amount	 of	 the	
regular	 bonus	 the	 approach	 described	 by	Consiglio	 et  al.	 (2006)	 is	 followed.	This	 is	
based	on	that	of	Ross	(1989),	where	the	regular	bonuses	are	determined	by	aiming	for	a	
target	terminal	bonus,	i.e.	the	insurer	wishes	the	policyholders’	terminal	benefit	to	be	a	
fixed	portion	of	the	total	benefit	received.	Regular	bonuses	are	assumed	to	be	declared	at	
decision	times	only	(i.e.	annually).

2.4.11	 It	is	assumed	that	the	asset	account	will	grow	at	the	current	benchmark	
rate,	 ,

s
t br ,	up	to	termination,	giving	the	terminal	asset	value	as:

	 	 	 	
( ),

s
t br T ts bs

T tA A e −= ;
where
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( ) { }1 1

12 12

, 1
, , ,2\

1bs b s s s
t t i b i it i t ii I i I SI
A P z f F zδ− −

− −∈ ∈
= − +∑ ∑

is	the	value	of	the	asset	account	before	transactions.	It	is	further	assumed	that	the	liabilities	
will	grow	at	the	minimum	guaranteed	rate	of	return,	g,	up	to	termination.	Furthermore,	
it	is	assumed	that	the	regular	bonus	payment,	 s

tRB ,	that	is	declared	at	time	t,	will	stay	
constant	 throughout	 the	 remainder	 of	 the	 term	 and	will	 be	 invested	 at	 the	minimum	
guaranteed	rate	of	return,	g.	Thus	the	terminal	liability	value	is:

	 	 	

( )
( )1

12
1
12

( ) 1
1

g T t
g T tg T ts s s

T tt g

eL L e RB e
e

−
−− +−

−

 −
= + +  − 

,

where

	 	 	 	

( )
( )1

1

g T t
g T t

g

e e
e

−
− −

+  − 
is	the	accumulated	value	of	a	constant	annuity	with	payment	of	one	cash	unit	from	time	
t	to	time	T	invested	at	the	minimum	guaranteed	rate	of	return,	g.

2.4.12	 The	terminal	bonus,

	 	 	 	 ( )s s s
T T TTB A Lγ= − ,

received	by	the	policyholders	needs	to	constitute	100β%	of	the	total	amount	received	by	
the	policyholders,	so	that:

	 	 	 	

s
T

s s
T T

TB
TB L

β=
+

.

Solving	for	 s
tRB 	yields:

	 	

( ) ( ) ( )( ) ( )

( )( )
( )

( )

1
, 12

1
12

,1 1

11
1

s
t b g T tr T tb s s

t ts
t g T t

g T t
g

A e L e
RB

e e
e

γ β β γ β

β γ β

− +− −
−

−
−

− − + −
=

 −
+ − + − 

.
	

When	the	expected	terminal	asset	amount	exceeds	the	expected	terminal	liability	amount,	
regular	bonuses	will	be	positive.	Conversely,	when	the	expected	terminal	liability	amount	
exceeds	the	expected	terminal	asset	amount	the	regular	bonus	will	be	negative.	As	the	
declaration	of	negative	bonuses	would	be	unfair	 towards	policyholders,	 the	following	
regular-bonus	constraint	is	introduced:

	 	

( ) ( ) ( )( ) ( )

( )( )
( )

( )

1
, 12

1
12

,1 1

11
1

s
t b g T tr T tb s s

t ts
t g T t

g T t
g

A e L e
RB

e e
e

γ β β γ β

β γ β

− +− −
−

−
−

− − + −
≥

 −
+ − + − 

,

	 	 	 for	 { }( ) { }\ 0dt T T∈ ∪ 	and	s  Σt ;
where

	 	 0s
tRB ≥ 	and	 0s

tRB = 	for	 { }( ) { }0 \it T T∈ ∪ 	and	s  Σt .

By	enforcing	 the	 regular-bonus	constraint	 the	optimisation	will	determine	 the	 regular	
bonus	amount	 s

tRB 	at	each	decision	period.
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2.4.13	 Consiglio	 et  al.	 (2006)	 also	 consider	 the	 ‘working	 party	 approach’	
based	on	Chadburn	(unpublished),	which	in	turn	is	based	on	work	done	by	a	working	
party	of	the	Institute	of	Actuaries.	This	approach	allows	for	the	declaration	of	regular	
bonuses	 (in	 return	 form)	 to	 reflect	 the	 benchmark	 return,	 provided	 that	 the	 liability	
account	remains	lower	than	the	value	of	the	‘reduced	asset	account’,	which	accumulates	
at	75%	of	the	return	on	assets.	Consiglio	et al.	(2006)	test	their	model	with	both	these	
features	and	find	that	bonus	policies	aiming	for	a	target	terminal	bonus	outperform	bonus	
polices	based	on	the	working	party’s	approach.

2.4.14	 The	 shortfall	 constraints	 determine	 the	 regulatory	 shortfall	 of	 the	
portfolio	for	each	state	at	each	time.	The	shortfall	is	calculated	by	using	the	value	of	the	
asset	account	before	transaction	as	follows:

	 	 ( )0 0 01s sSF L Lρ+ ≥ + ,	for	t{ 0 } 	and	s  Σt ;	and

	 	 ( ) 1
12

1
12

1 gs bs s
t t tSF A L eρ −+ ≥ + 	for	t(T total \{0})	and	s  Σt ;
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	 	 ( ) { }1 1
12 12

, 1
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is	the	value	of	the	asset	account	before	transactions;	and

	 	 	 0s
tSF ≥ 	for	tT total	and	s  Σt .

The	shortfalls	 s
tSF 	at	decision	times	are	funded	by	the	shareholders’	equity	payment,	 s

tc ,	
thus:

	
s s
t tc SF= 	for	 ( ) { }dt T T∈ ∪ 	and	s  Σt ,	and	zero	at	intermediate	nodes;	and

	 	 	 0s
tc = 	for	tTi \{T } 	and	s  Σt .

By	 enforcing	 the	 shortfall	 constraints	 the	 optimisation	will	 determine	 the	 amount	 of	
equity	 s

tc 	to	be	provided	by	the	shareholders	at	each	decision	time.
2.4.15	 Portfolio-composition	constraints	can	be	introduced	in	order	to	reduce	

concentration	risk	and	to	consider	the	policyholder	expectations	on	the	underlying	asset	
mix.	The	following	portfolio	constraints	are	applied:

	
	 	 	 	

,
, ,
a s s
t i t ii I
s I
t

P z
W

π∈ ≤∑




;

where	Ĩ	may	be	some	subset	of	I	and	πĨ	the	upper	limit	for	the	proportion	of	asset	share	
invested	in	the	subset	of	assets	Ĩ.

2.5	 OBJECTIVE	FUNCTION
2.5.1	 In	the	management	of	a	minimum-guarantee	fund	there	are	two	main	

goals	to	take	into	account.	The	first	is	the	management	of	the	investment	strategies	of	the	
fund.	The	second	is	to	maximise	the	shareholder	value	taking	into	account	the	minimum	
guarantee	given	to	policyholders.	The	shareholders’	final	wealth	is	given	as:

	 	 	 ( ) ( )( )1 T T T TA E L Eγ− − − + ;
where
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is	the	excess	amount	they	receive	after	the	liability	and	the	equity	have	been	paid.

2.5.2	 The	objective	to	consider	is	the	maximum	expected	excess	wealth	of	
the	shareholders	and	the	minimum	average	expected	shortfall	over	all	periods.	Dempster	
et al.	(2006)	have	shown	that	the	examination	of	shortfall	at	intermediate	nodes	improves	
the	results.	The	objective	function	is	given	as:

	 	
{ }

( ) ( ) ( )( )
, , ,, , :
, ,

1 1

max
T
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t i t i t i

d
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t
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α γ
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 −
  

∑

∑ ∑
;

where	α[0,1]	sets	the	level	of	risk-aversion	and	can	be	chosen	freely.	If	the	value	of	
α is	closer	 to	1,	more	 importance	 is	given	 to	 the	shortfall	of	 the	portfolio	and	 less	 to	
the	expected	excess	wealth	of	the	shareholders	and	hence	a	more	risk-averse	portfolio	
allocation	strategy	will	be	taken	and	vice	versa.	In	the	extreme	case	where	α	=	1,	only	the	
shortfall	will	be	minimised	and	the	expected	excess	wealth	will	be	ignored,	and	α	=	0,	
the	unconstrained	case,	only	maximises	the	expected	excess	wealth	of	the	shareholders.

2.5.3	 The	resulting	linear	program	is	presented	in	Appendix	A.

3.  RESULTS
In	 this	 section	 the	 performance	 of	 the	model	 is	 discussed.	The	first	 two	parts	

explain	 the	 scenario-generation	 algorithm	 that	 was	 used	 to	 generate	 scenario	 trees,	
which	 is	 the	 input	 to	 the	mathematical	 optimisation	 problem.	 In	 the	 third	 part	 back-
tested	results	are	presented	for	different	levels	of	the	guarantee	rate	and	different	levels	
of	risk-aversion.

3.1	 SCENARIO	GENERATION
3.1.1	 The	yield-curve	dynamics	are	estimated	with	the	four-factor	yield	curve	

representation	of	Svensson	(1994).	The	four	unobserved	factors,	level,	slope	and	the	two	
curvature	 factors,	which	 provide	 a	 good	 representation	 of	 the	 yield	 curve,	 are	 linked	
to	the	macroeconomic	variables	by	means	of	a	state-space	model.	The	following	three	
variables	are	included	as	measures	of	the	state	of	the	economy:	manufacturing	capacity	
utilisation,	which	represents	the	level	of	real	economic	activity	relative	to	potential;	the	
annual	percentage	change	in	the	inflation	index,	which	represents	the	inflation	rate;	and	
the	repo	rate,	which	represents	the	monetary-policy	instrument.	According	to	Diebold	
et al.	(2006)	these	three	macro-economic	variables	are	considered	to	be	the	minimum	
set	of	fundamentals	needed	to	capture	the	basic	macroeconomic	dynamics.	The	model	
parameters	are	estimated	using	a	Kalman-filter	approach.	For	a	complete	description	of	
the	model	and	the	calibration	of	its	parameters,	see	Raubenheimer	&	Kruger	(2010).

3.1.2	 Raubenheimer	&	Kruger	(op. cit.)	also	propose	a	parallel	simulation	
and	 clustering	 approach	 to	 create	 the	 scenario	 tree	 as	 described	 in	 section	 2.1.	 As	
explained	in	¶2.1.3,	a	T-period	scenario	tree	is	represented	as	a	tree-string.	Let

( ) ( )( )1 T T TA E Lγ− − −
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	 	 	 	 k0,k1,…,kd ,…,kT–1
denote	a	typical	tree-string.	Then	the	branching	factor	for	decision	time	td ,	is	given	by	
kd .	For	the	example	in	Figure	1,	k0	=	3	and	k1	=	2.

3.1.3	 In	order	to	group	the	scenarios,	a	measure	of	relative	position	is	used	
to	calculate	the	‘distance’	between	the	discounting	factors	of	the	yield	curve	and	that	of	
the	average,	viz.:

	 	 	
( ) ( ), ,

1 1

1 1n M
t t

D
r r

τ ττ
τ τ

 
 = −
 + + 

∑ ;

where	 ,
n

t Tr 	is	the	yield	to	maturity	τ	and	 ,
M

tr τ 	the	average	yield	to	maturity	τ.	Note	that	the	
relative	distance	D	can	be	negative	or	positive,	which	means	that	a	yield	curve	can	be	
positioned	to	the	left	or	to	the	right	of	the	average	yield	curve.	It	is	necessary	to	represent	
each	group	of	scenarios	with	a	single	‘representative’	or	‘centroid’,	which	becomes	the	
data	in	the	scenario	tree.	The	mean	of	the	group	is	used	here	as	the	notion	of	the	centre.

3.1.4	 The	main	steps	of	the	algorithm	can	be	outlined	as	follows:
Step	1:	 	At	 s =	0	 create	 a	 root	 node	 group	 containing	N	 scenarios.	 Generate	 all	 the	

scenarios	using	Monte	Carlo	simulation	and	the	four-factor	yields-macro	model.	
(See	Raubenheimer	&	Kruger	(2010)	for	details	of	this	model.)	Each	scenario	is	
equally	likely	and	consists	of	T +1	sequential	yield	curves	with	the	same	starting	
point,	the	current	yield	curve	(in	total	(T +1)	N	yield	curves	are	generated).

Step	2:	 	Set	 s =	s	+1	 and	 for	 each	 group	 in	 the	 previous	 stage,	 calculate	 the	 average	
scenario	and	calculate	the	relative	position	of	each	scenario	with	respect	to	the	
average.

Step	3:	 	For	each	group,	sort	the	scenarios	in	descending	distance	order	and	group	them	
into	ks	equal-sized	groups.

Step	4:	 	For	each	new	group,	find	the	scenario	closest	(in	absolute	value)	to	average	of	the	
group,	and	designate	it	as	the	centroid.	To	each	centroid	assign	the	probability:

	 	 	 	 	 	 	
( ) 11

1

s
ii

k
−−

=∏ .

Step	5:	 	If	s <	T,	go	to	step	2,	otherwise	stop.
3.1.5	 The	 scenarios	 generated	 are	 not	 arbitrage-free	 (see	 Klaassen,	 2002	

and	Filipović,	1999).	Raubenheimer	&	Kruger	(2010)	propose	the	following	method	to	
eliminate	the	arbitrage	opportunities:
Step	1:	 	At	the	root	node	create	a	group	of	N	scenarios.	Generate	all	the	scenarios	using	

Monte	 Carlo	 simulation	 and	 the	 four-factor	 yields-macro	 model	 (as	 for	 the	
scenario	tree).	Each	scenario	is	equally	likely	and	consists	of	T	sequential	yield	
curves.

Step	2:	 	At	each	decision	time	of	the	scenario	tree	calculate	the	average	of	the	N	generated	
scenarios	(at	the	root	node	the	current	yield	curve	is	used).

Step	3:	 	Then,	 for	 each	 average	 yield	 curve	 and	 the	 corresponding	 one-period	 ahead	
scenarios,	solve:



SAAJ 10 (2010)

56 | A STOCHASTIC-PROGRAMMING APPROACH TO INTEGRATED ASSET & LIABILITY MANAGEMENT

	 	 	

	 for	all	maturities,	to	obtain	the	yield	curve	shifts	ct+1,τ.
Step	4:	 	Add	the	spread	ct+1,τ	to	the	original	scenario-tree	yield	curves.

3.1.6	 The	described	method	removes	most	of	the	arbitrage	opportunities	in	
the	scenario	tree,	with	a	few	opportunities	left	in	sub-trees.	For	scenario	trees	with	a	short	
horizon	all	opportunities	may	be	removed.	This	reduction	of	arbitrage	opportunities	is	
considered	sufficient,	since	portfolio	constraints	in	optimisation	problems,	such	as	the	
restriction	of	short-selling	and	the	inclusion	of	bid–ask	spreads,	will	eliminate	the	effect	
of	the	remaining	arbitrage	opportunities.

3.2	 DATA	AND	CALIBRATION	INSTRUMENTS
3.2.1	 Six	 different	 assets	 were	 used,	 namely	 bonds,	 bearing	 semi-annual	

coupons,	with	maturities	5,	7,	10,	15	and	19	years,	and	the	FTSE–JSE	Top-40	equity	
index.	In	order	to	generate	scenarios	for	the	Top-40	index,	the	index	is	modelled	using	
a	simple	linear	regression	model	incorporating	the	three	macroeconomic	variables.	The	
‘perfect	fit	bond	curves’,	one	of	the	five	BEASSA	‘zero	coupon	yield	curve’	series	of	
yield	curves,1	with	maturities	1,	2,	3,	6,	9,	12,	15,	18,	21,	24,	36,	48,	60,	72,	84,	96,	108,	
120,	132,	144,	156,	168,	180,	192,	204,	216	and	228	months	were	used.	The	curves	are	
derived	from	government	bond	data.2	End-of-month	data	were	used	from	August	1999	
to	February	2009	and	a	tree	structure	with	approximately	the	same	number	of	scenarios.	
The	tree	structure	used	in	back-testing	is	displayed	in	Table	5.

Table	5:	Tree	structure	used	for	back-testing

Year Tree-string	

April	2003 5.5.5.5.5	=	3	125

April	2004 8.8.8.8	=	4	096

April	2005 15.15.15	=	3	375

April	2006 56.56	=	3	136

April	2007 3	125

3.2.2	 The	scenario	generation	approach	outlined	above	was	used	to	generate	
the	 input	 scenarios	 for	 the	optimisation	problem.	The	 four-factor	yields-macro	model	
is	fitted	to	market	data	up	to	an	initial	decision	time	t	and	scenario	trees	are	generated	

1	 	An	introduction	to	the	BEASSA	zero	coupon	yield	curves.	Bond	Exchange	of	South	Africa,	
Johannesburg,	2003

2	 	The	BEASSA	zero	coupon	yield	curves:	Technical	specifications.	Bond	Exchange	of	South	
Africa,	Johannesburg,	2003
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from time t to some chosen horizon t + T. The optimal first-stage or root-node decisions 
are then implemented at time t. The success of the portfolio strategy is measured by its 
performance with historical data up to time t + 1. This whole procedure is rolled forward 
for T trading times. At each decision time t, the parameters of the four-factor yields-
macro model are re-estimated using the historical data up to and including time t.

3.3 BACK-TESTED RESULTS
3.3.1 Back-tests were performed over the period of five years from February 

2004 to February 2008, for different levels of minimum guarantee and for different levels 
of risk-aversion. For each of these back-tests, at different levels, the annual expected 
excess return on equity is reported. This is taken to be

   

( )( )1
1

T

s s s
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T ss
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γ γ
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 − − +
  −
 
 

∑
at each decision time. The annual actual excess return on equity is also reported. This is 
taken to be
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The expected cost of the guarantee is also reported. This is taken to be the expected 
present value of the final equity, after deduction of the regulatory equity or equity at the 
start, viz.:
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is a predecessor- and successor-state pair as defined in section 2.1. The actual cost of the 
guarantee, is taken to be
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3.3.2 Figure 2 shows the expected return on equity at decision times and the 
actual return on equity for different levels of the minimum guarantee, where α = 0,5. The 
model underestimates the return on equity, but the expected return on equity improves as 
more data become available for model estimation after the first decision time. The actual 
return on equity increases as the minimum guarantee increases up to 13%; after 13% it 
decreases as the minimum guarantee increases.

3.3.3 Figure 3 shows the expected cost of the guarantee at the decision times 
and the actual cost of the guarantee, where α = 0,5. The model firstly overestimates 
the cost of the guarantee and as more data become available for model estimation, after 
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the first decision time, the expected cost of the guarantee improves. For a minimum 
guarantee of less than 9% a year the model requires no additional equity. As the minimum 
guarantee increases above 13% a year, the amount of equity required increases.

Figure 2: Shareholders’ annual excess return on equity for different levels 
of minimum guarantee

Figure 3: Cost of the guarantee for different levels of minimum guarantee
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3.3.4	 It	is	expected	that	the	expected	return	on	equity	will	decrease	as	the	
minimum	guarantee	 increases,	which	 is	 in	contrast	 to	 the	 results.	The	 increase	 in	 the	
expected	 return	 on	 equity	 if	 the	minimum	guarantee	 increases	 to	 13%	a	 year	 can	 be	
explained	from	the	zero	cost	of	the	guarantee	for	minimum	guarantees	of	less	than	13%	
a	 year.	Therefore	 a	 higher	 excess	 return	 on	 equity	 can	 be	 achieved	 for	 higher	 levels	
of	minimum	guarantee	 if	 this	 comes	at	no	 extra	 cost	 to	 the	 shareholders.	 If	 a	 cost	 is	
incurred	to	ensure	a	certain	level	of	minimum	guarantee,	the	expected	return	on	equity	
will	decrease	if	the	minimum	guarantee	increases.

3.3.5	 Figure	4	shows	the	performance	of	the	asset	and	liability	accounts	at	
minimum	guarantees	of	1%,	9%	and	15%	a	year	for	α	=	0,5.	The	asset	level	stays	above	
the	 liability	 level	 over	 the	 entire	 period.	Regular	 bonuses	 are	 paid	 up	 to	 a	minimum	
guarantee	of	15%	a	year,	and	regular	bonuses	decrease	as	the	level	of	minimum	guarantee	
increases.	This	 is	because	 the	average	benchmark	rate,	 the	 rate	used	 to	determine	 the	
regular	bonus	payments,	is	about	8%	a	year.	Thus	for	lower	levels	of	minimum	guarantee,	
the	amount	of	regular	bonus	payments	declared	will	be	higher.

3.3.6	 Consiglio	et al.	(2006)	specify	regular	bonuses	in	return	form.	That	is	
more	realistic	than	the	formulation	of	discrete	annual	payments,	which	is	used	here	in	
order	to	keep	the	problem	linear.	Consiglio	et al.	(2006)	assume	that	the	bonus	return,	

s
tRB ,	that	is	declared	at	time	t	will	stay	constant	throughout	the	remainder	of	the	term,	

giving	the	terminal	liability	value	as:

	 	 	 	
( )( ) s

tRB T ts s g T t
T tL L e e −−= .

With	all	other	assumptions	staying	constant	the	regular	bonus	yields:

Figure	4:	Asset	and	liability	account	at	minimum	guarantees	of	1%,	9%	and	15%	a	year
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3.3.7	 The	 liability	 process	 proposed	 by	 Consiglio	 et al.	 (2006)	 has	 also	
been	implemented	here	and	included	in	the	back-testing	performance	results.	Figure	5	
shows	that	the	discrete	approximation	of	bonuses	mimics	the	more	realistic	approach	of	
Consiglio	et al.	(2006).	Recall	that	the	approach	adopted	here	has	the	added	advantage	of	
keeping	the	overall	problem	linear,	which	allows	the	inclusion	of	more	realistic	portfolio-
management	constraints.

3.3.8	 Figure	6	shows	the	first-stage	optimal	asset	allocation	at	the	(forward-
rolling)	 rebalancing	 times	 for	 different	 levels	 of	 the	 minimum	 guarantee	 with	 α	 =	
0,5.	The	asset	allocation	 for	February	2004	seems	consistent.	At	 reasonable	 levels	of	
minimum	guarantee	the	portfolio	is	less	aggressive	and	allocates	lower	proportions	of	
asset	share	to	the	risky	asset.	As	the	level	of	minimum	guarantee	increases,	more	asset	
share	is	allocated	to	the	risky	asset,	up	to	30%	of	the	portfolio	wealth.	This	is	a	result	
of	the	portfolio	composition	constraints,	which	are	set	to	restrict	the	proportion	of	asset	
share	invested	in	the	equity	index	to	30%.	Also,	at	higher	levels	of	guarantee,	more	asset	
share	is	allocated	to	long-term	bonds.	After	the	first	stage	the	portfolio	invests	more	asset	
share	in	the	risky	asset	for	lower	levels	of	minimum	guarantee.	This	is	due	to	the	higher	
benchmark	rate,	and	is	necessary	in	order	to	pay	bonuses.	Again	the	proportion	of	asset	
share	invested	in	the	risky	asset	is	restricted	to	30%.	If	this	restriction	is	lifted,	greater	
proportions	of	asset	share	will	be	allocated	to	the	risky	asset.	The	asset	allocation	also	
does	not	change	dramatically	from	one	year	to	the	next.

3.3.9	 Figure	7	shows	the	expected	return	on	equity	at	rebalancing	times	and	
the	actual	return	on	equity	for	different	levels	of	risk-aversion	at	minimum	guarantees	
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Figure 6: Asset allocation for different levels of minimum guarantee
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of 9% and 15% a year. As before, the model underestimates the return on equity and the 
expected return on equity improves as more data become available. The expected return 
on equity decreases as the level of risk-aversion increases. For a minimum guarantee 
of 9% a year the expected return on equity remains constant as the risk-aversion level 
moves from 0 to 0,8 and then suddenly drops in the most risk-averse case. For a minimum 
guarantee of 15% a year the expected return on equity remains constant as the risk-
aversion level moves from 0 to 0,4 and then decreases.

3.3.10 Figure 8 shows the expected cost of the guarantee at the decision times 
and the actual cost of the guarantee. The model firstly overestimates the cost of guarantee 
and as more data become available the expected cost of guarantee improves. For a 
minimum guarantee of 9% a year the expected cost of the guarantee decreases as the 
level of risk-aversion increases. For a minimum guarantee of 15% a year, the expected 
cost of the guarantee increases as the level of risk-aversion increases from 0,4 to 1.
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Figure 7: Shareholders’ annual excess return on equity for 
different levels of risk-aversion
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3.3.11	 As	 extra	 equity	 is	 now	 required	 to	 achieve	 a	 minimum	 guarantee	
of	9%	a	year,	 the	expected	return	on	equity	will	 remain	constant	 if	 the	expected	cost	
of	the	guarantee	is	included	in	the	objective	function	(i.e.	a <	1).	If	only	the	shortfall	
is	minimised	 (i.e.	a =	1)	a	 lower	expected	 return	on	equity	will	be	achieved.	This	 is	
because,	at	a	minimum	guarantee	of	9%	a	year,	the	actual	cost	of	the	guarantee	is	zero	
for	all	levels	of	risk-aversion.	As	a	cost	is	incurred	for	a	minimum	guarantee	of	15%	a	
year	if	the	level	of	risk-aversion	increases	from	0,4	to	1,	the	expected	return	on	equity	
will	decrease.	A	more	risk-averse	portfolio	at	much	higher	levels	of	minimum	guarantee	
will	require	extra	equity,	as	more	importance	is	given	to	the	shortfall	of	the	portfolio.

3.3.12	 Figure	9	shows	the	performance	of	the	asset	and	liability	accounts	at	
risk-aversion	levels	of	0,	0,6	and	1	for	minimum	guarantees	of	9%	and	15%	a	year.	The	
asset	level	stays	above	the	liability	level	over	the	entire	period.	At	risk-aversion	levels	of	
0	and	0,6	the	model	tends	to	be	more	aggressive	and	at	the	level	of	1	the	model	is	more	
conservative.	As	mentioned	above,	for	a	minimum	guarantee	of	9%	a	year,	a	zero	cost	
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Figure	8:	Cost	of	the	guarantee	for	different	levels	of	risk-aversion
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of the guarantee is achieved for all levels of risk-aversion. Because of the zero cost of 
the guarantee, the performance of the asset and liability accounts, as well as the payment 
of bonuses, is constant for levels of risk-aversion less than 1. If only the shortfall is 
minimised (i.e. a = 1), the portfolio pays lower bonuses and achieves a lower level 
of assets at the final time horizon. The portfolio, however, still achieves the minimum 
guarantee of 9% a year at no extra cost. For a minimum guarantee of 15% a year, extra 
equity is needed for higher levels of risk-aversion and a lower expected return on equity 
is achieved. This is seen in Figure 9, where it is shown that the model tends to be more 
conservative from the risk-aversion level of 0,6.
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Figure 10: Asset allocation at different levels of risk-aversion 
for a minimum guarantee of 9% a year
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3.3.13 Figure 10 shows the first-stage optimal asset allocation at rebalancing 
times for different levels of risk-aversion for a minimum guarantee of 9% a year. As 
the level of risk-aversion increases the portfolio is more conservative and allocates a 
lower proportion of asset share to the risky asset; this is also apparent from the above 
discussion. In the most risk-averse situation, where only the shortfall is minimised (i.e. 
a = 1), a much lower proportion of asset share is invested in the risky asset. Furthermore, 
the asset allocation does not change dramatically from one year to the next. The asset 
allocation for a minimum guarantee of 15% a year does not differ much from the asset 
allocation for a minimum guarantee of 9% a year, except that more asset share is invested 
in longer-term bonds in the first stage (see Figure 6).

4. CONCLUSION

4.1 The model presented above is a multi-stage dynamic stochastic-programming 
model for the integrated asset and liability management of insurance products with 
guarantees that minimise the down-side risk of these products. Regular bonus payments 
have been included and the optimisation problem has been kept linear, so as to facilitate 
the modelling of the rebalancing of the portfolio at future decision times. Also, by 
keeping the optimisation problem linear, the model is flexible enough to take into 
account portfolio constraints such as the prohibition of short-selling, transaction costs 
and coupon payments. It has also been shown that the bonus assumption mimics the 
more realistic assumptions proposed by Consiglio et al. (2006).

4.2 Furthermore, the features of the model at different levels of minimum guarantee 
and different levels of risk-aversion have been shown. The back-tested results show that 
the proposed stochastic-optimisation framework successfully deals with the risks created 
by the guarantee and declaration of bonus payments. As Consiglio et al. (2006) have 
shown, the model can also be used for analysing the investment decision made by the 
insurer.

4.3 The with-profit guarantee funds discussed in this paper are operated on a 90–10 
basis: the policyholders benefit in 90% of the growth in asset share and the shareholders in 
10%. These products do, however, occur to a lesser extent in the South African insurance 
market. One of the main goals of this paper was to extend the work of Dempster et 
al. (2006) and Consiglio et al. (2006). There remains wide scope, however, for further 
research of these products in the South African insurance market.
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APPENDIX A

THE LINEAR PROGRAMMING MODEL

A.1	 Given	a	 set	of	 scenarios	 the	 stochastic	programming	model	 results	 in	 a	 linear	
programme.

A.2	 All	variables	are	 indexed	by	a	 time	 index	 t	which	 takes	values	over	 the	 times	
1 2
12 120, , , ,t T=  ,	and	states	index	s	from	the	set	 { }| 1, 2, ,v

t t ts v SΣ = =  .

The	time	sets	are:
	– all	times	 { }1 2

12 120, , , ,totalT T=  ;

	– decision	times	 { }0,1,2, , 1dT T= − ;

	– intermediate	times	 \i total dT T T= ;	and

	– coupon	payment	times	between	decision	times	 { }31 1
2 2 2, , ,cT T= − .

Other	 index	sets	are:	 stock	 indices	SI;	government	bonds	with	maturity	τ	B={Bτ};	all	
instruments	I=SIB.

A.3	 The	parameters	in	the	linear	programme	are:	 Bτ
δ ,	 BF τ

,	 ,
s
tr τ ,	g,	ρ,	 ,

s
t br ,	γ,	β,	 , ,

, ,,a s b s
t i t iP P ,	

,a bf f 	and	 s
tp .

A.4	 The	resulting	linear	programme	is:

{ }
( ) ( ) ( )( )

, , ,; ; ; ; ; ; ; ; ;
max 1 1

s s s s s s s s s s
totalt i t i t i t t t t t t t T t

s
s s s s s t

T T T totalx y z A L E c SF RB TB s st T

SFp A L E p
T

α γ α
∈Σ ∈Σ∈

  − − − − − 
  

∑ ∑ ∑ 	
	 	 	 	 	

.

subject	to:

( ),
0, 0, 01a s s s
i i ai I

P x f A
∈

+ =∑ ,	for	t{0}	and	s  Σt ;

( ) { } ( ), ,1
, , , , ,2\

1 1b s s s s a s s
t i t i b i i t i t t i t i ai I i I SI i I
P y f F y c P x fδ

∈ ∈ ∈
− + + = +∑ ∑ ∑ 	for	tT d \{0}	and	

s  Σt ;

, 0s
t ix ≥ ,	for	all	i I,	tTtotal \{T}	and	s  Σt ;

, 0s
t iy ≥ ,	for	all	i I,	tTtotal \{0}	and	s  Σt ;

, 0s
t iz ≥ ,	for	all	i I,	tTtotal \{T}	and	s  Σt ;
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0, 0,
s s

i iz x= , for t{0} and s  Σt ;

, , , ,
s s s s
t i t i t i t iz z x y−= + − , for i I, tTtotal \{0} and s  Σt ;

, , 0s s
t i t ix y= = , for i I, tTi\Tc and s  Σt ;

( )
1

,2
, ,

, 1

s
i i t is

t i a s
t i a

F z
x

P f
δ −

=
+

, for i I \{SI}, tTc and s  Σt ;

, 0s
t iy = , for i I \{SI}, for tTc and s  Σt ;

, ,0, 0s s
t SI t SIx y= = , for tTc and s  Σt ;

0 0 0
s sA L E= + , for t{0} and s  Σt ;

( ),
, , 1s a s s

t t i t i ai I
A P z f

∈
= +∑ , for tTtotal \{T} and s  Σt ;

( ) { }1 1
12 12

, 1
, , ,2\

1s b s s s
T T i b i iT i T ii I i I SI

A P z f F zδ− −
− −∈ ∈

= − +∑ ∑ , for s  Σt ;

0 0
sL L= , for t{0} and s  Σt ;

1
12

1
12

gs s s
t ttL L e RB−

−= + , for tTtotal \{T} and s  Σt ;

0 0
s sE c= , for t{0} and s  Σt ;

1 ,12
1
12

s
t trs s s

t ttE E e c
−
−−
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, for { }( ) { }\ 0dt T T∈ ∪ , and

s  Σt ;

0s
tRB >=  for { }( ) { }\ 0dt T T∈ ∪ , and s  Σt ;

0s
tRB =  for { }( ) { }0 \it T T∈ ∪ , and s  Σt ;
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1 1 1
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0s
tSF >=  for tTtotal , and s  Σt ;

s s
t tc SF=  for ( ) { }dt T T∈ ∪  and s  Σt

0s
tc =  for { }\it T T∈ , and s  Σt ; and
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